
1

Automatic counting of planting microsites via local
visual detection and global count estimation

Ahmed Zgaren, Wassim Bouachir, and Nizar Bouguila

Abstract—In forest industry, mechanical site preparation by
mounding is widely used prior to planting operations. One of
the main problems when planning planting operations is the
difficulty in estimating the number of mounds present on a
planting block, as their number may greatly vary depending on
site characteristics. This estimation is often carried out through
field surveys by several forestry workers. However, this procedure
is prone to error and slowness. Motivated by recent advances
in UAV imagery and artificial intelligence, we propose a fully
automated framework to estimate the number of mounds on a
planting block. Using computer vision and machine learning, we
formulate the counting task as a supervised learning problem
using two prediction models. A local detection model is firstly
used to detect visible mounds based on deep features, while a
global prediction function is subsequently applied to provide a
final estimation based on block-level features. To evaluate the
proposed method, we constructed a challenging UAV dataset
representing several plantation blocks with different character-
istics. The performed experiments demonstrated the robustness
of the proposed method, which outperforms manual methods in
precision, while significantly reducing time and cost.

Index Terms—Object counting, Object detection, computer
vision, precision forestry, UAV imagery.

I. INTRODUCTION

MECHANICAL site preparation by mounding is a pop-
ular technique often used by forest managers to ensure

optimal growth conditions for tree seedlings. This procedure
allows to address several soil problems that can severely
impede root establishment of the planted trees, including high
soil bulk density due to compaction by logging machinery,
high water table, and plant competition for resources [1].
Mechanical preparation for planting is performed by using
machinery (e.g. excavator) to create a mound corresponding
to each planting microsite (see figure 1). Prior to planting op-
erations, the number of planting microsites (mounds) present
should be estimated, in order to determine the number of tree
seedlings to be planted on each site.

The number of tree seedlings is often estimated by manual
count, where several workers move through the field and
visually identify each prepared mound on a portion of the site.
The number of mounds is then estimated for the entire site by
interpolating the partial result and assuming a constant density
of mounds. This traditional counting method is time consum-
ing and subject to errors. Moreover, the interpolation technique
is not always reliable, as the density of mounds varies due
to several factors, including site characteristics, preparation
quality and type of machinery used. With the increased use of
drones in the forest industry, some forest managers attempted
to replace field work by photo-interpretation of UAV images.

(a) (b)

Fig. 1: Examples of mechanically prepared mounds in the
balsam fir-white birch bioclimatic domain in Quebec, Canada.
The fields present irregularities between different planting
blocks, as well as between regions within the same planting
block. The created mounds have different appearances, shapes,
and sizes.

In this context, photo-interpretation consists of the detection
of mounds by a human operator on a portion of the UAV
image. Similarly to the fieldwork procedure described above,
the final estimation is then predicted for neighboring regions,
by interpolating the result. Although this method allows to
significantly reduce the time required for field work, photo-
interpretation is also subject to human error, in addition to
imprecision due to terrain variability factors. These estimation
errors often result in complex and imprecise handling of
seedlings in the field, which causes monetary losses and
additional planting delays.

Our work aims to propose an automatic process to fully
take advantage of UAV imagery, coupled with computer vision
techniques. We formulate the task of mound counting as a
supervised learning problem based on the combination of
two prediction models: 1) a local detection model used for
detecting mounds based on deep features, and 2) a global
estimation model for predicting the final count based on global
features. The proposed system is trained in an offline manner
to resolve two different, yet related, problems consecutively.
On the one hand, the base object detector (local model) is
trained to recognize visible mounds using a large dataset
of manually annotated UAV images. On the other hand, the
global estimation function is learned to predict the final count
based on global information on the target field, including the
detection result. Once the system is trained, online counting
of mounds on a new image is performed by applying local
and global models sequentially. More specifically, counting by
detection is firstly performed using the local visual detector to

2

provide a preliminary counting of visible mounds. The pre-
liminary count is then fused with global information extracted
from the block’s orthomosaic, to form a global feature vector.
This information is finally used as the input of the global
estimation function to obtain a precise prediction of mound
count.

The proposed framework allows to automate the counting
process by taking advantage of computer vision and UAV im-
agery. On the one hand, the use of our framework significantly
reduces counting time, which currently takes several days to
be accomplished using the manual method. On the other hand,
we also improve counting precision, which has the potential
to provide substantial financial benefits to forest managers.

We performed extensive experiments by testing the pro-
posed method on UAV orthomosaics captured by overflying
12 planting blocks with different characteristics. These blocks
are not included in the training set and contain 6164 mounds
on average per block. The performed experiments demonstrate
the high accuracy and robustness of the proposed method. With
an overall relative counting precision of 95%, our computer
vision solution outperforms both the manual field method as
well as the photo-interpretation method. Further, we present
an ablation study to investigate the contributions of each
system module and several design strategies. Our analysis
demonstrates the importance of different system components.
In particular, it underlines that the combination of the two
models (global and local) is more efficient than only applying
a local visual detector. This is mainly due to the nontrivial
nature of our object detection problem, with a high appearance
variability at the scene level, and where objects of interest
could be invisible due to several perturbation factors (e.g. oc-
clusion by woody debris, water accumulation, mound erosion,
and destruction).

Our main contributions can be summarized as follows:

• We propose a fully automated vision-based system to
count mounds in orthomosaics. We thus contribute in
addressing an important forestry management problem,
by improving fieldwork conditions and significantly re-
ducing time, money, and resource consumption for forest
managers.

• We propose a robust computer vision framework, which
can be generalized for a wide range of object counting
applications, especially those using UAV imagery in
crowded scenes.

• We construct a new dataset for mound detection and
counting from UAV-based imagery.

• We analyse of the visual mound detection problem to
identify the main challenges to be addressed in future
work.

This paper is structured as follows. Section II, reviews rel-
evant works from the literature on automatic object counting.
In section III, we present the proposed method for mound
detection and counting. Comprehensive experimental work is
presented in section IV, including system evaluation in real-
world conditions as well as an ablation study. In section V, we
discuss the performance of our system with respect to several
challenging situations. Finally, section VI concludes the paper.

II. RELATED WORKS

The use of aerial imagery stimulated research work in
several application areas related to forestry and agriculture,
such as tree detection [2], animal counting [3], tree species
classification [4], biomass estimation [5], and fire monitoring
[6]. Several of these applications are based on the task of
estimating the number of objects present in images, referred
to as crowd counting. This section reviews the most important
studies and methods proposed to count objects in crowded
scenes. Methods from the literature can be categorized into
three main approaches: 1) the traditional approach, mostly
based on hand-crafted features and classical machine learning
models, 2) the Deep Learning (DL) approach, where DL
models are applied to learn and classify crowd regions, and 3)
hybrid approaches, where both hand-crafted and deep features
are used to improve the overall performance.

A. Crowd counting using traditional approaches

Traditional approaches are mostly based on image pro-
cessing techniques to extract hand-crafted features [7]–[10],
in addition to machine learning methods to predict object
count. We can distinguish three main categories of methods:
detection-based methods, where the final count is the total
number of detected objects, regression-based methods, where
a regression function maps the final count to the input features,
and density estimation-based methods, where the final count
is extracted from an estimated density map.

1) Detection-based methods: These methods generally
adopt detection frameworks [11]–[14] by training a machine
learning classifier on hand-crafted features. The used features
include Harr wavelet [12], histogram of oriented gradient
(HOG) [11], edgelet [13] and shapelet [14]. Detection is then
performed either by global [11], [15]–[17], part-based [13],
[18], [19], or shape learning [20] techniques. Several nonlinear
classifiers have been also used to learn object patterns, such
as support vector machine (SVM) [21], boosted trees [22] and
random forests [23].

methods for counting by detection are generally successful
in moderately crowded scenes but fail in handling highly-
crowded scenes due to occlusions and scene clutter.

