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A B S T R A C T

The detection of epileptic seizures in EEG signals is a challenging task because it requires careful review of
multi-channel EEG recordings over a lengthy time interval. In general, EEG-based seizure detection is strongly
dependent on the ability to select descriptive features that are also stable in the sense that they are not sensitive
to changes in the training data. This study proposes and investigates a patient-independent seizure detection
model that uses stable EEG-based features obtained by comparing multiple feature selection methods. The
schemes considered can be divided into five categories, often referred to as similarity, information theoretic,
sparse learning, statistical, and graph centrality feature selection methods. The stability of the features these
schemes produce was evaluated by random forest classification, using the intersection, frequency, correlation,
and similarity measures. In experiments with Temple University Hospital’s Seizure database of EEG records
of 341 patients, unsupervised graph centrality feature selection was the most effective method, with a correct
classification rate of 91.5%.
1. Introduction

Despite taking anti-seizure medication, about one-third of epileptic
patients continue to experience unprovoked seizures. This persistent
occurrence of uncontrolled seizures negatively affects the quality of
life of patients and of caregivers as well. For a patient who suffers
from recurrent epileptic seizures, the decision whether to administer an
anti-seizure drug or undergo surgery is generally based on an accurate
diagnosis of their seizures. A precise quantification, localization, and
analysis of the seizures’ pattern prior to, during, and after the onset of
seizures could help clinicians to customize treatment objectively during
epilepsy surgery or in hospital epilepsy monitoring units. Seizures are
caused by abnormal electrical activity in one or more areas of the brain.
Prolonged Electroencephalography (EEG) recording remains the most
reliable and common way to detect abnormalities in brain functioning
that might be causing seizures, as well as to determine their type and
localization for treatment. Performing visual scanning of long-term EEG
recordings lasting several days is time-consuming and prone to errors.
To simplify a physician’s work, attempts to develop automatic seizure
systems based on the analysis of long-term EEG monitoring have been
increasing in number and scope.

Several seizure detection algorithms have been proposed, using clas-
sical signal processing techniques (Abou-Abbas et al., 2022; Acharya
et al., 2015; Alam & Bhuiyan, 2013; Fu et al., 2014; Sharma & Pachori,
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2015). These typically involve three main stages: pre-processing, fea-
ture extraction and classification. The focus has been on identifying
discriminant features to distinguish between seizure and seizure-free
segments. Multi-channel EEG signals allow the extraction of a sig-
nificant amount of data via linear and non-linear methods in time,
frequency and time–frequency domains (Jemal et al., 2021b; Kalin
et al., 2020; Shantha Selva Kumari & Prabin Jose, 2011; Tessy et al.,
2017; Tzallas et al., 2009; Zhou et al., 2018). Time-domain analysis
(TDA) involves extracting features such as energy, line length, and
amplitude. The work in Tessy et al. (2017) developed a computationally
efficient method of seizure detection using time-domain features and
achieved 94.4% classification accuracy. Although TDA can be suitable
for real-time applications and provide better spatial information, it
lacks information on frequency content. A frequency-domain analysis
(FDA) involves describing the signal in terms of its frequency by
assuming its periodicity. Based on a comparison between FDA and TDA
on two public databases, Zhou et al.. Zhou et al. (2018) concluded that
FDA was more effective at detecting seizure segments than the TDA
method. A main limitation of the FDA is the selection of an appropriate
window size when the signal lacks stationarity. To address the non-
linear and non-stationary nature of EEG signals, time–frequency-based
techniques have been successfully used in a number of studies for the
detection of epileptic seizures (Kalin et al., 2020; Shantha Selva Kumari
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& Prabin Jose, 2011; Tzallas et al., 2009). Most of these methods use the
short-time Fourier transform (STFT), the wavelet transform, and power
spectral density (PSD). The STFT, which uses the fast Fourier transform
(FFT) of successive segments of a signal, has been effectively applied
to seizure detection (Kalin et al., 2020). Other studies have applied
wavelet transforms rather than the FFT (Alickovic et al., 2018; Kumar &
Kolekar, 2014). Empirical mode decomposition (EMD) has also proved
beneficial to the analysis of nonlinear and non-stationary data (Orosco
et al., 2009). Furthermore, a wide range of applications using power
spectral density (PSD) to study the power distribution across a wide fre-
quency range have been investigated (Greene et al., 2008; Tzallas et al.,
2009). Recent studies suggest that epileptic seizures can be quantified
by studying the changes in brain dynamics indicative of signal complex-
ity; these have also been able to distinguish seizure and non-seizure
segments. For this purpose, several entropies in the time, frequency
and time–frequency domains have been used in epilepsy detection,
including the Shannon entropy and approximation entropy, as well
as spectral entropy and wavelet entropy. These outcomes reveal the
existence of significant differences between seizure activity and non-
seizure activity (Kannathal et al., 2005; Kumar et al., 2013; Li et al.,
2014; Rajendra Acharya et al., 2012). In neonatal seizures, Temko
et al. (2011) extracted 55 features grouped in the frequency domain
(such as wavelet energy, peak frequency of the spectrum, normalized
power in sub-bands), time-domain (including curve length, number
of maxima and minima, Hjorth parameters, and zero crossings), and
information theory (including Shannon entropy, spectral entropy, and
Fisher information). The features were combined as a single feature
vector and input to a support vector machine classifier. The results
showed a good detection rate of 89% for neonatal seizures. Wavelet
transforms and empirical mode decomposition were used in a study
by Parvez and Paul (2014) to compute several features of EEG signals,
such as the entropy and energy of high-frequency coefficients. In their
study, Alickovic et al. (2018) analyzed six different statistical features
and found that the wavelet packet-based feature vector (including the
mean of coefficient’s absolute values, the average power of coefficients,
standard deviation, and the ratio of absolute mean values of adjacent
sub-bands), resulted in the best overall accuracy. Along with feature
extraction and selection, several substantial studies have been devoted
to the statistical learning of classifiers, such as Support vector machines
(SVM), k-nearest neighbors (k-NN), random forest (RF), decision tree
(DT), and neural networks (NN), which have proven useful in seizure
and type of seizure detections (Abou-Abbas et al., 2021a; Alickovic
et al., 2018; Jemal et al., 2021a; Kumar & Kolekar, 2014; Song et al.,
2012). Even though machine learning applications have enabled the
development of automated EEG-based seizure detection approaches,
further research is required to improve the sensitivity and reduce the
false-positive rate of recurrent methods, as well as to confirm their
accuracy and their clinical relevance by validating results across larger
and more diverse cohorts.

Since both linear and nonlinear features extracted in time, fre-
quency, and time–frequency domains have been effective to some
degree in epileptic seizure research, picking one or some combined
categories of these features will have its benefits and drawbacks.

Considering EEG data complexity and the large number of features
in use in various studies, the selection of salient and stable features
appears to be crucial because high-dimensional feature vectors compli-
cate classification and, therefore, can negatively impact classification.
Feature selection is driven by the fact that classifiers built using a
smaller feature space are generally more robust and reproducible than
those built using a large feature space (Khaire & Dhanalakshmi, 2019).
Ensuring a smaller feature space is now considered a key step of
almost all classification frameworks. By reducing the complexity of
the feature space, the computational cost of the classifier is reduced,
its performance generally improves, and its implementation in clinical
practice can be justified. Moreover, controlling the quantity and quality
2

of features in machine learning helps to reduce over-fitting, which leads
to a better association between features and target classes, and an
improved classification generalization ability. Research has been done
on feature selection methods for epileptic seizure detection to assess
which features are relevant for optimizing detection performance while
minimizing computing cost by removing irrelevant features (Bou Assi
et al., 2015; Direito et al., 2011; Senawi et al., 2017; Wei & Billings,
2006). These methods can be categorized as supervised or unsuper-
vised, univariate, or multivariate, and further separated by whether
they make use of a classifier during the selection process. Previous
research focused on identifying relevant features for the distinction
between seizure and seizure-free segments, but did not investigate how
features contribute to detection or how stable they are when applied
across different training samples or new datasets. The lack of evidence
about feature stability may explain in part why these studies cannot
be replicated and their results cannot be generalized, and reveals the
lack of extensive analysis of EEG data aiming at retaining descriptive
and stable features. Moreover, the majority of machine learning studies
currently available in the literature are primarily patient-specific stud-
ies based on one classifier being trained for each subject, rather than
a universal classifier trained for all subjects. This is partly due to the
high inter-subject variability that leads patient-independent models to
perform much below the level of patient-specific models. This inter-
subject variability highlights the need to investigate techniques that
effectively address the seizure detection task in a patient-independent
manner. To that end, this study proposes a patient-independent model
for the detection of epileptic seizures that provides accurate detection
of seizure segments based on a stable subgroup of features. It has
three key objectives: (1) to summarize feature representations and
their interpretation related to epileptic seizure patterns with the use
of multi-channel EEG data; (2) to resolve high dimensionality issues
by considering seven supervised and unsupervised feature selection
methods, including univariate and multivariate methods to determine
a subgroup with a minimal set of informative attributes; and (3) to
evaluate the stability of the selected subgroup by using various stability
measures.

The remainder of this paper is organized as follows: Section 2 gives
an overview of the dataset used in this study 2. Section 3 presents a
description of the framework, as well as details and background for
each step of the framework. The results and a comparison between the
different features selection techniques are presented in Section 4. Sec-
tion 5 contains a discussion of the results obtained and compares them
to those obtained by others. Finally, Section 6 contains a conclusion
and some suggestions for future work.

