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Abstract

Planting by mounding is a commonly used forestry tech-
nique that improves soil quality and ensures optimal tree
growth conditions. During planting operations, one of the
main planning steps is to estimate the number of mechan-
ically created mounds in each planting block. Traditional
counting methods involve manual field surveys or human
photo-interpretation of UAV images, which are generally
subject to errors and time-consuming. In this work, we pro-
pose a new approach to count mounds on UAV orthomo-
saics. Our framework is designed to estimate the required
number of seedlings for a given planting block, based on
a visual detection approach and a global estimation mod-
ule. Firstly, a deep local detection model is applied on local
patches to recognize and count visible mounds. Then, an es-
timation model, based on global features is used to predict
the final number of plant seedling required for a given plan-
tation block. To evaluate the proposed framework in real-
world conditions, we constructed a large UAV dataset, in-
cluding 18 UAV orthomosaics, comprising 111,000 mounds.
We have conducted extensive experiments in our dataset,
including a comparison with the state-of-the-art counting
methods, as well as an analysis of Human-Level Perfor-
mance (HLP) in identifying and annotating mounds. The
experimental results show that our model reaches the best
performance in terms of MAE and MSE, by comparison to
state-of-the-art automatic counting mehtods.

1. Introduction
In forest industry, mechanical site preparation is com-

monly used before planting seedlings on a new plantation
block, which consists in preparing forest floor mechanically
by forming planting microsites, also called mounds. An im-
portant step when planning planting operations is to esti-

mate the number of mounds created on each site. Mound
counting errors may impact inventory reports and logistic
plans, which could result in considerable waste of time and
money.
Forestry managers often use traditional counting ap-
proaches, where several workers move through the plan-
tation block and visually count the number of mounds in
a specific portion, then extrapolate to neighboring regions.
These operations are time consuming and subject to errors
due to the extrapolation method, which assumes that mound
density remains constant for a given plantation block. Re-
cently, due to the flexibility and the low cost of Unmanned
aerial vehicles (UAVs), aerial imagery was also used to
manually count planting micro-sites through human photo-
interpretation. The photo-interpretation method involves vi-
sual mound identification by human operators on UAV im-
ages. Counting is done in some regions of the image, to be
extrapolated over the entire planting block. This method is
also subject to errors due to two main reasons: human er-
rors during mound identification, and the constant mound
density assumption, which is often invalid.

In this work, we propose a new visual automated method
to count mounds on UAV images. We formulate the mound
counting task as a supervised detection problem, by sequen-
tially performing object detection and global count correc-
tion. Our two-stage approach for object counting effectively
leverages both detection-based and regression-based mod-
els. First, an object detection algorithm is used to iden-
tify and locate visual mounds in an image. Object detection
generally allows for accurate counting of objects in crowded
and complex scenes, even when objects are overlapping or
partially occluded. However, we argue that our counting
problem cannot be addressed by merely relying on object
detection. This is due to the non trivial nature of our task,
with a high scene appearance variability, and where objects
of interest (mounds) could be completely invisible due to
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(a) (b) (c) (d)

Figure 1. Examples of patches from different planting blocks. (a) mounds have a similar texture to that of the background (surrounding
regions). (b) & (c) the planting block was flooded by water flow and mounds have been partially or completely destructed or occluded. (d)
the presence of trees may occlude mounds in the border.

several perturbation factors. This includes total occlusion
by woody debris, water accumulation, and mound erosion
and destruction (see figure 1). We thus design a global esti-
mation module to be applied following the detection stage.
This module uses global features, in addition to detection
results, to estimate the overall count of objects in an image,
regardless of their visibility. In our framework, these two
stages are essential and complementary, as object detection
is limited by the visibility of objects, while global estima-
tion is not.

By using these two stages, our method is able to achieve
high accuracy in mound counting, even in challenging and
complex scenes. Additionally, our method is computation-
ally efficient, as it uses object detection to reduce the search
space for global estimation. This reduces the amount of
computation required, which is often computationally ex-
pensive with standard exhaustive methods.

The main contributions of our paper can be summarized
as follows:

• We propose a new UAV-based method to automate
mound counting in forest industry.