2) Regression methods: To overcome the dependency on
learning detectors, regression-based methods aim to map the
final count to input local features [24]–[26]. Models in this
category are designed based on two main steps: low-level
feature extraction and regression modeling.

Various types of features such as foreground features,
edge features, texture, and gradient features have been used
to extract visual information. While background subtraction
techniques have been used to separate foreground features,
Blob-based holistic features such as area and perimeter have
also been successfully used to capture global properties of the
scene [25]–[27]. To further increase accuracy, more advanced
local features have been used, such as edges [28] and tex-
ture/gradient features [29], [30].

Once feature extraction is performed, different models can
be used to learn a mapping function from low-level features to

3

crowd count, such as linear regression [31], piece-wise linear
regression [27], and neural networks [32].

Idrinet al. [33] observed that there is no single feature or
detector which is capable of providing sufficient information
for precise counting in high-density scenes. They proposed
to combine different feature extraction methods to capture
multiple information types. Once local counts in all image
patches are collected, they are fed to a global multiscale
Markov Random Field (MRF) to estimate the final count.

Counting by regression mainly attempts to mitigate the
former problems, like occlusion and scale variation, while
improving crowd counting performance in highly crowded
scenes. However, low-level feature representations are often
unable to capture semantic information, and regressors tend
to ignore the spatial information by regressing global count.

3) Density estimation-based methods: To handle the spa-
tial information problem, Lempitsky et al. [34] introduced a
model to linearly map between local patch features and their
corresponding object density maps. They formulated density
map learning as a minimization of a regularized risk quadratic
cost function using a new loss function for learning. Motivated
by the success of density map estimation, Pham et al. [23]
proposed a nonlinear mapping model using random forest
regression. They proposed a crowdedness prior to overcoming
the problem of the large variation in appearance and shape,
then trained two different forests corresponding to this prior.
Wang et al. [35] proposed a faster method by clustering
the feature space into subspaces and then by learning the
embedding of each subspace formed by image patches. Xu
et al. [36] observed that crowd density estimation methods
are based on computationally expensive Gaussian process
regression or Ridge regression models, which can only handle
a small number of features. They proposed to incorporate a
rich set of features to boost the performance of crowd density
estimation.

Crowd counting by traditional methods was successful in
moderately crowded scenes and the proposed models did not
require significant computational resources. However, tradi-
tional methods are based on low-level features for image
representation, which limits their capability to handle diffi-
cult situations like appearance variation, scale variation, and
context information.

B. Deep learning for Crowd counting

During the last decade, deep learning models have out-
performed traditional machine learning approaches in various
application fields. Due to their deep and sophisticated archi-
tectures, DL models proved their ability to extract robust se-
mantic information from large datasets, which allows handling
multiple challenging situations such as scale change, rotation,
and appearance variation.

Motivated by the success of deep neural networks in com-
puter vision, researchers have attempted to solve the object
counting problem in crowded scenes using DL models. These
models are mostly based on Convolutional Neural Networks
(CNNs) to learn a non-linear function from crowd images to
their corresponding density maps or counts.

1) Basic CNN approaches: Since these methods are among
the first deep learning formulations for crowd counting, they
integrate basic CNN layers to the proposed models. Wang et
al. [37] proposed an end-to-end CNN regressor for people
counting. The model is based on AlexNet [38] architecture,
where the final fully connected layer is replaced by a single
neuron to predict the final count. Fu et al. [39] optimized
a multistage CNN by removing some network connections
according to the observation of the existence of similar feature
maps. Then, two CNN cascade classifiers were designed to
classify crowd images into five classes: very low, low, medium,
high, and very high. To optimize the model on cross-scene
crowd counting, Zhang et al. [40] proposed to alternatively
train a CNN for two tasks: density estimation and crowd
counting. To further improve results on a target scene, the
model is fine-tuned using training samples similar to the target.
To increase counting accuracy and time processing, Walach et
al. [41] proposed an improved CNN architecture with layered
boosting and selective sampling techniques during training.
In [42], the entire image was fed to the network for count
prediction, instead of dividing it into patches. The authors
combine a CNN with a recurrent neural network (RNN) to
take advantage of contextual information when predicting both
local and global counts.

2) Scale-aware CNN approaches: More advanced CNN
architectures were demonstrated to be robust to scale variation,
by incorporating different techniques such as multi-column or
multi-resolution networks [43]. To ensure robustness and scale
invariance, Boominathan et al. [44] proposed to combine deep
and shallow fully convolutional networks to capture semantic
informer density map estimation and to ensure robustness to
non-uniform scale and perspective variations. Zhang et al.
[45] presented the Multicolumn CNN (MCNN), which consists
of three columns for different scale capture (large, medium,
small). Onoro and Sastre [46] developed a scale-invariant
CNN model (HydraCNN). Firstly, they introduced the Count
CNN (CCNN) architecture that incorporates the perspective
information for geometric correction of the input features.
Then, they constructed a network of three heads and a body.
Each head is a CCNN architecture for learning features of
a particular scale. Finally, the outputs of all the heads are
concatenated and fed to the body to estimate the final density
map.

Sam et al. [47] proposed a scale-aware crowd counting
model based on switching CNNs. Their architecture consists
of multiple MCNN regressors and a switch classifier trained
to select the optimal regressor. Later, Ranjan et al. [48]
proposed a multi-stage crowd count process (ic-CNN) to
generate high-resolution density maps. The model architecture
is based on stacking multiple ic-CNN, which consists of a two-
branch CNN, where the first branch produces a low-resolution
density map and the second merge the outputs of the first
branch to produce high-resolution density maps. In a different
approach to incorporate scale information, Zhang et al. [49]
extracted feature maps from different layers of a backbone
and combined them to produce the final density map. In [50]
Jiang et al. proposed a Trellis Encoder-Decoder (TEDnet) for
crowd counting. The model focuses on generating high-quality

4

density estimation maps. They modified the Trellis architecture
to incorporate rich scale information by using dense skip
connections across paths. Recently, Dong et al. [51] proposed
an end-to-end scale-aware model (MMNET) that integrates
multi-scale features generated by different stages, to handle
scale variations. Hu et al. [52] estimate the density map using
Neural Architecture Search (NAS), which exploits multi-scale
features and addresses the scale variation issue in counting
by density. Moreover, Liu et al. [53] proposed a multiscale
parallel encoder by introducing an Efficient and Lightweight
Convolution Module (ELCM) to extract different scale fea-
tures. Then, a Scale Regression Module (SRM) decoder is used
to generate the density map. More recently, Aldhaheri et al.
[54] proposed to filter out background noise from foreground
features using a segmentation guided attention mechanism.

