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Montréal, QC, Canada

Gregory Jeddore
Miawpukek First Nation

Natural Resources Canada (NRCan)
Conne River, NL, Canada

Patricia Baines, David L. P. Correia, André Arsenault
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Abstract—Lichens are symbiotic organisms composed of fungi,
algae, and/or cyanobacteria that thrive in a variety of envi-
ronments. They play important roles in carbon and nitrogen
cycling, and contribute directly and indirectly to biodiversity.
Ecologists typically monitor lichens by using them as indicators to
assess air quality and habitat conditions. In particular, epiphytic
lichens, which live on trees, are key markers of air quality and
environmental health. A new method of monitoring epiphytic
lichens involves using time-lapse cameras to gather images of
lichen populations. These cameras are used by ecologists in New-
foundland and Labrador to subsequently analyze and manually
segment the images to determine lichen thalli condition and
change. These methods are time-consuming and susceptible to
observer bias. In this work, we aim to automate the monitoring of
lichens over extended periods and to estimate their biomass and
condition to facilitate the task of ecologists. To accomplish this,
our proposed framework uses semantic segmentation with an
effective training approach to automate monitoring and biomass
estimation of epiphytic lichens on time-lapse images. We show
that our method has the potential to significantly improve the
accuracy and efficiency of lichen population monitoring, making
it a valuable tool for forest ecologists and environmental scientists
to evaluate the impact of climate change on Canada’s forests. To
the best of our knowledge, this is the first time that such an
approach has been used to assist ecologists in monitoring and
analyzing epiphytic lichens.

Index Terms—Epiphytic Lichens, Mask Scoring R-CNN, In-
stance Segmentation, Climate Change, Forest Ecology

I. INTRODUCTION

Lichens have a remarkable ability to thrive in nutrient-
poor environments and colonize previously barren surfaces
because of their slow growth rate [1]. Lichens also have the
capability to persist and flourish in later stages of ecological
succession. Furthermore, they play important functional roles
in many ecosystems. In fact, lichens are major contributors
to the overall carbon and nitrogen cycling, biodiversity, and
biomass [1] [2]. Epiphytic lichens are a type of lichens
living on trees, and other plants without harming them. They
obtain nutrients from air and rainwater. Epiphytic lichens are
important indicators of air quality and environmental health.
They also play an essential role in many ecosystems by

providing food and shelter to various organisms. They display
a range of colors and shapes (see Figure 2), and have practical
uses in traditional medicine, dye production, and food.

Ecologists are keenly interested in monitoring epiphytic
lichen populations due to various reasons, such as their sensi-
tivity to environmental changes and their role in indicating
forest health. Traditional methods for monitoring epiphytic
lichen populations are based on field surveys [3] [4], which
require physically visiting the site regularly to collect data on
lichen abundance and diversity. In these traditional methods,
the lichen is identified and the specific measurements are taken
such as size, condition, and number of reproductive structures.
This approach is often labor-intensive, time-consuming, and
may miss subtle changes in lichen populations due to their
infrequency. Moreover, the accuracy of the surveys may vary
depending on the expertise and attention to detail of the
observer. In addition, lichens grow slowly, so changes in their
populations may take years to manifest, making it challenging
to detect and respond to any emerging issues quickly. They
may undergo subtle changes that need near-continuous moni-
toring to be detected. Climate change and other environmental
issues are increasing the demand for efficient and accurate
monitoring technologies.

A new approach for monitoring biodiversity was developed
as part of the boreal sentinels project which is co-led by the
Canadian Forest Service and Miawpukek First Nation. The
purpose of this project is to integrate indigenous knowledge
and science to develop a state-of-the-art biodiversity monitor-
ing system with a focus on epiphytic lichens. In particular,
in this project, time-lapse cameras mounted on trees were
deployed to monitor epiphytic lichens, such as the globally
endangered boreal felt lichen in Newfoundland and Labrador
in Canada. This camera network allows the recording of a large
volume of sequential image data for monitoring lichen evolu-
tion over long period of time. Using instance segmentation, we
aim to automate the observation of lichens over long periods
of time and quantify their biomass. In fact, different species
of epiphytic lichens have unique characteristics that can affect
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Fig. 1. The qualitative results of our model (a) Input image (b) Ground-truth (c) Segmentation with our method. We can observe that our method can
successfully segment all the lichens with good precision for the boundary shape.