2. Dataset

The data used in this study were obtained from the Temple Uni-
versity Hospital EEG Seizure Corpus (TUSZ) v1.5.1. This dataset was
recently made openly available for researchers to address the lack of
EEG datasets in EEG seizure research. The data is from a total of 341
patients, of which 188 are female. It consists of 886 sessions broken
up into 7634 files, with each file lasting between one second and an
hour. A total of 1760 of these files contain EEG seizure segments,
comprising a total of 40.41 h, which represents approximately 6% of
the overall data. The EEG signals were recorded in a real-time clinical
environment using the 10/20 international standard system with over
19 channels and a minimum sampling rate of 250 Hz. The start and
end of each seizure were manually annotated by trained researchers
using an open-source annotation tool. All portions of artifacts and eye
blinks were purged from the recordings. Metadata information relevant
to the EEG interpretation including signal conditions, type and location
of the session, and patient demographics including gender, age, as well
as medication history are also provided. Further details on the data

used in this study are described in Table 1.
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Fig. 1. The framework of the proposed methodology. It includes five main steps: Pre-processing, feature extraction, feature selection, stability assessment, and classification,
followed by a performance evaluation.
Table 1
Overview of the subset of the Temple University Hospital EEG Seizure
Corpus (TUSZ) used in our seizure detection experiments.

Nb of patients (Female) 341 (188 F)
Nb of patients with seizure (Female) 133 (72 F)
Total Nb of sessions 886
Total Nb of files 7634
Nb of Seizure files 1780
Nb of Seizure-free files 5854
Total duration in h. 655.36

3. Methods

The framework for building the classification model consists of two
stages: a training stage and a testing stage. The training stage consists
of five steps: data preprocessing, feature extraction, feature selection,
stability assessment, and classification. Fig. 1 gives a block diagram of
the approach.

3.1. Pre-processing

The EEG data were digitized at a sampling rate of 256 Hz, and
then filtered with cut-off frequencies of (0.5:75) Hz followed by a
60 Hz notch filter to smooth out noise and power line interference.
To provide a better description of the signal, the retained data was
uniformly segmented into 4-, 5-, 10-, 15-, and 20-second intervals and
then analyzed separately.

3.2. Features extraction

Given the inherent irregularity of EEG signals, it is insufficient
to rely solely on linear features for the analysis of EEG activity. In
light of this, a set of 44 univariate features were selected based on
a combination of linear and nonlinear signal analysis techniques. The
choice of these features was influenced by the commonly used features
in EEG analysis and epilepsy seizure detection. Recent research find-
ings have emphasized the significance of these features, which have
been classified them into three main groups: time-domain, frequency-
domain, time–frequency domain Abou-Abbas et al. (2021b), Alam and
3

Table 2
List of all the 44 features extracted.

Number Features

1–5 Average value of Power Spectral Density (Delta, Theta,
Alpha, Beta, Gamma)

6–10 Absolute value of Power Spectral Density (Delta, Theta,
Alpha, Beta, Gamma)

11–15 Relative value of Power Spectral Density (Delta, Theta,
Alpha, Beta, Gamma)

16–18 Skewness, Variance and Kurtosis

19–24 Features of Empirical Mode Decomposition (Energy,
Spectral Entropy, Mean, Standard deviation, Moment,
Skewness)

25–29 Sample Entropy, Permutation Entropy (4 levels)

30–32 Hjorth (Mobility, Activity, Complexity)

33 Spectral Entropy of PSD

34 Features of Discrete Wavelet Transform- Shannon Entropy

35–36 Features of Wavelet Packet Decomposition (Log Energy
Entropy and Shannon Entropy)

37 Successive Decomposition Index

38–39 Mean Energy and its cumulative sum

40–44 Features of wavelet Decomposition (Percentage of
energy-5 levels)

Bhuiyan (2013), Bandarabadi et al. (2015), Bosl et al. (2011), Hjorth
(1970), Kumar et al. (2013), Orosco et al. (2009), Park et al. (2011),
Rajendra Acharya et al. (2012), Ramadhani et al. (2019), Rezek and
Roberts (1998), Şen et al. (2014). The list of all the extracted features
used in this study is displayed in Table 2

3.2.1. Time-domain features
A number of studies have shown the advantages of the time domain

features (Hjorth, 1970; Ramadhani et al., 2019; Şen et al., 2014). This
study uses nine time-domain features calculated directly from the EEG
signals: three statistical features (skewness, variance, and Kurtosis);
the three Hjorth parameters (activity, mobility, and complexity); the
successive decomposition index; and two entropy-based features.
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𝑆

1. Statistical features:

(a) Skewness of the raw signal:

𝑆𝑘𝑒𝑤 =

∑𝑁
𝑖=1

(

𝑥𝑖−𝑥
𝜎

)3

𝑁 − 1

(b) Variance of the raw signal:

𝑣 = 𝜎2 = 1
𝑁 − 1

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑥)2

(c) Kurtosis of the raw signal:

Kurt =

∑𝑁
𝑖=1

(

𝑥𝑖−𝑥
𝜎

)3

𝑁 − 1
− 3

2. The Hjorth parameters: time domain parameters

(a) Mobility indicates the mean frequency of the power spec-
trum:

𝐻mob =

√

var (𝑦′(𝑡))
var (𝑦(𝑡))

(b) Activity represents the mean power of the signal:

𝐻act = 𝑣𝑎𝑟 (𝑦(𝑡))

(c) Complexity represents the change in frequency:

𝐻com =
mobility

(

𝑦′(𝑡)
)

mobility (𝑦(𝑡))

3. The successive decomposition index (SDI) is derived by the
motivation of the discrete wavelet transform. The SDI is a novel
matrix determinant that has been used successfully in previous
studies (Raghu et al., 2019) . The square matrix is formed using
four coefficients calculated by an iterative process (Raghu et al.,
2019).

𝑆𝐷𝐼 = log10
𝑛
𝐿
(𝑋+𝑋++ −𝑋−𝑋−−)

with EEG in time series 𝑥 = {𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑛}, 𝑋+: average
of |𝑥|, 𝑋+ = 1

𝑛
∑𝑛

𝑖=1
|

|

𝑥𝑖||
𝑋−: difference average of 𝑥, 𝑋++ = 𝑋++𝑋−

2 and 𝑋−− = 𝑋+−𝑋−
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4. Entropy features:

(a) The sample Entropy is defined as:

𝑠𝑎𝑚𝑝𝐸𝑛 = lim
𝑁→∞

{

− ln
[

𝐴𝑚(𝑟)
𝐵𝑚(𝑟)

]}

For a given 𝑁 data points of a time series 𝑥(𝑛) = 𝑥(1), 𝑥(2),
… , 𝑥(𝑁). 𝐵𝑚(𝑟) is the probability that two sequences will
match for 𝑚 points. 𝐴𝑚(𝑟) is the probability that two
sequences will match for 𝑚 + 1 points.

(b) Permutation entropy is defined as:

𝐸𝑝𝑒𝑟𝑚 =
𝐷!
∑

𝑗=1
𝑝𝑗 log2 𝑝𝑗

where 𝑝𝑗 are the relative frequencies of the signal and 𝐷
is the relative order.

3.2.2. Frequency-domain features
The frequency-domain features used in this study are based on the

power spectral density on each segment of each channel in the EEG
data. The average of the power spectral density (PSD) was calculated
using the Welch method over all electrodes in the five frequency bands:
4

delta (0.4–4 Hz); theta(4–8 Hz); alpha(8–13 Hz); beta(13–30 Hz) and
gamma(30–75 Hz). Additionally, the Spectral Entropy was determined
using the normalized power spectral distribution of the EEG signal (𝑃𝑓 ),
t is calculated as:

𝑝𝐸𝑛 = −
𝑁−1
∑

𝑘=1
𝑃𝑘 log2 𝑃𝑘

3.2.3. Time–frequency domain features
1. EMD-based features

The Empirical Mode Decomposition (EMD) technique has gained
widespread use in the analysis of EEG signals due to its ability
to address the non-stationarity inherent in such signals. Abou-
Abbas et al. (2021b), Alam and Bhuiyan (2013), Oweis and
Abdulhay (2011), Wang et al. (2012), Zeng et al. (2019).
The EMD approach divides the signal into multiple frequency
bands, preserving the temporal variation of frequency. The sift-
ing algorithm is then applied to decompose the signal into a
finite number of intrinsic modes. After several evaluations, it
was determined that only the IMF1, IMF2, and IMF3 levels are
relevant for the classification task, as IMF4 and higher levels
provide minimal benefit. A total of 6 features describing the
changes and statistical distribution of the IMF were used.

(a) Energy

𝐹𝐼𝑀𝐹𝑖 = −
𝑁−1
∑

𝑛=0
|𝐼𝑀𝐹𝑖[𝑛]|
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(b) Spectral Entropy

𝑆𝑝𝐸𝑛𝐼𝑀𝐹𝑖 = −
𝑁−1
∑

𝑘=1
𝐼𝑀𝐹𝑘 log2 𝐼𝑀𝐹𝑘

(c) Mean

𝜇𝑘 = 1
𝑁

𝑁−1
∑

𝑛=0
𝐼𝑀𝐹𝑘[𝑛]

(d) Standard Deviation

𝜎 =

√

𝑠𝑢𝑚𝑖=1
𝑁

(𝐼𝑀𝐹𝑘[𝑖] − 𝐼𝑀𝐹𝑘)2

𝑁 − 1

(e) Skewness

𝑆𝑘𝑒𝑤𝐼𝑀𝐹 =

∑𝑁
𝑖=1

(

𝐼𝑀𝐹𝑘[𝑖]−𝐼𝑀𝐹𝑘
𝜎

)3

𝑁 − 1

2. Wavelet-based features
In the present paper, the signal was analyzed through 5 levels of
decomposition using 5 Daubechies wavelet functions. Tables 3
and 4 show the five-level decomposition of EEG signals using
wavelet and wavelet packet transforms, respectively.
Entropy-based wavelet features have gained prominence in re-
cent times due to their capability to quantify the complexity and
irregularity of EEG signals across multiple time scales, as well as
to determine the level of uncertainty in the signal and evaluate
its dynamic order. These features have demonstrated success
in the detection of seizures in several prior studies. Bosl et al.
(2011), Kumar et al. (2013), Rajendra Acharya et al. (2012),
Rezek and Roberts (1998).