3) Context-aware CNN approaches: Incorporating local
and global contextual information into the CNN architecture
for crowd counting is a complex task that has attracted several
researchers. Sheng et al. [55] proposed to integrate semantic
information by learning locality-aware feature (LAF) sets.
The proposed architecture comprises three main components.
First, a CNN transforms the input raw pixel high-resolutions
attribute feature map. Then, following the idea of spatial
pyramids on neighboring patches, the LAF is introduced to
explore more spatial context and local information. Finally,
the local descriptors from adjacent cells are encoded into
image representations using the VLAD [56] encoding method.
Moreover, Ilyas et al. [57] have designed an end-to-end CNN
model for crowd counting. The architecture of the proposed
method consists of two parts: a deep feature extraction net-
work (DFEN), and a scale-aggregation module with dilated
convolution (SAD). They combined DFEN and SAD to collect
large-scale contextual information, handling the perspective
distortion and expanding the spatial sampling location. Also,
Tian et al. [58] combined Density Aware Network (DAN) and
Feature Enhancement layer (FEL) to capture local and global
contextual features. In a different training approach, Lei et al.
[59] proposed a weakly-supervised density estimation model.
The model was trained using primary and auxiliary brands and
two different annotation types, location level annotation, and
count level annotated images. Recently, Do [60] proposed to
learn global context information using a visual transformer.
Liu et al. [61] proposed a multi-task Encoder-Decoder density
map generator to learn the counting of maize stand from UAV
images. To alleviate the problem of density dependence, the
authors proposed to incorporate count and density map errors
into the loss function.

Crowd counting using CNN-based architecture has been
successful in both moderately and highly crowded scenes.
Following this direction, multiple network architectures have
been introduced to handle challenging situations such as scale
variations and occlusion.

C. Hybrid methods

Hybrid methods mainly combine two feature representa-
tions: hand-crafted features, and deep features. Features can
be extracted explicitly or implicitly, to be used to train either

a classical machine learning classifier or a deep neural network
to count objects. Lin et al. [62] proposed a method for
counting persons in videos when crossing a line for low-
cost devices. The proposed architecture uses a knowledge
distillation approach to transfer knowledge from the CNN
object detector, in order to train a small Local Binary Patterns
(LBP) cascade classifier. After YOLO [63] detects persons in
video frames, images of persons with confidence higher than
30% are used to train the LBP cascade classifier, which is used
to detect-and-track pedestrians. Bouachir et al. [64] proposed
a two-stage detector to automate the estimation of the number
of planting microsites from multispectral images. The first
stage is a cascade detector based on LBP features to generate
region proposals that are likely to correspond to objects of
interest. The second stage consists of a CNN applied for
candidate region classification. This method allowed to handle
difficult situations where the objects are difficult to detect (e.
g. appearance variability, motion blur). However, this method
suffers from a high computational cost due to the use of a
sliding window process and region proposals. Besides, hybrid
methods in general may also suffer from high computational
complexity due to the fusion of multiple features and the use
of more than a single classifier.

In our work, we propose an hybrid framework where we
adopt two different approaches sequentially. However, unlike
the above discussed hybrid methods that often suffer from high
computational complexity, we perform visual feature extrac-
tion only during the first detection stage. This allows to main-
tain a reasonable computational complexity that corresponds
to that of the object detector. Further, our second prediction
stage is inspired by regression methods in that counting is
predicted globally, regardless of individual object localization.
Nevertheless, we do not process any visual low-level features,
as our regression function is trained on global properties
describing an orthomosaic. As demonstrated further in our
experiments, the proposed conception allows to significantly
improve counting precision compared to merely using a state-
of-the-art object detector.

III. PROPOSED METHOD

A. Motivations and overview

The aim of our work is to design a method to accu-
rately estimate the number of planting microsites (mounds)
present on mechanically prepared planting blocks. The input
of the proposed system is an orthomosaic representing a
new planting block (as shown in figure 3), each orthomosaic
being constructed from high-resolution UAV images. We can
also see in figure 3 that visual recognition of mounds could
be a complex task even for a human. This is mainly due
to several challenges, such as the similarity in appearance
between mounds (objects of interest) and surrounding terrain
(background), shape/appearance variation between mounds
(intra-block variability), and appearance variability between
different planting blocks (inter-block variability).

To handle these difficulties, system training is done by
constructing two prediction models consecutively. We first
construct a visual object detector from manual annotations, to

5

Fig. 2: System training. Stage 1 illustrates the visual detector construction and Stage 2 the global correction module training.
Continued arrows indicate the transition between steps and dashed arrows indicate the use of a system component in the target
step.

(a) (b) (c)

Fig. 3: Examples of orthomosaics captured and reconstructed for 3 different planting blocks. Corresponding areas are 13
hectares (ha), 4 ha, and 6 ha, respectively for (a), (b), and (c).

locally recognize visible mounds individually. Deep features
are used in this first model for the visual representation of
objects. In fact, hand-crafted features have been demonstrated
to be limited for such a complex detection problem, which may
result in a large number of false positives [64]. Further, we
construct a global estimation model for predicting the number
of mounds from the global features of a given planting block.
The used feature set comprises block-level information, such
as block area and prior knowledge on mound density. The
system training process is illustrated in figure 2.

Once the entire system is trained, mound counting on an
orthomosaic representing a new planting block is performed
by applying the two models subsequently. That is, the lo-
cal detection model is first applied to perform counting-by-
detection, which is considered as a preliminary estimation
of the number of mounds based on visual recognition. Note
that local detection is preceded by a fine-tuning process to

handle the inter-block variability problem mentioned above.
This is achieved by providing the detection model with a
few examples of mounds present on the new block. During
the second stage, the counting-by-detection result is used, in
addition to block-level information, as the input of the global
estimation model to produce a final estimation of the number
of mounds.

As explained above (and demonstrated further in the exper-
iments), the only use of local object detection is insufficient,
as local visual detection may be hampered by various per-
turbation factors, such as the presence of invisible mounds
(e.g. occluded, destroyed) and confusion with the background
texture. Both models, each using a different type of feature,
are thus essential and complementary for accurate counting
under our application constraints. Figure 4 summarizes the
process of analyzing a new orthomosaic for mound counting.
The proposed framework is detailed in the following sections.

6

Fig. 4: Illustration of our framework while processing new orthomosaic. We fine-tune the trained object detector, then we infer
patches to the detector for local mound detection. Once the number of detectable mounds is estimated, a feature vector is
constructed by extracting global features. Finally, we apply the global estimator to predict a final count.

B. Local visual detection

In this work, we use YOLO [63] as a supervised one-stage
approach for object detection. YOLO achieved state-of-the-art
performance in several detection tasks while demonstrating
robustness against scale and perspective variations [65], [66].
This method is built on the principle of merging very deep
CNNs for feature extraction with multi-scale detection in a
one-stage detection approach. As a result, the inference time
for an image with a size of 608 × 608 pixels is about 50ms
on a GPU device, with a mean average precision (mAP) of
33% on COCO dataset [67]. More generally, one-stage object
detectors were mainly introduced to decrease the detection
time. These detectors are conceptually different from region
proposal networks [68] in that they consider the image as a
grid of cells that should be scanned only once.

1) CNN architecture: YOLO has a fully convolutional
architecture based on Darknet-53 backbone and an output
block within 53 convolutional layers for detection on three
different scales. The feature extractor mechanism is based
on Features Pyramid Network (FPN) architecture [69] within
residual convolutional blocks, and provides feature volume
maps as output. YOLO head detector has 1× 1 convolutional
layers to reduce the depth of the volume activation maps
without affecting the spatial resolution. Detection is made in
three different scales, which are precisely given by down-
sampling the dimensions of the input image by 32, 16 and
8 respectively. The advantage of detecting at three scales is
to handle in a better way small object detection. Scales are
designed to perform small (map size of 52 × 52), medium
(26 × 26), and large object detection (13 × 13). An FPN
architecture was implemented within the network to perform
the map up-sampling process during detection.