• The proposed hybrid counting framework can be gen-
eralized for similar counting problems, using a wide
range of UAV image types, including RGB, multispec-
tral, near infrared (NIR), and thermal IR.

• We construct a new UAV dataset including 18 ortho-
mosaics and a total number of 111,000 mounds.

• We present an analysis of Human Level Performance
(HLP) in the studied visual object identification task.

• We present a comprehensive experimental evaluation
of our framework by comparison to state-of-the-art ob-
ject counting methods.

2. Related works
Computer vision has been often used in environmental

applications, such as for animal counting [3] and tree in-
ventorying [13]. Several of these applications are based on
the task of estimating the number of objects present in im-
ages, referred to as crowd counting. This section reviews
the most significant studies and methods proposed to count
objects in crowded scenes. Methods from the literature can
be categorized into two main approaches: 1) the traditional
approach, mostly based on hand-crafted features and clas-
sical machine learning models, and 2) the Deep Learning
(DL) approach, where DL models are applied to learn and
classify crowd regions.

2.1. Traditional counting methods

Traditional approaches are mostly based on image pro-
cessing techniques to extract hand-crafted features [25], in
addition to machine learning methods to estimate object
count. Early approaches used detection methods [7] cou-
pled with nonlinear classifiers to learn object patterns, such
as support vector machine (SVM) [11], boosted trees [34]
and random forests [23]. Despite detection-based methods
were generally successful in low density counting, these
methods often failed in moderately and highly crowded
scenes. To overcome the problem of moderately crowded
scenes, researchers used regression methods, which aim to
find the final count from input local features. Regression
counting methods generally comprise two steps. The first
step corresponds to low level features extraction, while the
second is regression modeling. Low level visual informa-
tion extraction is performed to obtain different types of fea-
tures, such as foreground [5], edge [19], texture and gra-
dient [9, 29] features. Then, various regression modeling
techniques can be used to learn a mapping between the
low-level features and the final count, such as linear regres-
sion [22], piece-wise linear regression [4], and neural net-
works [18]. Idrees et al. [10] proposed to combine different
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feature extraction methods to capture multiple information,
subsequently used by a global multiscale Markov Random
Field (MRF) to estimate the final count.

Density map methods were introduced by Lempitsky et
al. [15] to linearly map between local patch features and
their corresponding object density maps. They formulated
the density map learning as a minimization of a regular-
ized risk quadratic cost function using a new loss function
for learning. Several improvements have been subsequently
added by researchers. Pham et al [23] proposed a crowd-
edness prior to overcome the problem of large variation in
appearance and shape.

2.2. Deep learning counting methods

The first proposed DL methods in crowd counting were
based on classification-based CNNs. Wang et al. [31] pro-
posed an end-to-end CNN regressor for people counting.
The model is based on AlexNet [14] architecture, where the
final fully connected layer is replaced by a single neuron to
predict the final count. Fu et al. [8] optimized a multistage
CNN by removing some network connections. Then, two
CNN cascade classifiers were designed to classify crowd
images into five classes: very low, low, medium, high, and
very high. To optimize the model on cross-scene crowd
counting, Zhang et al. [32] proposed to alternatively train
a CNN for two tasks: density estimation and crowd count-
ing. To increase counting accuracy and time processing,
Walach et al. [30] proposed an improved CNN architecture
with layered boosting and selective sampling technique dur-
ing training.

To ensure robustness against object scale variation, ad-
vanced DL models were introduced. Two main architec-
tures were used: multi-columns based architecture [6, 33]
and multi-resolution based architecture [1, 21]. Different
approaches have attempted to integrate local or global con-
text information to solve the crowd-counting problem us-
ing DL models. The authors in [28] proposed to inte-
grate semantic information by learning locality aware fea-
ture (LAF) sets. Further, Ilyas et al. [12] have designed
an end-to-end CNN model for crowd counting, which com-
bined a features extraction network and a scale-aggregation
module, with dilated convolution to collect large scale con-
textual information. A hybrid approach was proposed in
[2] to count planting microsites in multispectral orthomo-
saics by generating region proposals based on local binary
patterns (LBP) features extracted from near-infrared (NIR)
patches. Then, a convolutional neural network (CNN) is
used for classifying candidate regions. A recent work was
proposed by Nategh et al. [20] to count mounds using in-
stance segmentation. Mask R-CNN was applied to local
patches to quantify the presence of objects of interest, in
addition to distractors. Counting is then refined using local
correction at the patch-level.