(a) Wavelet Shannon Entropy based on discrete wavelet
transform

𝑊 𝑎𝑣𝐸𝑛𝑡 = −
𝐷!
∑

𝑗=1
𝑝𝑗 log2 𝑝𝑗

Where 𝑝 is the normalized wavelet energy.
𝑗
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Table 3
Five levels of decomposition of EEG signal using a wavelet transform.

Decomposition level Frequency range (Hz) EEG band

D1 64–75 Higher gamma
D2 32–64 Lower gamma
D3 16–32 Beta
D4 8–16 Alpha
D5 4–8 Theta
A5 0–4 Delta

Table 4
Five levels of decomposition of EEG signal using
wavelet packet transform.
Decomposition level Frequency range (Hz)

D1 64–75
A1 0–60
D2 32–64
A2 0–30
D3 16–32
A3 0–16
D4 8–16
A4 0–8
D5 4–8
A5 0–4

(b) Log Energy Entropy based on wavelet packet transform

𝐿𝑜𝑔𝐸𝑛𝑡 = −
𝑁−1
∑

𝑖=0
(log2 (𝑝𝑖(𝑥)))

2

(c) Shannon Entropy based on wavelet packet transform

𝑆ℎ𝐸𝑛 = −
𝑁−1
∑

𝑖=0
(𝑝𝑖(𝑥))

2(log2 (𝑝𝑖(𝑥)))
2

3.3. Features selection

In view of the large number of features, it is important to consider
the feature selection step as a key component of the framework, a step
that removes redundant and irrelevant features, increases classification
performance, and helps to ensure feature stability.

Our study compared seven feature selection (FS) algorithms, four of
them filter methods that do not require a learning process and feedback
from predictors: the Gini-index method, the minimum redundancy
maximum relevance (mRMR), the spectral feature selection (SPEC) and
Laplacian score (LapScore), and three from embedded methods that
are tightly coupled with an embedded clustering algorithm and that
depend on the classification result: LL21, non-negative discriminative
feature selection (NDFS) and unsupervised graph-based feature selec-
tion (UGFS). The filter methods differ according to the ranking concept.
Gini-Index uses statistical information; LapScore and SPEC methods use
similarity and mRMR uses information theory. The embedded meth-
ods are further categorized based on the clustering technique: sparse
learning (NDFS and LL21) or graph centrality (UGFS). An FS method
would be considered univariate if it evaluates each feature individually,
regardless of its relevance, and determines the relationship between
each feature and the class. Meanwhile, if it considers a subset of
features as well as their interactions, then it would be considered
multivariate. Fig. 2 shows the hierarchical structure of the selection
methods used in this study.

Feature selection based on the Gini index was originally developed
by Breiman et al. (2017) to sort features based on their impurity. It is
a multivariate, supervised filter-based method. The lower the value of
the Gini index, the better the feature.

The mRMR, a multivariate feature selection approach, was origi-
nally developed by Ding and Peng (2005). It is a supervised filter-based
5

Fig. 2. The hierarchical structure of the feature selections methods used in this research
grouped in categories based on the procedures employed for selection.

method that combines similarity and importance criteria to select fea-
tures based on mutual information. For similarity, the mRMR considers
the minimum redundancy between features, and for importance, the
maximum relevance between individual features and the target class.
Each feature is given an index, where 0 is the most relevant feature
and so forth. The mRMR is a powerful method for feature selection
and previous studies indicate that it leads to significant improvement
in classification accuracy (Memar & Faradji, 2018; Peng et al., 2005).
The main advantages of this approach are its speed and scalability.

The Laplacian score (LS) method proposed by He et al. (2005) can
be used for both supervised and unsupervised feature selection. It is
a univariate filter-based feature selection approach based on finding
spectral similarity between features. It estimates a feature’s importance
based on their Laplacian score to rank its relevance and evaluate its
locality-preserving ability: this is a measure of similarity between one
feature and the nearby instances on the graph. The lower the Laplacian
score, the more significant the feature.

The SPEC algorithm proposed by Zhao and Liu (2007) is a univariate
filter-based method for supervised and unsupervised feature selection
that uses spectral graph theory to find structural information. The high-
est score is given to relevant features that offer better separability. After
building a similarity set, constructing the graph representation, and
evaluating the features of the graph using its spectrum, the algorithm
ranks each feature according to its relevance.

Li et al. introduced an unsupervised non-negative Discriminative
Feature Selection (NDFS) (Li et al., 2012). This method computes the
weight matrix to score features. It is comprised of two steps, The
first investigates the cluster structure of the random data by means
of spectral analysis of the non-negative matrix factorization, and the
second selects the features over the whole feature space by using
sparsity regularization to preserve the estimation cluster structure and
to provide the scores to the most discriminative features. Shi et al.
(2014).

An unsupervised graph-based feature selection (UGFS) method was
developed by Henni et al. (2018, 2020). UGFS is an unsupervised
feature selection algorithm that operates by iteratively selecting and re-
moving the most irrelevant features from a dataset. The algorithm uses
subspace preference clusters to define relationships between features
and PageRank to rank the importance of each feature. The subspace
preference clusters are sets of data points that share similar dense
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Fig. 3. Hierarchical structure of the stability measures.
regions, which are associated with a set of features that have low
variance in the neighborhood of the points. These features are con-
sidered to be relevant and are preserved in the clusters, while the
irrelevant features are filtered out. The PageRank algorithm computes a
normalized and propagated value for each feature in the dataset based
on the importance of all connected features. This importance is based
on the expected sum of the importance of all connected features, with
the direction of the edges being defined by the correlation between the
features. The resulting PageRank scores are used to rank the importance
of each feature, with the least important features being removed in each
iteration of the algorithm. The iterative process of UGFS continues until
a stopping criterion is met, such as reaching a predefined number of
selected features or reaching a certain level of classification accuracy.
UGFS has been shown to be effective in reducing the dimensionality of
high-dimensional datasets while preserving the classification accuracy
of the original dataset.

3.4. Stability

The stability of a feature selection approach is determined by the
ability to generate similar features regardless of perturbations in the
training data. A stable feature selection approach will select a re-
producible set of relevant features. This set could be, for example,
a dataset split into different folds for training and validation. Disre-
garding the feature selection algorithm’s stability issue can lead to
erroneous conclusions and the inability to replicate and generalize the
results. Therefore, the best approach is to combine the feature selection
approach with stability analysis to realize a high-quality, consistent,
and reliable subset of features.

Stability measures exist in many forms to assess feature selection
stability, but it remains unclear which measure is the best to use.
6

Therefore, we looked at the stability of feature selection methods
using 14 stability measures split into two categories, either unadjusted
or adjusted. The unadjusted measures are grouped according to the
criteria they are based on: intersection-based stability measures that
consider the cardinalities of all pairwise intersections, and frequency-
based stability measures that focus on the frequency of selectivity of
all features using the following criteria: median, variance, entropy and
consistency. The adjusted measures are grouped based on the similarity
and correlation between features. Fig. 3 shows a hierarchical structure
of the stability measures used in our study and Tables 5, 6 and 7
show the mathematical foundation of these measures as well as their
maximum and minimum values. A detailed review of these measures
can be found in Bommert (2020). with 𝑋1, 𝑋2. . .𝑋𝑛 features extracted
and 𝑉1, 𝑉2. . .𝑉𝑚 the set of chosen features for the 𝑚 subsets ℎ𝑗 the
absolute frequency with which feature 𝑋𝑗 is chosen.

3.5. Classification and performance evaluation

Several classifiers have been presented for the detection of epileptic
seizures using EEG signals (Bhattacharyya et al., 2018; Faust et al.,
2010; Mahjoub et al., 2020; Orhan et al., 2011; Sharma et al., 2017). In
this work, the detection of epileptic seizures was performed using the
random forest classifier, as it has shown good performance in several
previous works (Bhattacharyya et al., 2018; Mahjoub et al., 2020;
Orhan et al., 2011).

A Random Forest algorithm (Breiman, 2001) is an ensemble learn-
ing method in which each tree of the ensemble is an individual predic-
tor created using a randomly selected subset of data. This algorithm is
based on the concepts of random subspaces and bagging.

We evaluated our proposed method based on accuracy, F1 score,
precision, sensitivity, and the area under the ROC curve. To avoid
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Table 5
Intersection-based stability measures.

Stability measures Formula Min value Max value

Dice 2
𝑚(𝑚 − 1)

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1

2|𝑉𝑖 ∩ 𝑉𝑗 |

|𝑉𝑖| + |𝑉𝑗 |
0 1

Hamming 2
𝑚(𝑚 − 1)

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1

|𝑉𝑖 ∩ 𝑉𝑗 | + |𝑉 𝑐
𝑖 ∩ 𝑉 𝑐

𝑗 |

𝑝
0 1

Jaccard 2
𝑚(𝑚 − 1)

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1

|𝑉𝑖 ∩ 𝑉𝑗 |

|𝑉 𝑐
𝑖 ∪ 𝑉 𝑐

𝑗 |
0 1

Kappa 2
𝑚(𝑚 − 1)

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1

|𝑉𝑖 ∩ 𝑉𝑗 | −
|𝑉𝑖|.|𝑉𝑗 |

𝑝
|𝑉𝑖 |+|𝑉𝑗 |

2
− |𝑉𝑖 |.|𝑉𝑗 |

𝑝

−1 1

Lustgarten 2
𝑚(𝑚 − 1)

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1

|𝑉𝑖 ∩ 𝑉𝑗 | −
|𝑉𝑖 |.|𝑉𝑗 |

𝑝

𝑚𝑖𝑛{|𝑉𝑖|, |𝑉𝑗 |} − 𝑚𝑎𝑥{0, |𝑉𝑖| + |𝑉𝑗 | − 𝑝}
−1 1

Ochiai 2
𝑚(𝑚 − 1)

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1

|𝑉𝑖 ∩ 𝑉𝑗 |
√

|𝑉𝑖|.|𝑉𝑗 |
0 1

Phi 2
𝑚(𝑚 − 1)

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1

|𝑉𝑖 ∩ 𝑉𝑗 | −
|𝑉𝑖 |.|𝑉𝑗 |

𝑝
√

|𝑉𝑖|(1 −
|𝑉𝑖 |

𝑝
).|𝑉𝑗 |(1 −

|𝑉𝑗 |

𝑝
)

−1 1

Wald 2
𝑚(𝑚 − 1)

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1

|𝑉𝑖 ∩ 𝑉𝑗 | −
|𝑉𝑖 |.|𝑉𝑗 |

𝑝

𝑚𝑖𝑛{|𝑉𝑖|, |𝑉𝑗 |} −
|𝑉𝑖 |.|𝑉𝑗 |

𝑝

1-p 1
Table 6
Frequency-based stability measures.