The detector analyzes the input image cells to identify
objects and produce outputs: position, size, class confidence
score, and class number. The position is given by the center
location (Cx, Cy), and the size is determined by the width
and height of the bounding box (Cw, Ch). The class confi-

dence score is given for each detected object (Cs). For each
bounding box, the model classifies the object as belonging
to any of the defined classes Cc. The output vector is in the
form (Cx, Cy, Cw, Ch, Cs, Cc) for each bounding box. YOLO
has a very deep fully convolutional network based on FPN
architecture, which is appropriate for handling scale variations,
perspective variations, partial occlusion, and crowded scenes.
Except for scale that is not expected to undergo significant
change (due to a fixed flight elevation), all the other difficulties
are generally frequent in our application context.

2) Training the detector: Training a deep learning object
detector from scratch requires a large annotated dataset and
significant computational resources. Therefore, we adopt a
transfer learning methodology, which consists of retraining a
pre-trained model on our dataset. We start the training of our
detector, backbone and head detector using weights obtained
on a large-scale dataset, such as ImageNet [70], in order to
construct a generic mound base-detector.

Our dataset consists of 18 reconstructed orthomosaics, each
representing a different planting block. Since the mound an-
notation task is tedious and time-consuming, we only annotate
six orthomosaics, comprising in total of 9661 objects, to be
used as a training set for the mound detector. The training
set thus represents 33% of the entire orthomosaic dataset,
while the remaining 67% are kept for testing. Due to the high
resolution of orthomosaics (23610×18151), we adopt a patch-
based detection approach, where each orthomosaic is divided
into non-overlapped patches using a regular grid with fixed
cell size.

3) Data augmentation: Data augmentation has been widely
used to overcome the lack of data while training a machine
learning model. We apply an augmentation process as a
series of modifications on initially annotated object patches,
to generate additional examples in the training set. In our
application, we aim to train the model to detect the presence
of mounds without giving much attention to precise localiza-
tion. This means that we tolerate detection bounding boxes

7

Fig. 5: Data augmentation example. Black boxes are the
original annotations. Red boxes are examples of generated
boxes using the augmentation process.

that are not centered on the object. Therefore, in order to
generate new training patches, we apply two modifications
to bounding boxes to enhance detection performance with
respect to background distraction. The applied modifications
are 1) size change and 2) translation. Note that these operations
are applied to bounding boxes individually, rather than to the
entire orthomosaic. We consider that other transformations,
like rotation and blurring, are not necessary, since they are
sufficiently present in the dataset. On the other hand, we
observed that small-scale changes (caused by differences in
sizes between mounds) are efficiently handled by the YOLO
architecture described above. Formally, we define our augmen-
tation process by the following operations:

• Bounding box size change: we change the scale to
include background information from the surrounding
region in the bounding box following the equation:{

Hnew = Hold × Z

Wnew = Wold × Z
(1)

where H and W are respectively the height and the width
of the bounding box, and Z is the scale.

• Bounding box translation: we generate non-centered
bounding boxes by shifting according to equations:{

Cxnew = Cxold + (L× cos(α))

Cynew = Cyold + (L× sin(α))
(2)

where Cx and Cy are the coordinates of the center of
the bounding box, L is the translation amount in pixels
and α is the angle defining the translation direction.

The overall augmentation process to generate new patches
with augmented bounding boxes is presented in the algorithm
(1)

C. Global count estimation

In visual object counting, publicly available datasets are
generally fully annotated (e.g. Shanghaitech [45], UCSD [27],
UCF Cc [33], and UCF-QNRF [71]). Therefore, object count
generally corresponds to the number of annotated visible
objects. However, in our case, the final count is available

Algorithm 1: Bounding box augmentation
Data: patch P , bounding boxes BB
Result: augmented bounding boxes
for bb ∈ BB do

transform = random(translation, size);
if transform = translation then

Z = random([0,1]);
Apply equation (1) using Z;

else if transform = size then
L = random([0,1]);
α = random([0,2π]);
Apply equation (2) using (L,α);

end

only after completing planting operations for the correspond-
ing block. Thus, we consider the actual number of planted
seedlings as the final count for a given block, which is different
from counting manual annotations.

In other words, our objective is to predict the number of tree
seedlings to be planted, which is different from the number of
visible mounds. This objective cannot be achieved by the only
use of the local visual detector due to two main reasons. First,
visual detection of mounds is subject to recognition errors
under challenging situations, which may result in both missed
detection and false positives. Second, the difference between
the detection result and the number of plant seedlings finally
used may also be explained by the fact that tree seedlings
can be planted in positions where there are no visible mounds
(e.g. microsite eroded and collapsed by rainwater, completely
occluded by woody debris and coarse rock fragments).

In order to predict the number of required tree seedlings
for a given block, we define a global count estimator, which
consists of an orthomosaic-level model taking as input global
information on the planting block. This model is trained
from global information on orthomosaics corresponding to
planted blocks (i.e. for which the number of plant seedlings
finally used is known). Given a set of N training observations
X = {xi}, i = 1, 2...N (representing N planting blocks),
and corresponding ground-truth count Y = {yi}, i = 1, 2...N ,
for each observation xi we define a set of M global features
xi = {xi

j}, j = 1, ...,M .
We want to learn a mapping function F : X −→ Y , to

estimate the final count from the set of global features for each
block. We use regression analysis as a predictive technique to
model the relationship between predictor variables (xi) and
the target variable (yi). We use ridge regression to minimize
the loss function (3) and find the M-dimensional weight vector
W = {wj}, j = 1, ...,M . The loss function is defined as:

min
w

N∑
i=1

(
yi −

M∑
j=1

wj × xi
j

)2

+ λ

M∑
j=1

w2
j (3)

where yi is the target variable, xi
j is the predictor variable,

wj is the weight to be learned, and λ the shrinkage parameter
controlling the balance between prediction error and regular-
ization of W .

8

(a) (b) (c)

Fig. 6: Three patches from different orthomosaics illustrating inter-block variability, which makes mound identification
difficult even for humans. (a) The presence of grass causes partial occlusion of mounds. (B) Water accumulation and mound
erosion/deterioration are caused by heavy rain events. (c) Dry terrain where mounds have a similar texture to surrounding
regions.

To train the regression model, we construct a training
dataset where each training example is a global feature vector
describing an orthomosaic. Note that prior to constructing the
feature vector of an orthomosaic, the local detector is applied
in order to obtain a detection-based count as described in
section III-D. In addition to detection-based count, the feature
vector xi includes other block-level information, namely, the
average detection density per patch, the average mound density
according to user input (i.e. fine-tuning annotations), and the
planting block area.

D. Processing a new orthomosaic

The variability of terrains in the dataset results in a high
appearance variation for both mounds and surrounding areas.
Figure 6 shows examples of patches from different orthomo-
saics, illustrating inter-block variability. To address this issue,
we fine-tune the local mound detector before processing a
new block, in order to adapt the model to the specificities of
the new site (e.g., geographic zone, meteorological conditions,
season).

The fine-tuning process aims to increase the detector’s
ability to discriminate mounds from the surrounding area,
in a specific context. In our conception, this is achieved by
taking model weights obtained by transfer learning (see section
III-B2), and by retraining only the head of the detector, while
the backbone layers are fixed. In summary, context adaptation
is performed for a given orthomosaic representing a new
planting block through the following three steps:

1) Annotating a small batch of patches from the new
planting block,

2) Generating a batch of images using data augmentation
(see Algorithm 1),

3) Fine-tuning the visual detector using both annotated and
generated images.

The fine-tuned detector is then applied to the new orthomosaic
to produce a count-by-detection, which is incorporated with
global variables to form the block-level feature vector Fi for
xi.