their ecological role and interactions with other organisms.
Our main contribution is the design of an accurate method
that addresses the problem of segmenting epiphytic lichen
as shown in Figure 1 to automate monitoring and biomass
estimation by ecologists. Our method has also the capacity to
recognize new species of lichen not included in the training.
To the best of our knowledge, this is the first computer vision
method for automating the monitoring of epiphytic lichens.

The rest of this article is organized as follows. Section II
introduces the related works. Section III provides a detailed
description of the proposed method. Experimental setup and
results are presented in section IV. Finally, section V con-
cludes the paper.

II. RELATED WORK

Despite major advances in computer vision and machine
learning, only a few studies have explored the potential of
artificial intelligence for ecological applications similar to
ours. In this context, Correia et al. [9] proposed a computer
vision data processing system to detect open tree buds from
time-lapse cameras for automating some tasks in phenological
studies. They use a combination of a random forest, a CNN,
and clustering to achieve detection. Kennedy et al. [10] pre-
sented a method using a fully connected feed-forward neural
network for the assessment of lichen cover based on Landsat
images, elevation data, and climatic parameters. However, their
method does not detect lichens precisely. Instead, it directly
regresses the percentage of lichen cover as a continuous
value. Jozdani et al. [11] and Fraser et al. [12] investigated
the ability to train neural network models on high-resolution
images taken with unmanned aerial drones. The method in [11]
is designed to perform a binary segmentation of terricolous
lichens, regardless of their species. Fraser et al. [12] used a
random forest model to globally quantify the cover of pale
and fruticose lichens of the genus Cladonia from UAV and
satellite images.

To identify changes in lichen populations, AI-based algo-
rithms must be tested and refined in real-world contexts. Linear
regression models showed that epiphytic lichen abundance was
highly and positively correlated with the number of growth
forms at all the geographical levels considered [13]. However,
previous works on lichen monitoring are mostly limited to
assessing the overall lichen coverage globally from areal

images. To the best of our knowledge, this is the first work
to introduce an automated approach for monitoring individual
lichen instances over extended periods, which provides a more
fine-grained data analysis to support ecology research.

III. PROPOSED METHOD

In this work, we aim to automate the monitoring of epiphytic
lichens by efficiently segmenting and distinguishing them
in time-lapse images. Instance segmentation is required for
the monitoring since it involves identifying and segmenting
individual epiphytic lichens present on trees to estimate their
change in size, which is directly related to lichen biomass. A
bounding box is not precise enough. Therefore, we designed
a method that relies on the use of an instance segmentation
method to detect each separate object within the same cate-
gory, and assign a unique label to their associated pixels. This
allows us to precisely segment each individual epiphytic lichen
in the image so that they can be further analyzed for their
properties and distributions. For instance segmentation, we
opted for Mask Scoring R-CNN [14], which is a state-of-the-
art object detection and instance segmentation model building
on the popular Mask R-CNN model [15]. It adds an extra
branch to the Mask R-CNN network, which predicts a mask
quality score for each detected object. This score is then used
to adjust the mask probability before the final segmentation.

Compared to other state-of-the-art object detection and
instance segmentation models, Mask Scoring R-CNN has
demonstrated good performance on various benchmark
datasets [14], [16]–[18]. In addition, the model is highly
customizable, allowing us to fine-tune its parameters and
architecture for our specific application. It is an extension
of the Mask R-CNN [15] framework, by adding a Mask
IoU head. The head component improves the quality of the
predicted masks. It learns the quality of masks via regression,
measured with a Mask IoU score, defined by