Stability measures Formula Min value Max value

Davis max

{

0, 1
|𝑉 |

𝑝
∑

𝑗=1

ℎ𝑗

𝑚
−

𝑝𝑒𝑛𝑎𝑙𝑡𝑦
𝑝

.𝑚𝑒𝑑𝑖𝑎𝑛{|𝑉1|, |𝑉2|,… |𝑉𝑚|}

}

0 1

Nogueira 1 −
1
𝑝

∑𝑝
𝑗=1

𝑚
𝑚−1

ℎ𝑗

𝑚

(

1 − ℎ𝑗

𝑚

)

𝑞
𝑚𝑝

(

1 − 𝑞
𝑚𝑝

) −1 1

Novovicova 1
𝑞 log2(𝑚)

∑

𝑗∶𝑋𝑗∈𝑉

ℎ𝑗 𝑙𝑜𝑔2(ℎ𝑗 ) 0 1

Somol

(

∑𝑝
𝑗=1

ℎ𝑗

𝑞
ℎ𝑗1

𝑚−1

)

− 𝑐𝑚𝑖𝑛
𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛

0 1
Table 7
Adjusted stability measures.

Stability measures Formula Min value Max value

Yu 2
𝑚(𝑚 − 1)

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1

𝐼(𝑉𝑖 , 𝑉𝑗 ) − 𝐸(𝐼(𝑉𝑖 , 𝑉𝑗 ))
|𝑉𝑖 |+|𝑉𝑗 |

2
− 𝐸(𝐼(𝑉𝑖 , 𝑉𝑗 ))

NA 1

Zucknick 2
𝑚(𝑚 − 1)

𝑚−1
∑

𝑖=1

𝑚
∑

𝑗=𝑖+1

|𝑉 𝑐
𝑖 ∩ 𝑉 𝑐

𝑗 | + 𝐶(𝑉𝑖 , 𝑉𝑗 ) + 𝐶(𝑉𝑗 , 𝑉𝑖)

|𝑉 𝑐
𝑖 ∪ 𝑉 𝑐

𝑗 |
0 1
overfitting, a 10-fold cross validation procedure was used, in which the
classifier was trained using 9 folds and tested on the remaining fold.
This procedure was repeated ten times and the average of the perfor-
mance measures across all experiments was considered. Additionally, to
ensure that no patient information was used in both the training and
testing phases, we employed the GroupKFold technique. This method
ensures that samples from the same patient are always kept in the same
fold, thereby avoiding any contamination of the test set with training
information.

4. Experimental results

In this work, we explored a set of linear and non-linear features and
different feature selection techniques for epileptic seizure detection.
The goal of feature selection is to help in the development of a bet-
ter classifier by highlighting important features, while simultaneously
lowering computational overload. We evaluated the performance of our
methodology using EEGs from 341 patients in Temple University Hos-
pital’s EEG seizure database. Our approach extracted 44 quantitative
7

EEG features from the time, frequency, and time–frequency domains,
including linear and nonlinear features, combined them across 19
channels to reveal the spatial and temporal patterns of seizures and
to allow them to be used as a high-dimensional input vector for a total
of 856 features per each window size.

The entire dataset was split into two sets, one containing 33%,
reserved for the selection procedure, and the other set containing 67%,
reserved for the modeling and classification steps. To ensure that the
samples from each patient are kept together, the data was grouped
by patient ID and split into training and testing sets using a stratified
split by ID. The training set was then balanced using SMOTE to reduce
any bias towards the majority class and improve the performance of
the classifier. Feature selection (FS) methods were then applied to the
set reserved for selection to score each feature by an index or weight.
LapScore, NDFS, SPEC, and UGFS were used as unsupervised methods,
while Gini Index, mRMR, and LL21 were used as supervised methods.
To create a model that was capable of distinguishing seizure segments
from non-seizure segments, we used a random forest classifier (RF)

following the feature selection step. Classification experiments were
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Fig. 4. Seizure detection classification performance using features from seven different feature selection methods. The impact of features’ number on the performance. A high
value of performance is obtained using UGFS method for a total number of features of 30.
Table 8
Seizure detection classification mean performance metrics in terms of F1-score, precision, and sensitivity of the seven feature selection methods
obtained from 10-fold cross-validation as well as the standard deviation in brackets. The performance of the baseline classifier without any
feature selection in the last row as well as the optimal number of features obtained for each approach in the last column.
Feature selection F1-score Precision Sensitivity Nb of features

Gini Index 90.13 (0.016) 90.62(0.025) 90.12 (0.029) 23
mRMR 87.18 (0.011) 87.26(0.024) 87.18(0.011) 38
Lap Score 88.8(0.022) 88.98(0.039) 88.79(0.027) 39
LL21 87.1(0.022) 87.31(0.039) 87.11(0.027) 45
NDFS 88.56(0.019) 88.74(0.038) 88.56(0.029) 42
SPEC 88.89(0.042) 89.13(0.068) 88.89(0.050) 42
UGFS 93.20(0.054) 91.90(0.072) 94.50(0.070) 30
Baseline Without FS 75.62(0.076) 74.26(0.103) 78.43(0.094) 856
repeated many times by varying the feature numbers while respecting
the scores given to them by each of the FS methods. To tune the
hyperparameters of the Random Forest model, we performed a grid
search over a range of values for the number of estimators (100,
200, 300, 400 and 500). The optimal number of trees was found to
be 100. It was selected based on the highest accuracy score on the
validation set, which was obtained through 3-fold cross-validation. The
classification performance in terms of accuracy resulting from different
numbers of features is shown in Fig. 4. As indicated in the figure, all
models perform better as the number of features increases until 20
features, at which point their performance begins to remain constant.
This is particularly true for UGFS, mRMR, Gini Index, NDFS, and SPEC
methods. The peak performances were achieved using UGFS with 30
features and Gini Index with 23 features. As the number of features
increases to 50, none of the models improve their performance. This
figure shows that UGFS methods provide much better results than other
selection methods.

Performance levels in terms of F1-score, precision and sensitivity
are indicated in Table 8 for the models created using the seven feature
selection methods, as well as for the model generated using the full
set of features without any feature selection step. The optimal number
of features varies with each approach. Table 8 offers details about
the optimal number of features. With UGFS, a satisfying F1-score of
93.20%, precision of 91.90%, and sensitivity of 94.50% were achieved.
The Gini Index, with 23 features, also produced a satisfactory F1 score
of 90.13%, precision of 90.62%, and sensitivity of 90.12%. For UGFS,
8

the number of features decreased from 856 to 30 while the F1 score
increased from 75.62 to 93.20%, the sensitivity improved from 78.43
to 90.12%, and the precision grew from 74.26 to 91.90%. These results
were obtained with 10-fold cross validation repeated ten times. The
performance measures are the average over the 10 cross validation
folds. It is important to note that all the feature selection algorithms
gave a satisfactory performance value of 86% or higher, a significant
improvement over not using a feature selection algorithm.

Experiments were performed to investigate the stability of selected
features. Ten-fold cross-validation was used to split each feature selec-
tion dataset into ten different folds and then apply a feature selection
step to each fold separately. In this step, the feature selection algorithm
produces a feature preference for each fold in the training dataset.
A total of 10 feature vectors were obtained for each FS method, and
fourteen stability measures were then computed. The results in Table 9
show that the NDFS, SPEC and UGFS methods are more stable than
the other four. The features’ ranking remains the same with different
training sets, at least for the 30 first features with the UGFS and the
first 42 features for the NDFS and SPEC methods. A low stability level
was obtained using LapScore.

Fig. 5 shows the seven subsets of channels from which the output
vectors of feature selection methods were extracted. The results indi-
cate that features selected using mRMR, NDFS, SPEC and UGFS were
extracted mainly from channels F8 (in green) and T3 (in blue), located
in the frontal and temporal regions, respectively.

Table 10 shows the feature selection results according to the indices
(check Table 2 for feature indices) and the channels. The relative power
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Fig. 5. Seven subsets of the EEG channels from which the output vectors of FS methods was extracted.
Fig. 6. From left to right: Confusion matrix, Prediction distribution, and the ROC curve of the best model created using Random Forest, the UGFS method and a 20-second
window. In the confusion matrix, the blocks from top to bottom and from left to right indicate the number of true negatives, false negatives, false positives and true positives,
respectively. Zero (0) represents the non-seizure class and 1 the seizure class. For the prediction score distribution, any score lower than the boundary will be predicted as 0, and
any score above the boundary will be predicted as 1. For the ROC curve, with an area of 0.98, it can be said that the test accurately distinguishes between seizure and non-seizure
segments. Precision: 0.919; Recall: 0.945; F1 Score: 0.932; Accuracy: 0.927; Sensitivity: 0.945; and Specificity: 0.908.
Table 9
Stability results for the different stability measures computed for each of the seven
feature selection methods.