To produce the final count, we finally perform a linear
transformation of the feature vector using the estimated weight
vector W :

Countfinal(Fi) =

M∑
j=1

wj × xi
j . (4)

Algorithm 2 illustrates the main operations performed when
processing a new orthomosaic.

Algorithm 2: processing new orthomosaic
Data: new orthomosaic T , trained detector D, trained

global estimator (equation 4)
Result: Final count
begin

Annotate a small batch of patches ;
Apply data augmentation (algorithm 1);
Df = Fine-tune (D) ;
Cdet = Detect (Df , T) ;
Extract global features Fext from T ;
Construct feature vector: F = (Cdet, Fext);
Final counting: apply equation 4 on F ;
illustrate

end

IV. EXPERIMENTS AND RESULTS

A. Dataset construction

Figure 7 shows different sites in the south of the province
of Quebec, Canada, where the study has been conducted.
Images were captured at an altitude of 120 m. The sensor
was set vertically, and images were captured with a high
overlap percentage to maximize orthomosaic reconstruction
quality. Orthomosaic reconstruction was performed using the
Pix4D software. Terrains included in this work are from
different zones and have different characteristics. Figure 3
shows three different orthomosaics after image reconstruction.
A total number of 18 orthomosaics have been reconstructed

9

Fig. 7: Geographic zone of the study. The yellow rectangle
shows the study area in the south of Quebec, Sherbrook city.
Map captured from google earth at an elevation of 244 m.

for 18 planting blocks using the captured images. The number
of mounds may vary significantly for different orthomosaics,
depending on several factors, such as terrain characteristics
and the type of machinery used for mechanical preparation.

We divide our orthomosaic dataset into two groups, G1 and
G2.

• G1: includes six (6) orthomosaics that we manually
annotated for training the object detector and analyzing
detection performance. In total, 9661 mounds were manu-
ally annotated to train the visual detector. Figure 8 shows
manual annotations on examples of extracted patches.

• G2: comprises twelve (12) orthomosaics that we mainly
use for evaluating prediction performance for the entire
framework. Note that mounds are not annotated in this
dataset, and only global features are used when process-
ing G2.

To fit the detector input format, each image is divided into
a nonoverlapping regular grid, where the cell (patch) size on
the grid is 416 × 416 pixels. This division is performed in a
manner to maximize the resolution of image patches (cells),
which are processed by the object detector.

(a) (b) (c)

Fig. 8: Three annotated patches belonging to different ortho-
mosaics in G1.

B. Evaluation metrics

To evaluate the visual detection performance, we use pre-
cision (P), recall (R), average precision (AP), and F1 score

defined as follows:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

AP =

n−1∑
i=0

(Ri+1 −Ri)Pinterp(Ri+1) (7)

F1 =
2TP

2TP + FP + FN
(8)

where TP is the number of True Positives, FP is the number
of False Positives, and FN is the number of False Negatives.
Pinterp(R) is the precision interpolated at a certain recall level.
To evaluate the entire framework performance in the counting
task, we adopt the relative counting precision metric defined
by:

RP = 1− (∥#Predicted mounds −#GT
#GT

∥) (9)

where #Predicted mounds is the predicted number of mounds
and #GT is the ground truth number.

C. Implementation

The proposed method was implemented using Python on
a PC (CPU i7-8700 @ 3.2GHZ, 6 cores) equipped with a
GPU Nvidia Geforce GTX 1070. To train YOLOv3, we set
the batch size to 16 and the learning rate to 0.001, with a
decay of 0.0005. The momentum is set to 0.9 and the number
of epochs is fixed to 30 for detector training, and 10 for fine-
tuning.

The augmentation parameters Z, L, and α are respectively
set to random numbers in [0.8, 1.2], [1, 10], and [0, 2π]. The
regressor parameter λ is set to 10. For constructing the object
detector, we set patch size to 256×256 pixels, which produces
approximately 10000 training patches after data augmentation,
comprising around 95000 annotated mounds for 30 epochs.
Transfer learning for YOLO is done based on the weights of
the pre-trained model on the ImageNet dataset [70]. For fine-
tuning, we use a batch of 11 patches of size 256×256 for each
orthomosaic. During the detection process, we set a confidence
threshold of 0.25 to detect the most possible mounds without
increasing the number of false positives.

Since YOLO implementation was optimized and coded
in C, we use the official implementation published by the
authors for visual mound detection. We propose a sequential
framework to count mounds from orthomosaics. The input is
an orthomosaic representing a planting block. First, the input
orthomosaic is divided into equal patches of size 608 × 608
pixels. Then, we annotate a small batch of patches manually to
fine-tune the trained visual detector. We fine-tune the model
by training the head detector for 10 epochs. After that, the
trained model is used to detect mounds in each patch, and
results are stored in text files to be used to extract global
features. Once visual detection is performed, we construct a
global feature vector using annotations and detection results.
The total number of the detected mounds is calculated by
summing the locally detected mounds on each patch. Then,

10

TABLE I: Detection accuracy results for the local object detector trained on six different folds.

Fold
Model1 Model2 Model3

P R AP F1 P R AP F1 P R AP F1

1 38.4% 16.4% 10.7% 23% 39.3% 19.3% 16.9% 25.9% 30% 21.4% 12.9% 25%

2 44.7% 39.6% 28.3% 42% 41.4% 40.7% 32.5% 41.1% 41.4% 40.7% 32.5% 41.1%

3 61.7% 10.9% 14.7% 18.5% 58.3% 12.1% 16% 20% 23.7% 21.8% 11.1% 0.227

4 34.7% 21.1% 14.3% 26.2% 27.4% 22.9% 14.3% 25% 37.9% 62.5% 40.9% 47.2%

5 35.1% 20.7% 16.8% 26.1% 58.9% 25.1% 24.1% 34.2% 32.4% 36.9% 28.2% 0.345

6 49.2% 29.8% 19.8% 37.1% 35.5% 40.2% 23.5% 37.7% 31.9% 47.5% 28.9% 38.2%

Average 43.96% 23.08% 17.43% 28.82% 43.47% 26.72% 21.22% 30.65% 32.88% 38.47% 25.75% 34.78%

the average mounds density per patch is calculated for both
annotations and detections. Finally, the global feature vector
is constructed by adding the planting block area, which is fed
to the trained global estimator to predict final count.

The total parameters number of our model is 62, 001, 757.
The visual object detector inference speed is equal to 45
patches per second. The total time required by our framework
to predict the final count depends on the orthomosaic size,
which vary between 10000×15000 and 20000×60000 pixels,
depending on camera settings and planting block area.

D. Ablation study

1) Local visual detector: In this section, we present an
ablation analysis on the G1 subset to examine the impact of
data augmentation and fine-tuning on detection performance.
We evaluate three different scenarios by training and testing
three versions of the object detector :

• Model 1: We do not use data augmentation so that only
annotated data are used for training the detector. For
detection, the trained model is applied directly without
fine-tuning.

• Model 2: We use data augmentation but not fine-tuning.
• Model 3: We use the complete version of our detector as

described in section III-B2, including data augmentation
and fine-tuning steps.

Our evaluation is based on a cross-validation methodology,
which performs a circular combination among all possibilities
for training and testing. Since the amount of annotated data
(6 orthomosaics) is limited compared to the entire dataset (18
orthomosaics), cross-validation is beneficial in that it allows to
efficiently exploit available annotations, while mitigating the
data split effect [72]–[74].

In each of the six iterations, we partition data as follows.
• Five (5) orthomosaics are used for training/validation.

The obtained patches are shuffled and then split into two
subsets for training (90%) and validation (10%).