MaskIoU =
Area of Intersection

Area of Union
(1)

and then penalizes the instance mask score if the classifica-
tion score is high, while the actual mask quality, given by
MaskIoU , is low. More specifically, the inputs of this head
are the predicted mask and a concatenated region of interest
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Fig. 2. Examples of different epiphytic lichens in our dataset. In 2(a), we present an image of Pectenia plumbea, commonly found in North America and
Europe, growing on a variety of substrates including soil, rock, and bark [5]. 2(b) shows an image of Lobaria pulmonaria, a large and leafy lichen that can
grow up to 30 cm in diameter [6]. In 2(c), we present an image of Erioderma pedicellatum, which is characterized by its flat, lobed thallus that ranges in
color from light green to brownish-gray [7], [8].

feature map. The Mask Scoring R-CNN loss is customized to
optimize the segmentation quality and it is expressed as

L = Lcls + Lbbox + Lmask−scoring + λ∗Lmask−iou, (2)

where Lcls represents the classification loss, Lbbox represents
the bounding box regression loss, Lmask−scoring represents
the mask IoU loss. λ is a scalar weight for the mask scoring
term and Lmask−iou is the mask scoring term, which is
defined as the average IoU between the predicted mask and
the ground-truth mask for each object in the image.

Given a new Lichen time-lapse image, feature maps are
constructed in the first stage by extracting image features of
various scales using the backbone network. This is followed
by the Region Proposal Network (RPN), which proposes
candidate object regions, and the ROIAlign module, which
extracts features for each region in the second stage. The
resulting features are then fed into two parallel branches,
where the first is for object detection and the second for
instance segmentation, to predict the class, location, and binary
mask of each lichen instance. Finally, a mask quality score
is calculated for each predicted mask by considering the
similarity to the ground-truth using a mask IoU branch, which
is then combined with the original object detection score to
produce the final score for the detected lichen instance.

IV. EXPERIMENTS

A. Dataset Construction

The images in our dataset were collected for three different
lichen species found in Canadian forests. Figure 2 shows an
image of each lichen species. The images of the Erioderma
pedicellatum and Pectenia plumbea are from the South coast
of Newfoundland on the territory of Miawpukek First Nation.
Erioderma pedicellatum was growing on Abies balsamea (L.)
P. Mill. Tree. Pectenia plumbea was growing on a Populus
tremuloides Michx. Tree. The ones from Lobaria pulmonaria
are from an experiment on the west coast of Newfoundland
and were growing on an Abies balsamea (L.) P. Mill. Tree.

The images were collected using a network of time-lapse
cameras deployed by the Canadian Forest Service (CFS). The
installed cameras capture an image every 2 hours. We removed
blurry and dark images, as well as those mostly occluded due

TABLE I
DESCRIPTION OF OUR DATA

Lichen Type Number of images
Pectenia plumbea (PP) 401

Erioderma pedicellatum (EP) 406
Lobaria pulmonaria (LP) 400

Total 1207

to snowfall. The composition of the resulting dataset used in
our study is presented in Table I.

The regions of interest were carefully investigated, and the
ground-truth of the lichens was manually annotated using the
open-source VGG Image Annotator (VIA) tool [19]. The time-
lapse images were then processed using data augmentation
techniques, including random cropping, flipping, and rotation,
before being fed into the local instance segmentation method
for training.

B. Evaluation Metrics

To evaluate the performance of our method, we used the
mean average precision (mAP). This measure is calculated
according to the following formula:

mAP =
1

9

∑
IoU∈{0.5,...,0.95}

APIoU , (3)

with

APIoU =
1

9

∑
r∈{0.5,...,0.95}

max
r̃≥r

p(r̃), (4)

where APIoU is calculated as the mean of the precision p for
each recall value r between 0.5 and 0.95, by adding steps of
0.05. mAP50 is the mAP calculated for predicted masks that
have an IoU with ground-truth masks of 50% or more, whereas
true positives in mAP75 must have an IoU with ground-truth
masks of at least 75%. Precision and recall are calculated as:

Precision =
TP

TP + FP
; Recall =

TP

TP + FN
; (5)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.



TABLE II
DATA DISTRIBUTION OF THE cross-validation over lichen species EXPERIMENTS. PP STANDS FOR Pectenia plumbea, EP STANDS FOR Erioderma

pedicellatum AND LP STANDS FOR Lobaria pulmonaria.