Stability measure GiniIndex LapScore LL21 mRMR NDFS SPEC UGFS

Davis 0.77 0.32 0.82 0.95 1 1 1
Dice 0.90 0.36 0.92 0.99 1 1 1
Hamming 0.99 0.94 0.99 0.99 1 1 1
Jaccard 0.82 0.27 0.86 0.98 1 1 1
Kappa 0.89 0.33 0.92 0.99 1 1 1
Lustgarten 0.87 0.31 0.87 0.95 1 1 1
Nogueira 0.89 0.33 0.92 0.99 1 1 1
Novovicova 0.94 0.57 0.95 0.99 1 1 1
Ochiai 0.90 0.36 0.93 0.99 1 1 1
Phi 0.89 0.33 0.92 0.99 1 1 1
Somol 0.90 0.36 0.93 0.99 1 1 1
Wald 0.89 0.33 0.92 0.99 1 1 1
Yu 0.89 0.30 0.94 0.99 1 1 1
Zucknick 0.82 0.28 0.86 0.98 1 1 1

of the Delta, Theta, Alpha, Beta and Gamma bands are among the
features selected specifically for the three most stable methods. The
absolute power of the gamma band, sample entropy, and Shannon
entropy using wavelet decomposition, as well as the log energy entropy
and Shannon entropy derived from wavelet packet decomposition and
finally the permutation entropy at levels 1, 3 and 4 are among feature
vectors selected by the three most stable methods.
9

An investigation of the efficacy of five different window sizes was
also conducted. The region that conserves signal stationarity is between
0 and 20 s, and so we limited our experiments to this interval. The train-
ing and testing processes were repeated for each window size using the
feature vector from the most stable feature selection approach: UGFS.
As shown in Table 11, performance in terms of accuracy reaches its
highest value with a 20-second window size of 91.55%. From 4 to 20 s,
accuracy increased by 2.22% and sensitivity by 1.61%. Overall, the
accuracy only varied by small amounts. Fig. 6 displays the confusion
matrix, the score distribution of the binary classification model and the
ROC curve of the best model created using the Random Forest classifier,
the UGFS method and a 20-second window. The area under the ROC
curve of 0.98 can be interpreted as indicating that the test accurately
distinguishes a seizure from a non-seizure.

5. Discussion

Diagnosis methods for seizures, both machine and deep learning-
based, have limitations in their approach as they are primarily focused
on patient-specific methods. They train and test EEG samples from the
same or similar patient groups, which results in the models only being
able to account for factors within a patient, but not differences between
patients. This makes accurate seizure diagnosis even more challenging
in a clinical setting where the testing patient has not been seen during
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Table 10
The set of extracted features by indices for each FS method. The channel from where the features were extracted is also illustrated.

Feature selection method Nb of features Channel Selected features according to their indices

GiniIndex 23

FP1 [40, 42, 16, 17, 2, 32, 21]
FP2 [9, 13, 8, 15]
Pz [13, 12, 25, 11, 7, 15, 8]
P3 [44, 3, 30, 22, 4]

LapScore 38 T4 [24, 17, 18, 2, 3, 4, 38, 39, 40, 41, 43, 44]
T5 [31, 30, 32, 19, 20, 22, 23, 24, 17, 34, 16, 1, 2, 3, 4, 5, 38, 39, 40,

18, 35, 29, 27]

LL21 45

C3 [3, 1, 2, 26, 27, 26, 19, 16, 18, 30, 20, 21, 22]
Cz [2, 3, 4, 5, 29]
O1 [44, 43, 42, 41, 24, 4, 18, 17, 32]
O2 [36, 35, 29, 14, 2, 5, 6, 3, 33, 12, 15, 6, 9, 28, 25, 26, 13, 27]

mRMR 38
F8 [38, 40, 43]
FP1 [6]
T3 [35, 22, 36, 20, 1, 32, 17, 27, 28, 16, 18, 34, 31, 23, 29, 30, 20, 21,

11, 10, 2, 7, 19, 33, 8, 9, 32, 25, 13, 6, 14, 15]

NDFS 42
F8 [35, 24, 23, 22, 21, 20, 19, 32, 30, 31, 34, 36, 29, 8, 28, 26, 25, 33,

25, 15, 14, 13, 12, 11, 10, 17, 16, 18, 1, 44, 43]
T3 [15, 14, 13, 12, 11, 10, 9, 8, 7, 6]
T6 [37]

SPEC 42
F8 [35, 24, 23, 22, 21, 20, 19, 32, 30, 31, 34, 36, 29, 8, 28, 26, 33, 25,

15, 14, 13, 12, 11, 10, 17, 16, 18, 1, 44, 43]
T3 [15, 14, 13, 12, 11, 10, 9, 8, 7, 6]
T6 [37]

UGFS 30 F8 [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 25, 33, 26, 27, 28, 29, 35, 36, 34]
T3 [4, 5, 30, 32, 38, 39, 40, 41, 42, 43, 44]
Table 11
Performance results in terms of accuracy, F1 score, Precision, Sensitivity and ROCAUC for features selected using UGFS methods and 5 window sizes.
Window size Accuracy F1 score Precision Sensitivity ROCAUC

4s 0.8933 (0.0088) 0.8932 (0.0088) 0.8707 (0.0145) 0.9251 (0.0068) 0.8929 (0.8929)
5s 0.8859 (0.0140) 0.8857 (0.0140) 0.8574 (0.0187) 0.9265 (0.0174) 0.8858 (0.8858)
10s 0.8994 (0.0099) 0.8993 (0.0100) 0.8781 (0.0158) 0.9263 (0.0098) 0.8996 (0.8996)
15s 0.9057 (0.0083) 0.9056 (0.0083) 0.8835 (0.0145) 0.9361 (0.0080) 0.9056 (0.9056)
20s 0.9155 (0.0114) 0.9155 (0.0114) 0.8959 (0.0176) 0.9412 (0.0116) 0.9156 (0.9156)
training. The field of seizure detection using EEG data has seen lim-
ited progress in developing patient-independent methods, which can
effectively diagnose seizures regardless of the patient being seen during
training. In response to this challenge, our study contributes to this
field by proposing a unique approach that considers stability in feature
selection, which results in a higher accuracy and sensitivity in seizure
detection compared to the state-of-the-art methods. To the best of our
knowledge stability has never been considered as a factor in seizure
detection methods before. The subset of characteristics is termed stable
when several iterations of a selection process from the training data
with different random seeds result in only minor variations in the
selection outcomes. Few studies have explored the patient-independent
scenario (Orosco et al., 2016; Zhang et al., 2020; Zhao et al., 2022) In a
patient-independent study by Adversarial Representation Learning for
Robust Patient-Independent Epileptic Seizure Detection (Zhang et al.,
2020), the best accuracy achieved using Random Forest was 61.9%,
SVM 64.3%, KNN 69.9%, and deep learning 80.5% using a limited
number of 14 patients from the same EEG seizure database. In another
study (Orosco et al., 2016) authors proposed a set of features for 18 pa-
tients from the CHB-MIT database and reported an average sensitivity
of 87.5%. In another study conducted in 2022 (Zhao et al., 2022) an
accuracy of 76.36%, a specificity of 76.32% and sensitivity of 77.42%.

Our method, which incorporates an unsupervised graph-based fea-
ture selection technique and a Random Forest classifier, achieved a
significantly higher accuracy of 91.55% and sensitivity of 94.12%. This
result showcases the competitiveness of our approach in comparison to
the previous studies, especially when considering the larger publicly
available EEG seizure database used. The use of a larger and more di-
verse database increases the generalizability of our findings, as seizure
10

detection algorithms that perform well on smaller datasets may not
yield the same results on larger datasets. It is worth mentioning that
the detection rate of 89% reported in Temko et al. (2011) study is also
noteworthy, but our approach has demonstrated a higher performance
in terms of accuracy and sensitivity.

The results also showed that our approach exhibits a high degree of
stability based on frequency, intersection, correlation, and similarity.
Our study sought to examine the stability of various feature selection
methods, a critical aspect in ensuring that the optimal performance and
minimum number of features selected are not just random occurrences.

The experimental work showed a significant increase in the per-
formance of all FS methods compared to a model without any FS
method. These results are not surprising, given that prior research
showed the performance accuracy reached 100%. Additionally, other
studies such as (Wang et al., 2021) that utilized smaller databases such
as BONN, Neurology and Sleep Centre (NSC) and CHB-MIT reported
similar results with performance accuracy reaching 100%. It is worth
noting that the results of these studies are based on limited patient data.

The novelty of our research is its study of the stability of such
feature selection methods to guarantee that a minimal number of
features and performance obtained are not a result of a random se-
lection and can remain constant despite many changes in training and
testing datasets. By comparing stability profiles of the different feature
selection algorithms, we found NDFS, SPEC and UGFS have same
identical maximal stability scores of 1. We can conclude that the group
of unsupervised methods (NDFS, SPEC and UGFS) based on similar
principles of selection such as clustering and graphic representation
techniques could share very similar high stability characteristics. Even
though LapScore belongs to the group of unsupervised methods, its
lower stability profile could be explained by the fact that LapScore is

based on similarity techniques and not clustering or graph techniques.
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Comparing the FS methods with respect to their stability measures in
Table 9 and their performance measures in Table 8, we can conclude
that even though the Gini Index gives the optimal reduced feature set
with a satisfactory performance, for stability we prefer UGFS, SPEC and
NDFS. Among those three, UGFS is preferable due to its higher per-
formance and minimal number of selected features compared to SPEC
and NDFS. By clustering the selected features by channel to determine
the contribution of channels to the seizure detection, the results were
surprising, leading us to conclude that most of the selected features
from the most stable FS methods (mRMR, NDFS, SPEC and UGFS)
were extracted largely from channels F8 and T3. A literature review
supports our findings, with several studies highlighting the importance
of stability in feature selection methods (Khaire & Dhanalakshmi, 2019;
Nogueira et al., 2017). This is because stability ensures that the optimal
performance and minimum number of features selected are not just a
result of random chance, but are consistent and reliable across different
training and testing datasets. Furthermore, the selection of features
from specific channels such as F8 and T3 can improve efficiency and
reduce the risk of overfitting, making it a valuable consideration in
future research.