• One (1) orthomosaic is not seen during training and is
used only for testing.

The cross-validation process is illustrated in algorithm 3.

Algorithm 3: K-fold cross validation
Data: K orthomosaics represented by T = {Ti},

ground-truth counts Y = {Yi}
Result: Average error over tests
for i ∈ {1, ...,K} do

Training set = {T\Ti} ;
Testing set = Ti ;
Detector = Train (Training set) ;
hi = Detect (Detector, Testing set) ;
ei = Calculate error (hi, Yi) ;

end
return 1

k

∑k
i=1(ei)

Table I shows results of the 6-fold cross-validation for the
three detector versions. We report precision (P), recall (R),
average precision (AP), and F1 scores for all experiments.
Average scores over all iterations (mainly AP and F1) show
that training the detector using augmented data enhances
recognition performance compared to the first version, where
only annotated data are used. This suggests that using only
annotated data may cause under-fitting due to the lack of train-
ing examples. Thus, the data augmentation process allowed to
improve detection performance, which resulted in increasing
AP and F1 scores by 3.8% and 1.8%, respectively. However,
the best performance over the three scenarios was obtained
by using the complete version of the visual detector, which
achieved an average detection precision of 25.75% and an
F1 score of 34.78%. This result demonstrates the importance
of data augmentation during training and fine-tuning when
applying the model to a new image.

In Figure 9, we report qualitative results of the three detec-
tors when processing the same image patch of size 498×498,
containing 24 objects, according to manual annotations. This
example shows that the final version of the detector has a better
ability to recognize objects of interest. In fact, augmenting the
training set and fine-tuning the detector allowed to increase the
detector’s ability to discriminate objects from background re-
gions. Moreover, the context information incorporated during
fine-tuning is shown to be beneficial in adapting the model to

11

(a) (b) (c)

Fig. 9: Qualitative results for the three versions of the object detection model on the same patch comprising 24 annotated
mounds. The number of detected mounds is 12 for Model 1 (a), 13 for Model 2 (b), and 24 for Model 3 (c).

TABLE II: Relative counting precision of two different versions of the system. Testing is done according to the same cross-
validation methodology described in section IV-D1. For each cross-validation iteration, testing is performed on an orthomosaic
representing a plantation block.

Orthomosaic GT
Detection-based count Globally corrected prediction

Count RP Count RP Improvement

T1 3750 1911 51% 3580 95.5% 45.5%

T2 1450 1074 74.1% 1166 80.4% 6.3%

T3 1350 836 61.9% 2004 51.6% -10.3%

T4 4750 5407 86.2% 5051 93.7% 7.5%

T5 8600 6196 72.0% 8334 96.9% 24.9%

T6 6500 6866 94.4% 6172 95% 0.6%

Average 73.2% 85.4% 12.4%

specific situations.

2) Count correction using global features: To evaluate
the contribution of the global correction module in the final
prediction, we perform another ablation analysis on the G1
dataset. This is done by comparing the counting relative
precision of the local visual detector to that of the entire
system, including both local detection and global correction
process.

Table II presents the counting results of two different ver-
sions of our framework. The first version consists of the object
detection module used for predicting detection-based count,
while the second consists of the entire framework including
both detection and correction procedures as illustrated in
Figure 5. Results are reported for the G1 subset using LOOCV
on six different planting blocks. From table II, we can see that
the global correction function improved counting precision for
five over six planting blocks, with an average improvement
of 12.4%. For example, This improvement reached 45, 5%
for planting block T1. From this experiment, we conclude
that counting-by-detection is insufficient to provide precise
counting under our application constraints and that global
prediction is essential to perform counting correction based
on global features of planting blocks.

E. Real-world application results

In real-world conditions, the process of estimating the
number of mounds on a new planting block can be summarized
as follows:

1) Dividing the input orthomosaic into patches according
to a regular grid,

2) Fine-tuning the object detector using a batch of patches,
3) Applying the fine-tuned detector and performing

counting-by-detection,
4) Extracting the global feature vector;
5) Predicting the final count using the trained regressor

(equation 3).
Note that our training dataset for the local object detector

is composed of the six annotated orthomosaics of G1, which
are only used for training. Final testing is performed on the
remaining 12 orthomosaics of G2 (from T7 to T18). Since we
have a limited training set for the regressor (global estima-
tion function), we adopt a leave-one-out cross-validation-like
strategy where the regression training set changes for each
testing iteration. That is, for the ith test on orthomosaic Ti,
the global estimation function is trained on 17 global feature
vectors, representing the entire dataset (G1 and G2), except Ti.
The main motivation for this choice is to fully take advantage
of the limited amount of data for which global feature vectors
are available.

12

TABLE III: Quantitative results of our proposed method. GT is the ground-truth corresponding to the number of plant seedlings
planted in a block. The count is the predicted number of mounds and RP is the relative counting precision. We report results
for detection-based prediction using YOLO [63] (without global correction), globally corrected prediction (detection followed
by correction), and Faster RCNN [68]. The average precision measure represents the average over all precision values, while
overall precision stands for the counting precision considering the total number of mounds in the dataset. Note that planting
blocks with a larger number of mounds have more significant contributions to the overall precision.

Orthomosaic GT
YOLO [63] Faster RCNN [68] Ours

Count RP Count RP Count RP

T7 8900 7713 86.7% 4441 50% 8318 93.5%

T8 1400 1023 73.1% 1058 76% 1734 76.1%

T9 12350 8442 68.4% 5702 46% 11773 95.3%

T10 16450 15661 95.2% 13467 82% 15226 92.6%

T11 3750 3214 85.7% 1586 42% 4158 89.1%

T12 7150 2775 38.8% 3106 43% 6022 84.2%

T13 2300 1735 75.4% 803 35% 1775 77.2%

T14 6600 1803 27.3% 2607 40% 6050 91.7%

T15 4350 2506 57.6% 132 3% 3781 86.9%

T16 6150 5829 94% 2354 38% 6019 97.9%

T17 2050 771 37.6 % 930 45% 1764 86.1%

T18 13100 8914 68% 4572 35% 14364 90.3%

Overall result 84550 60386 71.4% 58633 52.8% 80989 95.8%

Average precision 67.4% 50.7% 88.4%

It can be observed from table III that the comparison
between detection-based-counts and globally corrected predic-
tions is consistent with the ablation analysis in IV-D2. This
result confirms the importance of combining local visual de-
tection with global count estimation. From detailed results, we
can also see that the achieved counting precision is superior to
that of the method currently used by forest managers (85%) for
nine testing blocks among 12. Moreover, the precision exceeds
90% for six testing blocks, and our framework outperforms the
manual method in both average precision (88,4%) and overall
precision (95,8%).

We also present a comparison with the state-of-the-art
method Faster RCNN [68], which is a two-stage object de-
tector that uses a Region Proposal Network (RPN) to generate
proposals. It is clearly seen from table III that our pro-
posed framework achieved better results. Overall, our method
improves the performance by 24%, with a 95.8% overall
precisioncompared to 52.8% for Faster RCNN. In average
precision, which reflects accuracy per block, our method is
significantly more effective and achieves 88.4% compared to
67%, and 50% for YOLO and Faster RCNN respectively.