Training Data Validation Data Testing Data
Fold 1 686 images (341 images of PP and 345 of EP) 121 images (60 images of PP and 61 of EP) 400 images of LP
Fold 2 681 images (341 images of PP and 340 of LP) 120 images (60 images of PP and 60 of LP) 406 images of EP
Fold 3 685 images (345 images of EP and 340 of LP) 121 images (61 images of EP and 60 of LP) 401 images of PP

C. Experimental approach and training

We tested our method under three test scenarios. The
flowchart of our experimental approach is presented in Figure
3. The goal is to build generic models capable of segmenting
multiple types of lichens. We evaluate our method with sce-
narios with limited data because ecologists would then only
be asked to manually segment a small portion of the data in
order to automate the segmentation process for much larger
datasets. The three scenarios are:

i) Cross-validation over lichen species. In this scenario, we
used transfer learning to reduce the amount of training
data required. We utilized pretrained weights from the
Common Objects in Context (COCO) [20] dataset to
initialize all layers of our network, including the region
proposal network (RPN), classifier, and mask head. This
allowed us to leverage the features learned from the
COCO dataset and adapt them to our specific task. We
trained three models, each on two lichen species, to then
test on the remaining species. In this manner, we evaluate
the model ability to recognize and segment a completely
unknown lichen species that was not seen during training.

ii) Fine-Tuning on new lichen species. In this scenario, we
used the same models trained in the cross-validation over
lichen species scenario and added a fine-tuning step to
the new species using a small amount of data selected at
random.

iii) Selective Fine-Tuning on new lichen species. In this
scenario, we used the same models trained in the cross-
validation over lichen species scenario and added a fine-
tuning step to the new species using a particular subset
of lichen species, that is one image per day of capture.

For the last two scenarios, we freeze the entire backbone
during the fine-tuning because it has already been trained to
generate a feature map for our specific problem, and resume
training for the bounding box head and the mask head. These
scenarios are designed to explore the potential of fine-tuning
previously trained models on new unseen species with limited
data

We evaluated different backbones for training the instance
segmentation model and found that the best performance was
achieved using a ResNet-50 backbone. We trained the models
for 24 epochs using a learning rate of 0.05 and a batch size
of 4, with a training schedule of 2x, which involves training
the model for a certain number of epochs and then decreasing
the learning rate by a factor of 10 and continuing training for
another set of epochs.

Fig. 3. Flowchart of our experimental approach

D. Results for cross-validation over lichen species

The goal of this set of experiments is to evaluate the capacity
of our method to segment a lichen species not included in the
training data. To assess the effectiveness of this approach, a
training process was conducted wherein three models were
trained on data, each from two specific species. After the
training process was completed, the performance of the models
was evaluated by testing them directly on time-lapse images
from the remaining third species. Table II presents the data
used for each experiment performed during this process,
including training, validation, and testing datasets.

Table III gives the results of the different experiments
conducted, detailing the resulting mAP scores achieved by
the models. This table shows that the performance of two
models (MLPP−LP and MLEP−LP ) was low when tested on
unrecognized types compared to MLPP−EP . The experiments
conducted provides evidence that the models were not capable
of accurately segmenting certain species of epiphytic lichens

TABLE III
RESULTS OF THE cross-validation over lichen species EXPERIMENTS. WE

PROVIDE BOUNDING BOX RESULTS (BBOX) AND SEGMENTATION RESULTS
(SEGM): MLPP−EP CORRESPONDS TO A MODEL TRAINED ON PP AND
EP SPECIES. MLPP−LP CORRESPONDS TO A MODEL TRAINED ON PP

AND LP SPECIES. MLEP−LP CORRESPONDS TO A MODEL TRAINED ON
EP AND LP SPECIES.

bbox segm
mAP mAP50 mAP75 mAP mAP50 mAP75

MLPP−EP 0.787 0.950 0.891 0.607 0.970 0.775
MLPP−LP 0.000 0.001 0.000 0.000 0.000 0.000
MLEP−LP 0.002 0.010 0.000 0.003 0.010 0.000



TABLE IV
DATA DISTRIBUTION OF THE fine-tuning on new lichen species

EXPERIMENTS. PP STANDS FOR Pectenia plumbea, EP STANDS FOR
Erioderma pedicellatum AND LP STANDS FOR Lobaria pulmonaria.