6. Conclusion

The main purpose of a seizure detection system is to improve long-
term patient care by allowing remote monitoring, rapid intervention,
and timely adjustment of therapy or treatment, such as anti-seizure
drugs and electrical stimulation that could decrease the evolution of
seizures. For the development of epileptic seizure detection systems,
integrating advanced EEG signal processing and machine learning tech-
niques can be considered an effective approach. In summary, in this
study we proposed a patient-independent method for epileptic seizure
detection based on a selected set of stable features. A common practice
in many research studies is to select fewer variables prior to classifi-
cation, as researchers seek to obtain the smallest set of variables that
will likely produce satisfactory results. The stability of the selected
vector of features was evaluated using several stability measures to
assure the features’ consistency when training data is changed. In spite
of the fact that all the feature selection methods were effective in
promoting the classification performance, our results showed that the
seizure detection algorithm used with an unsupervised graph-based
feature selection technique and a Random Forest classifier showed a
higher accuracy, 91.55%, and sensitivity, 94.12%, than all the other
feature selection methods evaluated. Even though performances as high
as 100% have been reported widely in previous studies, ours is unique,
as we used the largest publicly available EEG seizure database (from
Temple University), and because we considered the stability of the
features to determine their general applicability as compared to existing
methods.

However, there are limitations to our method that should be ac-
knowledged. One of the major limitations is the computational time, as
UGFS method involves mapping features on an affinity graph and calcu-
lating feature importance scores, which can be computationally inten-
sive and time-consuming, especially when dealing with large datasets.
However, we believe that the trade-off in computational time is worth
it as the method has been shown to be effective in selecting relevant
features that is can be computationally intensive, particularly when
dealing with large datasets. Another limitation is the requirement
for threshold setting. The method requires setting a threshold to de-
termine the cut-off point for selecting the most important features.
This threshold can impact the results of the feature selection process,
and it is important to carefully consider the appropriate value for
each individual dataset and application. To address these limitations
in future studies, one approach could be to employ more efficient
algorithms for feature selection, such as those based on meta-heuristics
or swarm intelligence. Additionally, the sensitivity of the algorithm
to parameter settings can be reduced by employing more advanced
11
machine learning techniques, such as Bayesian optimization or rein-
forcement learning, to optimize the parameters automatically. This
would allow for more accurate and robust results, and ultimately lead
to improved patient care through the development of advanced seizure
detection systems. In addition to evaluating the proposed method for
detecting seizures, we plan to expand its applicability by incorporating
it into the classification of both local and generalized seizures. This will
provide a more comprehensive understanding of the effectiveness of
the proposed method in a wider range of seizure types. Furthermore,
we aim to explore the potential of deep learning techniques for seizure
detection using the same set of stable features identified in this study.
By comparing the performance of the deep learning approach with that
of the raw EEG data, we hope to gain insights into the most effective
methods for accurately detecting seizures and improving patient care.
Overall, our future work aims to build upon the results of this study
and further advance the field of epileptic seizure detection.

CRediT authorship contribution statement

Lina Abou-Abbas: Conceptualization, Methodology, Software, Val-
dation, Formal analysis, Investigation, Writing – original draft, Writ-
ng – review & editing, Visualization. Khadidja Henni: Methodol-
gy, Software, Validation, Formal analysis, Writing – original draft.
mene Jemal: Methodology, Investigation, Writing – original draft.
mar Mitiche: Writing – original draft, Supervision. Neila Mezghani:
riting – original draft, Supervision, Project administration, Funding

cquisition.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
ina Abou-Abbas reports financial support was provided by Quebec Re-
earch Fund Nature and Technology. Neila Mezghani reports financial
upport was provided by Canada Research Chair on Biomedical Data
ining.

ata availability

Public database.

cknowledgments

We want to offer our special thanks to Youssef Ouakrim for his
echnical contribution in the coding stage. Research reported in this
ublication was supported by the Quebec Research Fund Nature and
echnology, Canada (L.A.A-298991) and the Canada Research Chair on
iomedical Data Mining (N.M. 950-231214).

eferences

bou-Abbas, L., Jemal, I., Henni, K., Mitiche, A., & Mezghani, N. (2021). Focal
and generalized seizures distinction by rebalancing class data and random forest
classification. In Bioengineering and biomedical signal and image processing: first
international conference, BIOMESIP 2021, Meloneras, Gran Canaria, Spain, July 19-21,
2021, proceedings 1 (pp. 63–70). Springer, http://dx.doi.org/10.1007/978-3-030-
88163-4_6.

bou-Abbas, L., Jemal, I., Henni, K., Ouakrim, Y., Mitiche, A., & Mezghani, N. (2022).
EEG oscillatory power and complexity for epileptic seizure detection. Applied
Sciences, 12(9), 4181. http://dx.doi.org/10.3390/app12094181.

Abou-Abbas, L., Noordt, S., Desjardins, J., Cichonski, M., & Elsabbagh, M. (2021).
Use of empirical mode decomposition in ERP analysis to classify familial risk
and diagnostic outcomes for autism spectrum disorder. Brain Sciences, 11(4), 409.
http://dx.doi.org/10.3390/brainsci11040409.

Acharya, U., Fujita, H., Sudarshan, V., Bhat, S., & Koh, J. (2015). Application
of entropies for automated diagnosis of epilepsy using EEG signals: A review.
Knowledge-Based Systems, 88, 85–96. http://dx.doi.org/10.1016/j.knosys.2015.08.
004.

http://dx.doi.org/10.1007/978-3-030-88163-4_6
http://dx.doi.org/10.1007/978-3-030-88163-4_6
http://dx.doi.org/10.1007/978-3-030-88163-4_6
http://dx.doi.org/10.3390/app12094181
http://dx.doi.org/10.3390/brainsci11040409
http://dx.doi.org/10.1016/j.knosys.2015.08.004
http://dx.doi.org/10.1016/j.knosys.2015.08.004
http://dx.doi.org/10.1016/j.knosys.2015.08.004


Expert Systems With Applications 232 (2023) 120585L. Abou-Abbas et al.

A

B
B

B

B

B

D

D

F

F

G

H

H

H

H

J

J

K

K

K

K

K

L

M

M

N

O

O

O

O

P

P

P

R

R

R

R

Ş

S

S

S

S

S

S

Alam, S., & Bhuiyan, M. (2013). Detection of seizure and epilepsy using higher order
statistics in the EMD domain. IEEE Journal of Biomedical and Health Informatics,
17(2), 312–318. http://dx.doi.org/10.1109/JBHI.2012.2237409.

lickovic, E., Kevric, J., & Subasi, A. (2018). Performance evaluation of empirical mode
decomposition, discrete wavelet transform, and wavelet packed decomposition for
automated epileptic seizure detection and prediction. Biomedical Signal Processing
and Control, 39, 94–102. http://dx.doi.org/10.1016/j.bspc.2017.07.022.

Bandarabadi, M., Teixeira, C., Rasekhi, J., & Dourado, A. (2015). Epileptic seizure
prediction using relative spectral power features. Clinical Neurophysiology, 126(2),
237–248. http://dx.doi.org/10.1016/J.CLINPH.2014.05.022.

Bhattacharyya, A., Sharma, M., Pachori, R., Sircar, P., & Acharya, U. (2018). A novel
approach for automated detection of focal EEG signals using empirical wavelet
transform. Neural Computing and Applications, 29(8), 47–57. http://dx.doi.org/10.
1007/s00521-016-2646-4.

ommert, A. (2020). Integration of feature selection stability in model fitting.
osl, W., Tierney, A., Tager-Flusberg, H., & Nelson, C. (2011). EEG complexity as

a biomarker for autism spectrum disorder risk. BMC Medicine, 9(1), 1–16. http:
//dx.doi.org/10.1186/1741-7015-9-18.

ou Assi, E., Sawan, M., Nguyen, D., & Rihana, S. (2015). A hybrid mRMR-genetic
based selection method for the prediction of epileptic seizures. In IEEE biomedical
circuits and systems conference: engineering for healthy minds and able bodies, BioCAS
2015 - proceedings. http://dx.doi.org/10.1109/BIOCAS.2015.7348367.

reiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. http://dx.doi.org/
10.1023/A:1010933404324.

reiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and
regression trees. http://dx.doi.org/10.1002/widm.8.

ing, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray
gene expression data. Journal of Bioinformatics and Computational Biology, 3(2),
185–205. http://dx.doi.org/10.1142/S0219720005001004.

ireito, B., Duarte, J., Teixeira, C., Schelter, B., Le Van Quyen, M., Schulze-Bonhage, A.,
Sales, F., & Dourado, A. (2011). Feature selection in high dimensional EEG features
spaces for epileptic seizure prediction. IFAC Proceedings, 44(1), 6206–6211. http:
//dx.doi.org/10.3182/20110828-6-IT-1002.03331.

aust, O., Acharya, U. R., Min, L. C., & Sputh, B. H. (2010). Automatic identification
of epileptic and background EEG signals using frequency domain parameters.
International Journal of Neural Systems, 20(02), 159–176. http://dx.doi.org/10.1142/
S0129065710002334.

u, K., Qu, J., Chai, Y., & Dong, Y. (2014). Classification of seizure based on the time-
frequency image of eeg signals using HHT and SVM. Biomedical Signal Processing
and Control, 13, 15–22. http://dx.doi.org/10.1016/j.bspc.2014.03.007.