3. Proposed method

3.1. Motivations and overview

Our purpose is to precisely estimate the number of plant
seedlings to be planted in a plantation block, which should
correspond to the number of created planting microsites.
Mound detection is a complex task due to several chal-
lenges, as shown in Figure 1. This includes similarity in
appearance with background, variation in shape between
mounds, and variability in appearance between planted
blocks (as seen in examples a, b, c, and d). State-of-the-
art deep learning-based counting methods may face signif-
icant challenges and limitations under our application con-
straints. One of the main challenges is the need for large
amounts of labeled training data. Another challenge is that
the accuracy of the model is highly dependent on the qual-
ity and diversity of the training data. If the training data
does not adequately represent the range of variability in
the appearance and shape of mounds, then the model may
not be able to accurately perform counting on new, unseen
images. Furthermore, deep learning models are known to
struggle with generalizing to new environments or image
types that are significantly different from those of the train-
ing set. This means that a deep learning model trained to
count mounds in a given type of block or environmental
condition may not be accurate when applied to a different
context.

To address these challenges, we designed a system based
on two distinct, yet complementary prediction models.
First, we train a DL object detector using manually anno-
tated images to detect visible mounds in a local patch. After
estimating a preliminary number of mounds by detection, a
global correction model is applied using global features ex-
tracted from each block. The correction model is trained
beforehand to estimate the final number of mounds in each
block, based on global block-level features, such as block
area, global mound density, and detection-based count. This
global estimation model is crucial to handle the limitations
of visual object detection dicussed above, including the to-
tal occlusion of mounds or their complete destruction due
to erosion. The proposed framework is illustrated in figure
2 and detailed in the following sub-sections.

3.2. Mound detection in local patches

In our approach, we use the supervised one-stage de-
tector YOLO [24], to perform mound detection in a single
block. YOLO has shown its robustness to scale and per-
spective variation in a variety of difficult situations and has
achieved high-precision results in challenging large-scale
datasets. Moreover, YOLO is a real-time object detector
that takes only 50ms to process a 608 × 608 image using
a GPU device. The YOLO model has a fully convolutional
architecture, which could be divided into two parts: Back-

499



Object 
detector

Global estimation 
module



𝑁

𝑑ⅇ𝑡

Density

Area

GT



𝑀

𝑑ⅇ𝑡

Density

Area

Count

Data acquisition and reconstruction

Training stage

N patches H x W

Tr
ai

n
ed

 o
b

je
ct

d
et

ec
to

r

Tr
ai

n
ed

 e
st

im
at

o
r

Real world application
Input orthomosaic

M patches H x W

Figure 2. Overview of the proposed framework. UAV images are firstly captured and used for constructing orthomosaics representing the
plantation blocks. Then, the object detector and the global estimator are trained using a sample dataset. Once the system is trained, it can
be used in a real-world scenario by processing a new orthomosaic.

bone, and head detector. The backbone is a CNN that pro-
duces smaller feature maps using Darknet-63 architecture.
The output of the backbone is used as input for the head
detector, which corresponds to Mf stacked feature maps
within a tensor size of Mf × Hf × Wf . Due to the Fea-
tures Pyramid Network (FPN) architecture [17] integrated
into YOLO design, detection is performed in three different
scales: small, medium, and large.

Given the requirement of a large annotated dataset for
training deep neural networks, transfer learning is imple-
mented utilizing pre-trained weights on ImageNet [14].
This approach enables the model to leverage the learned
weights to extract deep features and accurately localize over
1000 objects in images. To evaluate the model’s perfor-
mance, we trained it on a subset of orthomosaics and tested
it on the remaining samples.

We use data augmentation to overcome the lack of an-
notated data during training. Since precise mound local-
ization is not the goal of our application, we generate new
images by applying modifications to bounding boxes, in-
cluding scale change and translation.