Fine-tuning Data Validation Data Testing Data
Fold 1 40 images of LP 10 images of LP 350 images of LP
Fold 2 40 images of EP 10 images of EP 356 images of EP
Fold 3 40 images of PP 10 images of PP 351 images of PP

that had not been trained on. The findings indicate that the
MLPP−LP , which was trained on PP and LP species, is
not suitable for accurately segmenting EP lichen species.
Similarly, MLEP−LP trained on EP and LP species is not
effective for accurately segmenting PP lichen species. Overall,
these results indicate that some form of fine-tuning is required
to improve the ability of these models to identify unknown
lichen species, as simple transfer learning is not sufficient.

E. Results of fine-tuning on new lichen species

The goal of this set of experiments is to investigate the
potential of using previously trained models (MLPP−EP ,
MLPP−LP , and MLEP−LP ) on new unknown species, once
they have been fine-tuned on the target species using a
limited random amount of data. In other words, by performing
fine-tuning on the new species, we aimed to determine the
feasibility of transferring the knowledge gained from training
on multiple species to a new unseen species. This approach has
several practical applications, such as enhancing the accuracy
of species segmentation and minimizing the time and effort
required for data annotation. This is highly advantageous
in real-world scenarios, where ecologists can leverage the
benefits of automated segmentation, by labeling only a small
proportion of the available data. The data used for each
experiment carried out during this process, including the fine-
tuning, validation, and testing datasets are described in Table
IV.

The results presented in Table V show that fine-tuning
on new species can significantly improve the performance
of lichen segmentation. These results indicate that even with
minimal data, fine-tuning can have a substantial impact on
the model ability to identify new species of lichens. The un-
derlying assumption behind this experiment was that, despite
appearance variations in epiphytic lichen species, they share
certain characteristics that can be leveraged by pre-trained
models. For example, they may have similar textures or colors

TABLE V
CROSS-VALIDATION RESULTS OF THE fine-tuning on new lichen species

EXPERIMENTS. WE PROVIDE BOUNDING BOX RESULTS (BBOX) AND
SEGMENTATION RESULTS (SEGM). WE FINE-TUNED THE MODELS

OBTAINED FROM THE PREVIOUS EXPERIMENT.

Fine-tuned
model

bbox segm
mAP mAP50 mAP75 mAP mAP50 mAP75

MLPP−EP 0.865 0.990 0.949 0.786 0.990 0.980
MLPP−LP 0.679 0.980 0.814 0.585 0.977 0.662
MLEP−LP 0.633 0.952 0.730 0.656 0.971 0.733

TABLE VI
DATA DISTRIBUTION OF THE Selective Fine-tuning on new lichen species

EXPERIMENTS. PP STANDS FOR Pectenia plumbea, EP STANDS FOR
Erioderma pedicellatum AND LP STANDS FOR Lobaria pulmonaria.

Fine-tuning Data Validation Data Testing Data
Fold 1 34 images of LP 12 images of LP 354 images of LP
Fold 2 146 images of EP 47 images of EP 213 images of EP
Fold 3 73 images of PP 24 images of PP 304 images of PP

that the model can recognize. Fine-tuning pre-trained models
on a small amount of data from a new species helps to learn
these new characteristics, which are specific to that species,
leading to a significant segmentation quality improvement.