reene, B., Faul, S., Marnane, W., Lightbody, G., Korotchikova, I., & Boylan, G. (2008).
A comparison of quantitative EEG features for neonatal seizure detection. Clinical
Neurophysiology, 119(6), 1248–1261. http://dx.doi.org/10.1016/J.CLINPH.2008.02.
001.

e, X., Cai, D., & Niyogi, P. (2005). Laplacian score for feature selection. Advances in
Neural Information Processing Systems, 18.

enni, K., Mezghani, N., & Gouin-Vallerand, C. (2018). Unsupervised graph-based fea-
ture selection via subspace and pagerank centrality. Expert Systems with Applications,
114, 46–53. http://dx.doi.org/10.1016/J.ESWA.2018.07.029.

enni, K., Mezghani, N., & Mitiche, A. (2020). Cluster density properties define a
graph for effective pattern feature selection. IEEE Access, 8, 62841–62854. http:
//dx.doi.org/10.1109/ACCESS.2020.2981265.

jorth, B. (1970). EEG analysis based on time domain properties. Electroencephalogra-
phy and Clinical Neurophysiology, 29(3), 306–310. http://dx.doi.org/10.1016/0013-
4694(70)90143-4.

emal, I., Mitiche, A., Abou-Abbas, L., Henni, K., & Mezghani, N. (2021). An effective
deep neural network architecture for cross-subject epileptic seizure detection in
EEG data. In Proceedings of CECNet 2021 (pp. 54–62). IOS Press, http://dx.doi.org/
10.3233/FAIA210389.

emal, I., Mitiche, A., & Mezghani, N. (2021). A study of EEG feature complexity
in epileptic seizure prediction. Applied Sciences, 11(4), 1579. http://dx.doi.org/10.
3390/app11041579.

alin, F., Akinci, T., Türkpence, D., Seker, S., & Korkmaz, U. (2020). Detection of
epileptic seizure using STFT and statistical analysis. In Advances in neural signal
processing. IntechOpen. http://dx.doi.org/10.5772/intechopen.89026.

annathal, N., Choo, M., Acharya, U., & Sadasivan, P. (2005). Entropies for detection
of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187–194.
http://dx.doi.org/10.1016/j.cmpb.2005.06.012.

haire, U., & Dhanalakshmi, R. (2019). Stability of feature selection algorithm: A
review. Journal of King Saud University - Computer and Information Sciences, http:
//dx.doi.org/10.1016/J.JKSUCI.2019.06.012.

umar, Y., Dewal, M., & Anand, R. (2013). Wavelet entropy based EEG analysis
for seizure detection. In 2013 IEEE international conference on signal processing.
http://dx.doi.org/10.1109/ISPCC.2013.6663415.

umar, A., & Kolekar, M. (2014). Machine learning approach for epileptic seizure
detection using wavelet analysis of EEG signals. In International conference on
medical imaging, M-health and emerging communication systems (pp. 412–416). http:
//dx.doi.org/10.1109/MedCom.2014.7006043.

Li, J., Yan, J., Liu, X., & Ouyang, G. (2014). Using permutation entropy to measure
the changes in EEG signals during absence seizures. Entropy, 16, 3049–3061.
http://dx.doi.org/10.3390/e16063049.
12
i, Z., Yang, Y., Liu, J., Zhou, X., & Lu, H. (2012). Unsupervised feature selection using
nonnegative spectral analysis. 26, In Proceedings of the AAAI conference on artificial
intelligence. (1), http://dx.doi.org/10.1609/aaai.v26i1.8289.

ahjoub, C., Jeannès, R. L. B., Lajnef, T., & Kachouri, A. (2020). Epileptic seizure
detection on EEG signals using machine learning techniques and advanced pre-
processing methods. Biomedical Engineering/Biomedizinische Technik, 65(1), 33–50.
http://dx.doi.org/10.1515/bmt-2019-0001.

emar, P., & Faradji, F. (2018). A novel multi-class EEG-based sleep stage classification
system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(1),
84–95. http://dx.doi.org/10.1109/TNSRE.2017.2776149.

ogueira, S., Sechidis, K., & Brown, G. (2017). On the stability of feature selection
algorithms. Journal of Machine Learning Research, 18(1), 6345–6398. http://dx.doi.
org/10.5555/3122009.3242031.

rhan, U., Hekim, M., & Ozer, M. (2011). EEG signals classification using the K-
means clustering and a multilayer perceptron neural network model. Expert Systems
with Applications, 38(10), 13475–13481. http://dx.doi.org/10.1016/J.ESWA.2011.
04.149.

rosco, L., Correa, A. G., Diez, P., & Laciar, E. (2016). Patient non-specific algorithm
for seizures detection in scalp EEG. Computers in Biology and Medicine, 71, 128–134.
http://dx.doi.org/10.1016/j.compbiomed.2016.02.016.

rosco, L., Laciar, E., Correa, A., Torres, A., & Graffigna, J. (2009). An epileptic
seizures detection algorithm based on the empirical mode decomposition of EEG.
In Proceedings of the 31st annual international conference of the IEEE engineering in
medicine and biology society: engineering the future of biomedicine (pp. 2651–2654).
EMBC: http://dx.doi.org/10.1109/IEMBS.2009.5332861.

weis, R., & Abdulhay, E. (2011). Seizure classification in EEG signals utilizing Hilbert-
Huang transform. BioMedical Engineering Online, 10(1), 1–15. http://dx.doi.org/10.
1186/1475-925X-10-38.

ark, Y., Luo, L., Parhi, K., & Netoff, T. (2011). Seizure prediction with spectral power
of EEG using cost-sensitive support vector machines. Epilepsia, 52(10), 1761–1770.
http://dx.doi.org/10.1111/J.1528-1167.2011.03138.X.

arvez, M., & Paul, M. (2014). Epileptic seizure detection by analyzing EEG signals
using different transformation techniques. Neurocomputing, 145, 190–200. http:
//dx.doi.org/10.1016/j.neucom.2014.05.044.

eng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information:
Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238. http://dx.doi.org/
10.1109/TPAMI.2005.159.

aghu, S., Sriraam, N., Vasudeva Rao, S., Hegde, A., & Kubben, P. (2019). Automated
detection of epileptic seizures using successive decomposition index and support
vector machine classifier in long-term EEG. Neural Computing and Applications,
32(13), 8965–8984. http://dx.doi.org/10.1007/S00521-019-04389-1.

ajendra Acharya, U., Molinari, F., Sree, S., Chattopadhyay, S., Ng, K.-H., & Suri, J.
(2012). Automated diagnosis of epileptic EEG using entropies. Biomedical Signal
Processing and Control, 7, 401–408. http://dx.doi.org/10.1016/j.bspc.2011.07.007.

amadhani, I., Saputro, D., Maryati, N., Solihati, S., Wijayanto, I., Hadiyoso, S., &
Patmasari, R. (2019). Seizure type classification on EEG signal using support
vector machine recent citations fractal based feature extraction method for epileptic
seizure detection in long-term EEG recording seizure type classification on EEG
signal using support vector machine. http://dx.doi.org/10.1088/1742-6596/1201/
1/012065, 12065.

ezek, I., & Roberts, S. (1998). Stochastic complexity measures for physiological
signal analysis. IEEE Transactions on Biomedical Engineering, 45(9), 1186–1191.
http://dx.doi.org/10.1109/10.709563.

en, B., Peker, M., Çavuşoğlu, A., & Çelebi, F. V. (2014). A comparative study on
classification of sleep stage based on EEG signals using feature selection and
classification algorithms. Journal of Medical Systems, 38(3), 1–21. http://dx.doi.org/
10.1007/s10916-014-0018-0.

enawi, A., Wei, H.-L., & Billings, S. A. (2017). A new maximum relevance-minimum
multicollinearity (MRmMC) method for feature selection and ranking. Pattern
Recognition, 67, 47–61. http://dx.doi.org/10.1016/j.patcog.2017.01.026.

hantha Selva Kumari, R., & Prabin Jose, J. (2011). Seizure detection in EEG using
time frequency analysis and SVM. In International conference on emerging trends
in electrical and computer technology, ICETECT (pp. 626–630). http://dx.doi.org/10.
1109/ICETECT.2011.5760193.

harma, M., Dhere, A., Pachori, R., & Acharya, U. (2017). An automatic detection of
focal EEG signals using new class of time–frequency localized orthogonal wavelet
filter banks. Knowledge-Based Systems, 118, 217–227. http://dx.doi.org/10.1016/j.
knosys.2016.11.024.

harma, R., & Pachori, R. (2015). Classification of epileptic seizures in EEG signals
based on phase space representation of intrinsic mode functions. Expert Systems
with Applications, http://dx.doi.org/10.1016/j.eswa.2014.08.030.

hi, L., Du, L., & Shen, Y. (2014). Robust spectral learning for unsupervised feature
selection. ICDM, 2015-January(January, In Proceedings - IEEE international conference
on data mining (pp. 977–982). http://dx.doi.org/10.1109/ICDM.2014.58.

ong, Y., Crowcroft, J., & Zhang, J. (2012). Automatic epileptic seizure detection in
EEGs based on optimized sample entropy and extreme learning machine. Journal
of Neuroscience Methods, 210(2), 132–146. http://dx.doi.org/10.1016/j.jneumeth.
2012.07.003.