• Scale: we modify the bounding box size to include
more background information with respect to object
size using {

Hnew = Hold × Z

Wnew = Wold × Z
, (1)

where H and W are respectively the height and the

width of the bounding box, and Z is the scale.

• Translation: we generate a new centered bounding
box using{

Cxnew = Cxold + (L× cos(α))

Cynew = Cyold + (L× sin(α))
, (2)

where Cx and Cy are the coordinates of the center of
the bounding box, L is the translation in pixels, and α
is the translation direction angle.

3.3. Final count estimation using global features

The final estimated number of mounds should corre-
spond to the required number of plant seedling to be planted
in a given block. It is important to note that the number of
visible mounds is generally different from the final number
of seedlings to be planted because of the previously men-
tioned factors, including mound destruction, occlusion, and
variability (see figure 1). It is important therefore to note
that the mound detection result obtained during the first
stage is considered as a preliminary count, and that our fi-
nal goal is to estimate the number of plant seedling to be
planted. For this purpose, we define a global count estima-
tor that maps between the global information on a planting
block and the final number planted seedlings on the consid-
ered block. We train the model using global features ex-
tracted from planted blocks, such as the number of detected
mounds, block area, and density. Given a set of N train-
ing observations X = {xi}, i = 1, 2..., N (representing
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N planting blocks), and corresponding ground-truth count
Y = {yi}, i = 1, 2..., N , for each observation xi we define
a set of M global features xi = {xi

j}, j = 1, ...,M .
To model the relationship between predictor variables

(xi) and the target variable (yi), we train a mapping func-
tion F : X → Y to estimate the final count from the set
of global features for each block, using regression analysis.
We adopt ridge regression to find an M-dimensional weight
vector W = {wj}, j = 1, ...,M minimizing the loss func-
tion

min
w

N∑
i=1

(
yi −

M∑
j=1

wj × xi
j

)2

+ λ

M∑
j=1

w2
j (3)

where yi is the target variable, xi
j is the predictor variable,

wj is the weight to be learned, and λ the shrinkage param-
eter controlling the balance between prediction error and
regularization of W .

To train the regression model, we construct a training
dataset where each training example is a global feature vec-
tor describing an orthomosaic. Note that prior to construct-
ing the feature vector of an orthomosaic, the local detector
is applied in order to obtain a detection-based count as de-
scribed in section 3.2. In addition to the detection-based
count, the feature vector xi includes other block-level in-
formation, namely, the average detection density per patch,
the average mound density according to user input (i.e. fine-
tuning annotations), and the planting block area.

4. Experiments and results
In this section, we evaluate the effectiveness of our pro-

posed visual counting method. We compare it to the state-
of-the-art methods for counting by density estimation, MC-
CNN [6] and CSRNET [16]. Additionally, we evaluate our
method by comparison to the popular object detection meth-
ods YOLO [24] and Faster R-CNN [26].

Further, we conduct an analysis of Human Level Perfor-
mance (HLP) to evaluate how well humans can recognize
mounds in images. This analysis provides a benchmark for
evaluating the performance of our proposed method in rela-
tion with human ability. Moreover, it helps us understand
the impact of human recognition performance on model
training and performance evaluation. By conducting such
an analysis, we aim to gain insights into the strengths and
limitations of both human and machine perception, which
can inform the design and development of more effective
visual counting and object detection models.

4.1. Dataset

We constructed a new dataset consisting of 18 orthomo-
saics. The dataset was created by conducting a drone fly-
over the study area in the south of Quebec, Canada, fol-

lowed by capturing overlapped images using a vertical cam-
era. These images were then processed to construct the or-
thomosaics for each studied mechanically prepared planta-
tion block. This process was repeated for all 18 blocks in
the dataset. By following this methodology, we were able
to create a high-quality dataset that accurately represents the
study area and allows for a comprehensive evaluation of our
proposed method’s performance.

The final orthomosaics constructed from drone images
has a resolution of approximately 20, 000× 30, 000 pixels,
which is larger than the input size accepted by the models
used in our study. We thus divided each orthomosaic into
smaller patches of size 608 × 608 pixels. The training set
consisted of six blocks, each being further subdivided into
small patches. All patches were meticulously annotated and
augmented to produce a labeled dataset comprising a total
number of 90, 000 mounds. This process enabled us to opti-
mize the use of the large orthomosaic while also facilitating
the training of our models on smaller, more manageable in-
put sizes.