To further validate the importance of our correction module,
we conduct a statistical validation student test, which is a
statistical hypothesis test used for small set sizes. We claim
that the correction module improves the global count and
reduces counting error per block. Thus, we define the null
H0 and alternative H1 hypothesis.{

H0 : µdetection = µcorrection

H1 : µdetection ≤ µcorrection

To calculate the p-value, we use the RP calculated over 12

orthomosaic test data using detection and corrected count.
Our calculated p-value is equal to 0.00708 and the statistic
value is equal to −3.299. T-test result supports our claim that
the correction module improves the final count results. At an
alpha value equal to 0.05, the calculated p-value is much lower
than the alpha value, which means that the difference between
means is statistically significant and the null hypothesis is
rejected.

V. DISCUSSION

In this section, we discuss the main challenges related
to object detection and final count estimation, based on the
obtained results.

A. Local object detection challenges

The first step in our framework is to infer the orthomosaic
to the detector. From table III, we see that for T12 and
T14, the counting-by-detection precision is lower than 40%,
as the detector was unable to efficiently recognize mounds
in corresponding image patches. This can be explained by
the relatively limited amount of annotated data available for
training the detector (six blocks), compared to the testing set
(12 blocks), which may limit the generalization ability of the
detection model. In our experiments, an unseen data example
is defined as a new plantation block completely excluded from
the training set. Therefore, when testing the object detector,
it is possible that the new plantation block shows different
unseen characteristics. This may include terrain properties and
mound shapes that were not encountered by the detector during
training.

13

In order to increase the accuracy of the object detector, the
optimal data partitioning strategy would have been to include a
sample from each of the 18 blocks in the training set. However,
we finally defined a more rigorous evaluation strategy, that
is more consistent with our real-world problem and appli-
cation constraints. To maximize the generalization ability of
the model when deploying our application, we recommend
training the base detector on all available orthomosaics, or at
least including a sample from each available orthomosaic in
the training set. We also recommend continuously feeding the
system with new data as images and annotations become avail-
able, in order to continuously improve detection performance.

Note that even with the use of a larger training dataset, sev-
eral challenging situations may still significantly impact local
detection performance due to recognition perturbation factors.
These factors mainly include mound occlusion, destruction,
and image acquisition issues.

Occlusion: As illustrated in figure 10.a, this situation may
occur due to the presence of woody debris and coarse rock
fragments on the forest floor. Moreover, mounds located on
block borders may also be occluded by neighboring trees or
shadows (see figure 10.(b)).

(a) (b)

Fig. 10: Examples of occlusion situations on RGB images
captured at an altitude of 120 m. (a) Occlusion is due to the
presence of woody debris and rock fragments on the forest
floor. (b) Occlusion is due to the presence of trees and shadows
on border regions.

Mound destruction: During mechanical preparation of a
planting block, mound destruction may be caused by the tracks
of the excavator, as shown in figure 11(a). Moreover, in the
case of heavy rain events following mechanical preparation,
the created mounds may be subject to deterioration and
erosion. This is because, in intensive silviculture, planting
blocks are often along hillslopes, which favors water flow.
Figure 11(b) & (c) shows examples of regions affected by
these conditions. In order to handle the effects of hydroclimatic
conditions, we recommend performing image capture flights
as soon as mechanical preparation is complete.

Image acquisition factors: The image acquisition process
is an important step that may significantly impact image
quality, as well as the appearance of the object of interest.
This is mainly due to several perturbation factors that may
occur during flights due to weather conditions, such as camera

(a) (b) (c)

Fig. 11: Examples of aerial RGB images showing destructed
mounds. (a) Mounds destroyed mounds by the excavator
during mechanical preparation. (b) & (c) Mound destruction
due to heavy rain events.

movements due to the presence of wind and lighting variation.
These factors may result in several visual effects on the
captured images, like blurred image regions and unbalanced
colors (see figure 12). Object visibility is also related to flight
altitude, as flying at a low altitude increases the level of
detail in images. However, a good trade-off should be found
since on the other hand, flying at a high altitude allows to
simplify image acquisition and orthomosaic construction, prior
to applying the proposed framework.

(a) (b) (c)

Fig. 12: Examples of visual effects caused by image acqui-
sition conditions. (a) The image is totally blurred. Sunlight
reflection increases image brightness in (b), while in (c) the
image is relatively dark due to a lack of luminosity.

B. Global prediction performance

The performed experiments show the importance of com-
bining local object detection with a global correction func-
tion, in order to improve count estimation performance. This
demonstrates that global count estimation based on block-level
features (including detection-based count) allows for mitigat-
ing the object detection issues discussed above. However, we
observed relatively high counting errors during our final tests
for plantation blocks T8 and T13 (see table III). We can notice
that these two plantation blocks have small areas (2.37 ha
and 3.09 ha, respectively), with a small number of mounds
(1400 and 2300, respectively). This performance gap for small
area blocks can be explained by two reasons. The first is
training data imbalance with respect to the area criteria, as
small area blocks are underrepresented in the regressor training
set. Second, this can also be explained by block border effects,

14

which are generally more impactful with small blocks (see
section V-A and figure 10.b). It would be therefore important
to feed the global prediction function with additional global
observations of small blocks as soon as they become available,
in order to overcome the under-representation issue.

VI. CONCLUSION

We presented a new computer vision framework to automate
the counting process of planting microsites on a mechanically
prepared planting block. The proposed system is based on a
hybrid approach combining local patch-level detection with
global prediction at the block level. The performed experi-
ments demonstrate the effectiveness of our design in handling
several challenging situations related to environmental and
image acquisition conditions, as well as to inherent limitations
of the detection model. Indeed, while the object detection
model exploits visual information from UAV images to pre-
dict a preliminary count, the subsequent global estimation
procedure exploits complementary block-level information to
mitigate detection limitations. Furthermore, the proposed solu-
tion outperforms traditional counting methods, while offering
significant advantages in terms of fieldwork conditions and
cost optimization.

Our future work comprises two main lines of research.
At the fundamental level, we aim to incorporate both local
detection and global correction mechanisms in a single end-
to-end deep learning model to address the counting problem.
At the application level, we aim at generalizing the model to
other computer vision applications implying object counting
in crowded scenes.

REFERENCES

[1] J. Wolken, S. Landhäusser, V. Lieffers, and M. Dyck, “Differences
in initial root development and soil conditions affect establishment of
trembling aspen and balsam poplar seedlings,” Botany, vol. 88, pp. 275–
285, 2010.

[2] A. A. D. Santos, J. M. Junior, M. S. Araújo, D. R. D. Martini, E. C.
Tetila, H. L. Siqueira, C. Aoki, A. Eltner, E. Matsubara, H. Pistori,
R. Feitosa, V. Liesenberg, and W. N. Gonçalves, “Assessment of cnn-
based methods for individual tree detection on images captured by rgb
cameras attached to uavs,” Sensors (Basel, Switzerland), vol. 19, 2019.

[3] P. Chamoso, W. Raveane, V. Parra, and M. A. G. Arrieta, “Uavs applied
to the counting and monitoring of animals,” in ISAmI, 2014.

[4] S. Baena, J. Moat, O. Q. Whaley, and D. Boyd, “Identifying species
from the air: Uavs and the very high resolution challenge for plant
conservation,” PLoS ONE, vol. 12, 2017.

[5] S. F. D. Gennaro, C. Nati, R. Dainelli, L. Pastonchi, A. Berton,
P. Toscano, and A. Matese, “An automatic uav based segmentation
approach for pruning biomass estimation in irregularly spaced chestnut
orchards,” Forests, vol. 11, p. 308, 2020.

[6] J. il Shin, W. woo Seo, T. Kim, J. Park, and C. shik Woo, “Using uav
multispectral images for classification of forest burn severity—a case
study of the 2019 gangneung forest fire,” Forests, vol. 10, p. 1025, 2019.