http://dx.doi.org/10.1109/JBHI.2012.2237409
http://dx.doi.org/10.1016/j.bspc.2017.07.022
http://dx.doi.org/10.1016/J.CLINPH.2014.05.022
http://dx.doi.org/10.1007/s00521-016-2646-4
http://dx.doi.org/10.1007/s00521-016-2646-4
http://dx.doi.org/10.1007/s00521-016-2646-4
http://refhub.elsevier.com/S0957-4174(23)01087-4/sb9
http://dx.doi.org/10.1186/1741-7015-9-18
http://dx.doi.org/10.1186/1741-7015-9-18
http://dx.doi.org/10.1186/1741-7015-9-18
http://dx.doi.org/10.1109/BIOCAS.2015.7348367
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1002/widm.8
http://dx.doi.org/10.1142/S0219720005001004
http://dx.doi.org/10.3182/20110828-6-IT-1002.03331
http://dx.doi.org/10.3182/20110828-6-IT-1002.03331
http://dx.doi.org/10.3182/20110828-6-IT-1002.03331
http://dx.doi.org/10.1142/S0129065710002334
http://dx.doi.org/10.1142/S0129065710002334
http://dx.doi.org/10.1142/S0129065710002334
http://dx.doi.org/10.1016/j.bspc.2014.03.007
http://dx.doi.org/10.1016/J.CLINPH.2008.02.001
http://dx.doi.org/10.1016/J.CLINPH.2008.02.001
http://dx.doi.org/10.1016/J.CLINPH.2008.02.001
http://refhub.elsevier.com/S0957-4174(23)01087-4/sb19
http://refhub.elsevier.com/S0957-4174(23)01087-4/sb19
http://refhub.elsevier.com/S0957-4174(23)01087-4/sb19
http://dx.doi.org/10.1016/J.ESWA.2018.07.029
http://dx.doi.org/10.1109/ACCESS.2020.2981265
http://dx.doi.org/10.1109/ACCESS.2020.2981265
http://dx.doi.org/10.1109/ACCESS.2020.2981265
http://dx.doi.org/10.1016/0013-4694(70)90143-4
http://dx.doi.org/10.1016/0013-4694(70)90143-4
http://dx.doi.org/10.1016/0013-4694(70)90143-4
http://dx.doi.org/10.3233/FAIA210389
http://dx.doi.org/10.3233/FAIA210389
http://dx.doi.org/10.3233/FAIA210389
http://dx.doi.org/10.3390/app11041579
http://dx.doi.org/10.3390/app11041579
http://dx.doi.org/10.3390/app11041579
http://dx.doi.org/10.5772/intechopen.89026
http://dx.doi.org/10.1016/j.cmpb.2005.06.012
http://dx.doi.org/10.1016/J.JKSUCI.2019.06.012
http://dx.doi.org/10.1016/J.JKSUCI.2019.06.012
http://dx.doi.org/10.1016/J.JKSUCI.2019.06.012
http://dx.doi.org/10.1109/ISPCC.2013.6663415
http://dx.doi.org/10.1109/MedCom.2014.7006043
http://dx.doi.org/10.1109/MedCom.2014.7006043
http://dx.doi.org/10.1109/MedCom.2014.7006043
http://dx.doi.org/10.3390/e16063049
http://dx.doi.org/10.1609/aaai.v26i1.8289
http://dx.doi.org/10.1515/bmt-2019-0001
http://dx.doi.org/10.1109/TNSRE.2017.2776149
http://dx.doi.org/10.5555/3122009.3242031
http://dx.doi.org/10.5555/3122009.3242031
http://dx.doi.org/10.5555/3122009.3242031
http://dx.doi.org/10.1016/J.ESWA.2011.04.149
http://dx.doi.org/10.1016/J.ESWA.2011.04.149
http://dx.doi.org/10.1016/J.ESWA.2011.04.149
http://dx.doi.org/10.1016/j.compbiomed.2016.02.016
http://dx.doi.org/10.1109/IEMBS.2009.5332861
http://dx.doi.org/10.1186/1475-925X-10-38
http://dx.doi.org/10.1186/1475-925X-10-38
http://dx.doi.org/10.1186/1475-925X-10-38
http://dx.doi.org/10.1111/J.1528-1167.2011.03138.X
http://dx.doi.org/10.1016/j.neucom.2014.05.044
http://dx.doi.org/10.1016/j.neucom.2014.05.044
http://dx.doi.org/10.1016/j.neucom.2014.05.044
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1007/S00521-019-04389-1
http://dx.doi.org/10.1016/j.bspc.2011.07.007
http://dx.doi.org/10.1088/1742-6596/1201/1/012065
http://dx.doi.org/10.1088/1742-6596/1201/1/012065
http://dx.doi.org/10.1088/1742-6596/1201/1/012065
http://dx.doi.org/10.1109/10.709563
http://dx.doi.org/10.1007/s10916-014-0018-0
http://dx.doi.org/10.1007/s10916-014-0018-0
http://dx.doi.org/10.1007/s10916-014-0018-0
http://dx.doi.org/10.1016/j.patcog.2017.01.026
http://dx.doi.org/10.1109/ICETECT.2011.5760193
http://dx.doi.org/10.1109/ICETECT.2011.5760193
http://dx.doi.org/10.1109/ICETECT.2011.5760193
http://dx.doi.org/10.1016/j.knosys.2016.11.024
http://dx.doi.org/10.1016/j.knosys.2016.11.024
http://dx.doi.org/10.1016/j.knosys.2016.11.024
http://dx.doi.org/10.1016/j.eswa.2014.08.030
http://dx.doi.org/10.1109/ICDM.2014.58
http://dx.doi.org/10.1016/j.jneumeth.2012.07.003
http://dx.doi.org/10.1016/j.jneumeth.2012.07.003
http://dx.doi.org/10.1016/j.jneumeth.2012.07.003


Expert Systems With Applications 232 (2023) 120585L. Abou-Abbas et al.

Z

Z

Z

Z

Temko, A., Thomas, E., Marnane, W., Lightbody, G., & Boylan, G. (2011). EEG-based
neonatal seizure detection with support vector machines. Clinical Neurophysiology,
122(3), 464–473. http://dx.doi.org/10.1016/j.clinph.2010.06.034.

Tessy, E., Muhammed Shanir, P., & Manafuddin, S. (2017). Time domain analysis of
epileptic EEG for seizure detection. In International conference on next generation
intelligent systems, ICNGIS 2016. http://dx.doi.org/10.1109/ICNGIS.2016.7854034.

Tzallas, A., Tsipouras, M., & Fotiadis, D. (2009). Epileptic seizure detection in EEGs
using time-frequency analysis. IEEE Transactions on Information Technology in
Biomedicine, 13(5), 703–710. http://dx.doi.org/10.1109/TITB.2009.2017939.

Wang, Q., Wei, H.-L., Wang, L., & Xu, S. (2021). A novel time-varying modeling and
signal processing approach for epileptic seizure detection and classification. Neural
Computing and Applications, 33, 5525–5541. http://dx.doi.org/10.1007/s00521-020-
05330-7.

Wang, T., Zhang, M., Yu, Q., & Zhang, H. (2012). Comparing the applications of
EMD and EEMD on time-frequency analysis of seismic signal. Journal of Applied
Geophysics, http://dx.doi.org/10.1016/j.jappgeo.2012.05.002.

Wei, H.-L., & Billings, S. A. (2006). Feature subset selection and ranking for data dimen-
sionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(1), 162–166. http://dx.doi.org/10.1109/TPAMI.2007.250607.
13
Zeng, W., Li, M., Yuan, C., Wang, Q., Liu, F., & Wang, Y. (2019). Classification of
focal and non focal EEG signals using empirical mode decomposition (EMD), phase
space reconstruction (PSR) and neural networks. Artificial Intelligence Review, 52(1),
625–647. http://dx.doi.org/10.1007/s10462-019-09698-4.

hang, X., Yao, L., Dong, M., Liu, Z., Zhang, Y., & Li, Y. (2020). Adversarial
representation learning for robust patient-independent epileptic seizure detection.
IEEE Journal of Biomedical and Health Informatics, 24(10), 2852–2859. http://dx.
doi.org/10.1109/JBHI.2020.2971610.

hao, Z., & Liu, H. (2007). Spectral feature selection for supervised and unsupervised
learning. Vol. 227, In ACM international conference proceeding series (pp. 1151–1157).
http://dx.doi.org/10.1145/1273496.1273641.

hao, Y., Zhang, G., Zhang, Y., Xiao, T., Wang, Z., Xu, F., & Zheng, Y. (2022). Multi-
view cross-subject seizure detection with information bottleneck attribution. Journal
of Neural Engineering, 19(4), Article 046011. http://dx.doi.org/10.1088/1741-2552/
ac7d0d.

hou, M., Tian, C., Cao, R., Wang, B., Niu, Y., Hu, T., Guo, H., & Xiang, J.
(2018). Epileptic seizure detection based on EEG signals and CNN. Frontiers in
Neuroinformatics, 12, 95. http://dx.doi.org/10.3389/fninf.2018.00095.

http://dx.doi.org/10.1016/j.clinph.2010.06.034
http://dx.doi.org/10.1109/ICNGIS.2016.7854034
http://dx.doi.org/10.1109/TITB.2009.2017939
http://dx.doi.org/10.1007/s00521-020-05330-7
http://dx.doi.org/10.1007/s00521-020-05330-7
http://dx.doi.org/10.1007/s00521-020-05330-7
http://dx.doi.org/10.1016/j.jappgeo.2012.05.002
http://dx.doi.org/10.1109/TPAMI.2007.250607
http://dx.doi.org/10.1007/s10462-019-09698-4
http://dx.doi.org/10.1109/JBHI.2020.2971610
http://dx.doi.org/10.1109/JBHI.2020.2971610
http://dx.doi.org/10.1109/JBHI.2020.2971610
http://dx.doi.org/10.1145/1273496.1273641
http://dx.doi.org/10.1088/1741-2552/ac7d0d
http://dx.doi.org/10.1088/1741-2552/ac7d0d
http://dx.doi.org/10.1088/1741-2552/ac7d0d
http://dx.doi.org/10.3389/fninf.2018.00095

	Patient-independent epileptic seizure detection by stable feature selection
	Introduction
	Dataset
	Methods
	Pre-processing
	Features Extraction
	Time-domain features
	Frequency-domain features
	Time–frequency domain features

	Features Selection
	Stability
	Classification and performance evaluation

	Experimental Results
	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