4.2. Implementation

Python was used to implement the proposed method on
a PC with an i7-8700 CPU, (6 cores) running at 3.2GHz,
and equipped with an Nvidia Geforce GTX 1070 GPU. To
train YOLO for object detection, the batch size was set to
16, and the learning rate was set to 0.001 with a decay of
0.0005, while the momentum was set to 0.9. The detector
was trained for 30 epochs, with the number of epochs fixed.
Note that in our implementation we used Yolov5 the most
recent version of yolo during our experiments.

For data augmentation, we set the parameters Z, L, and
α to random numbers in the range of [0.8, 1.2], [1, 10], and
[0, 2π], respectively, while the regressor parameter λ was
set to 10. To construct the object detector, we used a patch
size of 256 × 256 pixels, which resulted in approximately
10,000 training patches after data augmentation, compris-
ing around 95,000 annotated mounds over the 30 epochs.
We performed transfer learning for YOLO by using the
pre-trained model on the ImageNet dataset [27] for weight
initialization. During the detection process, we set a con-
fidence threshold of 0.25 to ensure that the most proba-
ble mounds were detected while minimizing the number of
false positives.

4.3. Evaluation metrics

To evaluate the performance of our proposed counting
framework, we utilized several metrics, including the Rela-
tive Counting Precision (RP), Mean Absolute Error (MAE),
and Mean Squared Error (MSE). These metrics were cho-
sen due to their ability to provide a comprehensive assess-
ment of the accuracy and precision of the counting frame-
work. The RP metric is defined as the ratio of the abso-
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lute difference between predicted and ground-truth counts
to the ground-truth count. The MAE measures the aver-
age magnitude of errors between the predicted and ground-
truth counts, while the MSE metric computes the average of
the squared errors between the predicted and ground-truth
counts. The mathematical expressions of the used metrics
are as follows:

RP = 1− (|#Predicted mounds −#GT
#GT

|) (4)

MAE =
1

N

N∑
i=1

|#Predicted mounds −#GT | (5)

MSE =

√√√√ 1

N

N∑
i=1

(#Predicted mounds −#GT )2 (6)

where, #GT is the number of planted seedlings and N is
the number of blocks in the testing set. Together, these met-
rics enable us to quantify the performance of the counting
framework across different image sizes, scales, and densi-
ties of mounds, providing valuable insights into its effec-
tiveness and potential limitations.

4.4. Comparison with state-of-the-art count meth-
ods

To evaluate the performance of our proposed model, we
use the constructed dataset to train and test the model. Five
over 18 blocks were used for training and validation of all
methods. The remaining 13 blocks were used for testing.
We conducted a comparative analysis of various counting
methods, including state-of-the-art models. Specifically, we
compared our model, named MoundCount, to the two vi-
sual object detection-based methods FasterR-CNN [26] and
YOLO [24], as well as the two density-based methods, MC-
CNN [33] and CSRNet [16]. The results of this comparison
are presented in Table 1, which includes the count results as
well as the relative precision results over 13 blocks.

Firstly, our proposed method outperforms baseline visual
detection methods on 12 over 13 test blocks, which con-
firms that our global estimation module improves the detec-
tion count performance. We observe from table 1 that the
proposed global estimation module improves the final count
by 70% in block 12, to achieve a 92% precision, by compar-
ison to merely using YOLO. Secondly, the comparison with
the density estimation based-methods (MCCNN and CSR-
NET) shows that our framework achieved the best overall
performance.

Table 2 presents the overall performance of various
counting methods on the test set, measured by MRP (Mean
Relative Precision), MAE (Mean Absolute Error), and MSE

(a) Block A (b) Block B

Figure 3. Example of patches from block A (a) and block B (b)

(Mean Squared Error). Notably, our approach ranked first
in MRP with 88%. On the other hand, our method outper-
formed the others in terms of MAE and MSE, achieving the
best results of 608 and 703, respectively. This represents a
segnificant improvement of 63.59% and 76.62% on MAE
and MSE, respectively, compared to the MCCNN method.