F. Results of selective fine-tuning on new lichen species

To further explore the potential of our models to segment
new lichen species, we performed selective fine-tuning exper-
iments. This involved taking the models that were obtained
from the first set of experiments (MLPP−EP , MLPP−LP ,
and MLEP−LP ) and fine-tuning them selectively on a partic-
ular subset of epiphytic lichen. The fine-tuning subset includes
one image from each day, that had not been included in the
initial training data. By selecting only one image from each
day, we are aiming to sample the diversity of lichen species
over time. Additionally, selecting one image per day from
every time-lapse camera ensures that the fine-tuned models
are not biased toward any particular day or environmental
conditions. During this experiment, we carefully monitored
the effects of selective fine-tuning on a specific subset. The
data used for each experiment carried out during this process,
including the fine-tuning, validation, and testing datasets is
detailed in Table VI.

The results of selective fine-tuning on new lichen species
experiments, shown in table VII, demonstrate even more the
effect of fine-tuning on a specific type of lichen. Through
a systematic sampling process consisting of taking a single
image from each day, we were able to observe the impact
of selective fine-tuning on the model mAP scores and draw
conclusions regarding its potential for segmenting a broader
range of lichen species. The systematic sampling approach
used in this experiment proved to be more effective than
random sampling with the previous experiment (fine-tuning
on new lichen species). We also see that selective fine-tuning
improves the model ability to detect lichens with higher
Intersection over Union (IoU) scores, as demonstrated by

TABLE VII
CROSS-VALIDATION RESULTS OF THE Selective Fine-tuning on new lichen

species EXPERIMENTS. WE PROVIDE BOUNDING BOX RESULTS (BBOX)
AND SEGMENTATION RESULTS (SEGM). WE FINE-TUNED THE MODELS

OBTAINED FROM THE PREVIOUS EXPERIMENT.

Fine-tuned
model

bbox segm
mAP mAP50 mAP75 mAP mAP50 mAP75

MLPP−EP 0.920 0.990 0.989 0.864 0.990 0.989
MLPP−LP 0.858 0.988 0.958 0.768 0.982 0.952
MLEP−LP 0.989 0.990 0.990 0.903 0.990 0.990



TABLE VIII
COMPARATIVE AVERAGE RESULTS OF THE THREE EXPERIMENTS CONDUCTED IN OUR STUDY. WE PROVIDE BOUNDING BOX RESULTS (BBOX) AND

SEGMENTATION RESULTS (SEGM). BEST RESULTS ARE IN BOLD

Experiments bbox segm
mAP mAP50 mAP75 mAP mAP50 mAP75

Cross-validation over lichen species 0.263 0.320 0.297 0.203 0.327 0.258
Fine-tuning on new lichen species 0.726 0.974 0.831 0.676 0.979 0.792

Selective Fine-tuning on new lichen species 0.922 0.989 0.979 0.845 0.987 0.977

the significant improvement in mAP75 compared to mAP50.
Therefore, selective fine-tuning is particularly effective for
more challenging cases where a higher IoU score is required.

G. Discussion

Table VIII presents a comparison of the average results
obtained from the experiments previously conducted. We can
conclude from this table that selective fine-tuning of the
model using a single image from each day is demonstrated
to be an effective strategy. This suggests that environmental
conditions play an important role in the model performance.
In fact, diverse weather and lighting conditions resulting
from choosing a single image per day led to improved mAP
scores. Therefore, it is important to carefully consider the
environmental factors when designing and training models for
lichen species segmentation.

V. CONCLUSION

In this paper, we designed a deep learning framework
for segmenting epiphytic lichens, which represents the first
computer vision method for automating the monitoring of
epiphytic lichens using time-lapse cameras. The ability of our
model to recognize different species of epiphytic lichens and
track their progress over subsequent seasons from limited an-
notated data makes it a comprehensive and efficient approach
for long-term, large-scale ecological monitoring. Our approach
has a great potential to assist ecologists in identifying and
tracking changes in lichen populations, and thus understanding
the impact of climate change on forests.
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[5] M. A. G. Otálora, I. Martı́nez, G. Aragón, and M. Wedin, “Species
delimitation and phylogeography of the pectenia species-complex: A
misunderstood case of species-pairs in lichenized fungi, where repro-
duction mode does not delimit lineages.” Fungal biology, vol. 121 3,
pp. 222–233, 2017.

[6] G. Gaio-Oliveira, L. Dahlman, C. Máguas, and K. Palmqvist, “Growth
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