These results highlight the effectiveness of our approach
in accurately estimating counts, outperforming state-of-the-
art methods. The results also suggest that our method is
particularly useful in real-world applications, where precise
counting is essential.

4.5. Human Level Performance

Recognizing mounds in orthomosaics is a challenging
task, even for humans. Therefore, we defined an experi-
mental protocol to evaluate the Human Level Performance
(HLP) in the mound identification task. The primary ob-
jective of this study was to analyze the challenges faced by
humans in identifying mounds and their impact on model
training.

To achieve this goal, we defined a procedure for the
recognition of mounds in orthomosaic images. The proce-
dure involved visual recognition by two participants, cov-
ering multiple blocks, and training each participant sepa-
rately. To ensure unbiased results, participants were not pro-
vided any feedback or correction during the annotation pro-
cess, and were prohibited from communicating with each
other. By following this procedure, we aimed to accurately
evaluate the HLP and gain insights into the strengths and
limitations of human perception in mound identification.

For this experiment, we prepared two blocks, consisting
of a total number of 637 patches (refer to Figure 3). We
trained two participants for two days, providing both theo-
retical and practical training on different blocks. To assist
with the visual recognition process, we provided a guidance
file as a reference document. The block patches were sent
separately to each participant. Once they had finished visu-
ally recognizing the mounds in the first block, we provided
them with the second one.

To record the visually recognized mounds, we used the
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name GT YOLO [24] Faster R-CNN [26] CSRNET [16] MCCNN [33] MoundCount
count RP count RP count RP count RP count RP

Block1 6500 6866 94% 5533 85% 5651 87% 7455 85% 6172 95%
Block2 4350 2506 58% 132 3% 1545 36% 2273 52% 3781 87%
Block3 8900 7713 87% 4441 50% 8010 90% 9011 99% 8318 93%
Block4 1400 1023 73% 1058 76% 1201 86% 1920 63% 1734 76%
Block5 12350 8442 68% 5702 46% 6099 49% 8594 70% 11773 95%
Block6 6150 5829 95% 2354 38% 4652 76% 5623 91% 6019 98%
Block7 16450 15661 95% 13467 82% 21050 72% 26088 41% 15226 93%
Block8 3750 3214 86% 1586 42% 4247 87% 3556 95% 4158 89%
Block9 2050 771 38% 930 45% 2644 71% 2033 99% 1764 86%

Block10 7150 2775 39% 3106 43% 5602 78% 5889 82% 6000 85%
Block11 2300 1735 75% 803 35% 2423 95% 2153 94% 1775 77%
Block12 6600 1803 27% 2607 40% 6051 92% 5088 77% 6050 92%
Block13 13100 8914 68% 4572 35% 15016 85% 14090 92% 14364 90%

Table 1. Comparison to state-of-the-art counting methods on the constructed dataset. The proposed method outperforms automated visual
counting methods based on the relative precision metric. Best results are in bold and second best are in italic

Method MRP MAE MSE
YOLO [24] 69.34% 1887 2526

Faster R-CNN [26] 50.88% 3443 4108
CSRNET [16] 78.20% 1717 2463
MCCNN [33] 82.29% 1670 3008
MoundCount 87.43% 608 703

Table 2. Quantitative comparison results of our proposed method
with the state of the art counting methods in the constructed
dataset.

Block A Block B
Ground Truth 8600 7150

Count RP Count RP
Participant1 8257 96.1% 6292 88.08%
Participant2 8373 97.26% 6312 88.28%

Table 3. Comparison between HLP performance of participants
on two different blocks.

VGG Image Annotator tool and collected JSON files from
both participants. The count results and precision for each
participant in the two blocks are presented in Table 3. Based
on these results, we can see that the human error varied be-
tween blocks A and B, with rates of 3.99% and 11.94%,
respectively. One possible explanation for this performance
degradation between blocks is the challenging environmen-
tal factors that were present during visual recognition, such
as occlusion due to debris, trees, and water flow. These fac-
tors may have affected the participants’ ability to accurately
identify mounds in images. Additionally, there may have
been variations in the block properties, lighting, and image
quality between the two blocks, contributing to the differ-
ences in performance.

Figure 4. Example of patch showing a regular pattern. Red points
are centers of mounds. Vertical orange lines and blue lines shows
a regular prepared zone.

In general, mechanical preparation by mounding exhibits
a regular pattern across all the blocks. Each block is com-
prised of parallel zones separated by excavator tracks, as de-
picted in Figure 4. Within each zone, four vertical lines of
yellow-orange color denote the preparation lines for plant-
ing. These preparation lines contain four mounds, marked
by horizontal blue lines. Figure 5 shows two patches from
blocks A and B, respectively, demonstrating this regular
pattern. In these patches, the mounds and the lines of four
mounds are clearly visible, facilitating the visual recogni-
tion process. As a result, both participants were able to pro-
vide similar and complete annotations for these patches. It
should be emphasized that this regular pattern of mounding
is not present in all patches due to the challenging factors
discussed previously.

In some situations, visual identification can be particu-
larly challenging. The invisibility of mounds is the primary
cause of such irregularities. Identifying occluded or de-
stroyed mounds in images from both participants is often
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Figure 5. Qualitative results for visual recognition in patches with
regular patterns. Yellow and blue rectangles are respectively anno-
tations of participants 1 and 2. Left, a regular patch example from
block A, and right, is a regular patch example from block B

Figure 6. Qualitative comparison between human annotations and
visual detection using two different methods. The first column
corresponds to human annotations, the second column to YOLO
detections, and the third to Faster R-CNN detections.

a difficult task due to the presence of debris. Additionally,
water over slopes may cause the erosion of mounds and the
alteration of the visual texture of blocks. Furthermore, me-
chanical preparation of certain regions by machinery oper-
ators could be impossible in some cases, due to difficul-
ties in accessing some areas. It is worth noting that despite
the presence of invisible, occluded, and destroyed mounds,
planting operations are carried out by maintaining a level of
regularity even in irregular regions.

5. Conclusion

In this paper, we proposed a novel method for mound
detection and counting on UAV images. Our method esti-
mates the number of planting micro-sites through a com-
bination of local object detection and global count estima-
tion. Firstly, a local count by detection is performed by
using a visual object detector. A global count estimation
using global features is then performed to provide a final
count. We conducted extensive experiments including, a

Figure 7. Patch example from block A to show missed detections
due to visual detection model performance. Left, human annota-
tions, center, YOLO detections, right, Faster R-CNN detections.

comparison with state-of the art methods and an evaluation
of human-level performance in recognizing mounds. We
showed that our proposed method significantly outperforms
both detection and density-based methods in the counting
task.

In future work, we aim to further improve the perfor-
mance of visual counting by incorporating other types of
UAV images. In particular, we recently obtained promising
results by using thermal infrared (IR) imaging. In fact, ther-
mal IR allows to efficiently exploit the difference in temper-
ature between a given mound and surrounding background
region. This is because mounds are warmer, being formed
of mineral soil and bare of vegetation, while surrounding
background regions between mounds are colder, given the
presence of organic matter.
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[29] Mihran Tüceryan and Anil K. Jain. Texture analysis. In
Handbook of Pattern Recognition and Computer Vision,
1993. 2

[30] Elad Walach and Lior Wolf. Learning to count with cnn
boosting. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, Computer Vision – ECCV 2016, pages 660–
676, Cham, 2016. Springer International Publishing. 3

[31] Chuan Wang, Hua Zhang, Liang Yang, Si Liu, and Xiaochun
Cao. Deep people counting in extremely dense crowds.
In Proceedings of the 23rd ACM International Conference
on Multimedia, MM ’15, page 1299–1302, New York, NY,
USA, 2015. Association for Computing Machinery. 3

[32] Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang
Yang. Cross-scene crowd counting via deep convolutional

505



neural networks. 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 833–841, 2015. 3

[33] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao,
and Yi Ma. Single-image crowd counting via multi-column
convolutional neural network. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
589–597, 2016. 3, 6, 7

[34] Bingyin Zhou, M. Lu, and Yonggang Wang. Counting peo-
ple using gradient boosted trees. 2016 IEEE Information
Technology, Networking, Electronic and Automation Control
Conference, pages 391–395, 2016. 2

506