[7] S. Velastin, J. Yin, A. Davies, M. Vicencio-Silva, R. Allsop, and A. Penn,
“Analysis of crowd movements and densities in built-up environments
using image processing,” in IEE Colloquium on Image Processing for
Transport Applications, 1993, pp. 8/1–8/6.

[8] C. Regazzoni, A. Tesei, and V. Murino, “A real-time vision system
for crowding monitoring,” Proceedings of IECON ’93 - 19th Annual
Conference of IEEE Industrial Electronics, pp. 1860–1864 vol.3, 1993.

[9] A. C. Davies, J. Yin, and S. Velastin, “Crowd monitoring using image
processing,” Electronics & Communication Engineering Journal, vol. 7,
pp. 37–47, 1995.

[10] C. Regazzoni and A. Tesei, “Distributed data fusion for real-time
crowding estimation,” Signal Process., vol. 53, pp. 47–63, 1996.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 vol.
1, 2005.

[12] P. A. Viola and M. Jones, “Robust real-time face detection,” Interna-
tional Journal of Computer Vision, vol. 57, pp. 137–154, 2004.

[13] B. Wu and R. Nevatia, “Detection and tracking of multiple, partially
occluded humans by bayesian combination of edgelet based part detec-
tors,” International Journal of Computer Vision, vol. 75, pp. 247–266,
2006.

[14] P. Sabzmeydani and G. Mori, “Detecting pedestrians by learning shapelet
features,” 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8, 2007.

[15] B. Leibe, E. Seemann, and B. Schiele, “Pedestrian detection in crowded
scenes,” 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), vol. 1, pp. 878–885 vol. 1, 2005.

[16] O. Tuzel, F. Porikli, and P. Meer, “Pedestrian detection via classification
on riemannian manifolds,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 30, pp. 1713–1727, 2008.

[17] M. Enzweiler and D. Gavrila, “Monocular pedestrian detection: Survey
and experiments,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, pp. 2179–2195, 2009.

[18] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp.
1627–1645, 2009.

[19] S.-F. Lin, J.-Y. Chen, and H.-X. Chao, “Estimation of number of people
in crowded scenes using perspective transformation,” IEEE Trans. Syst.
Man Cybern. Part A, vol. 31, pp. 645–654, 2001.

[20] T. Zhao, R. Nevatia, and B. Wu, “Segmentation and tracking of mul-
tiple humans in crowded environments,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 30, pp. 1198–1211, 2008.

[21] J. Ilao and M. Cordel, “Crowd estimation using region-specific hog with
svm,” 2018 15th International Joint Conference on Computer Science
and Software Engineering (JCSSE), pp. 1–5, 2018.

[22] B. Zhou, M. Lu, and Y. Wang, “Counting people using gradient boosted
trees,” 2016 IEEE Information Technology, Networking, Electronic and
Automation Control Conference, pp. 391–395, 2016.

[23] V. Pham, T. Kozakaya, O. Yamaguchi, and R. Okada, “Count forest:
Co-voting uncertain number of targets using random forest for crowd
density estimation,” 2015 IEEE International Conference on Computer
Vision (ICCV), pp. 3253–3261, 2015.

[24] A. B. Chan and N. Vasconcelos, “Bayesian poisson regression for crowd
counting,” 2009 IEEE 12th International Conference on Computer
Vision, pp. 545–551, 2009.

[25] D. Ryan, S. Denman, C. Fookes, and S. Sridharan, “Crowd counting us-
ing multiple local features,” 2009 Digital Image Computing: Techniques
and Applications, pp. 81–88, 2009.

[26] K. Chen, C. C. Loy, S. Gong, and T. Xiang, “Feature mining for localised
crowd counting,” in BMVC, 2012.

[27] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos, “Privacy preserving
crowd monitoring: Counting people without people models or tracking,”
2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.
1–7, 2008.

[28] K. Mikolajczyk, A. Zisserman, and C. Schmid, “Shape recognition with
edge-based features,” in BMVC, 2003.

[29] M. Tüceryan and A. K. Jain, “Texture analysis,” in Handbook of Pattern
Recognition and Computer Vision, 1993.

[30] J. Hwang and H.-S. Lee, “Adaptive image interpolation based on local
gradient features,” IEEE Signal Process. Lett., vol. 11, pp. 359–362,
2004.

[31] N. Paragios and V. Ramesh, “A mrf-based approach for real-time
subway monitoring,” Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
vol. 1, pp. I–I, 2001.

[32] A. Marana, L. F. Costa, R. Lotufo, and S. Velastin, “On the efficacy
of texture analysis for crowd monitoring,” Proceedings SIBGRAPI’98.
International Symposium on Computer Graphics, Image Processing, and
Vision (Cat. No.98EX237), pp. 354–361, 1998.

[33] H. Idrees, I. Saleemi, C. Seibert, and M. Shah, “Multi-source multi-scale
counting in extremely dense crowd images,” 2013 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2547–2554, 2013.

[34] V. Lempitsky and A. Zisserman, “Learning to count objects in images,”
in NIPS, 2010.

[35] Y. Wang and Y. Zou, “Fast visual object counting via example-based
density estimation,” 2016 IEEE International Conference on Image
Processing (ICIP), pp. 3653–3657, 2016.

15

[36] B. Xu and G. Qiu, “Crowd density estimation based on rich features
and random projection forest,” 2016 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pp. 1–8, 2016.

[37] C. Wang, H. Zhang, L. Yang, S. Liu, and X. Cao, “Deep people counting
in extremely dense crowds,” Proceedings of the 23rd ACM international
conference on Multimedia, 2015.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, pp. 84 – 90, 2012.

[39] M. Fu, P. Xu, X. Li, Q. Liu, M. Ye, and C. Zhu, “Fast crowd density
estimation with convolutional neural networks,” Eng. Appl. Artif. Intell.,
vol. 43, pp. 81–88, 2015.

[40] C. Zhang, H. Li, X. Wang, and X. Yang, “Cross-scene crowd counting
via deep convolutional neural networks,” 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 833–841, 2015.

[41] E. Walach and L. Wolf, “Learning to count with cnn boosting,” in ECCV,
2016.

[42] C. Shang, H. Ai, and B. Bai, “End-to-end crowd counting via joint
learning local and global count,” 2016 IEEE International Conference
on Image Processing (ICIP), pp. 1215–1219, 2016.

[43] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3642–3649, 2012.

[44] L. Boominathan, S. Kruthiventi, and R. V. Babu, “Crowdnet: A deep
convolutional network for dense crowd counting,” Proceedings of the
24th ACM international conference on Multimedia, 2016.

[45] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, “Single-image crowd
counting via multi-column convolutional neural network,” 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
589–597, 2016.

[46] D. Oñoro-Rubio and R. López-Sastre, “Towards perspective-free object
counting with deep learning,” in ECCV, 2016.

[47] D. B. Sam, S. Surya, and R. V. Babu, “Switching convolutional neural
network for crowd counting,” 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4031–4039, 2017.

[48] V. Ranjan, H. M. Le, and M. Hoai, “Iterative crowd counting,” ArXiv,
vol. abs/1807.09959, 2018.

[49] L. Zhang, M. Shi, and Q. Chen, “Crowd counting via scale-adaptive
convolutional neural network,” 2018 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pp. 1113–1121, 2018.

[50] X. Jiang, Z. Xiao, B. Zhang, X. Zhen, X. Cao, D. Doermann, and
L. Shao, “Crowd counting and density estimation by trellis encoder-
decoder networks,” 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6126–6135, 2019.

[51] L. Dong, H. Zhang, Y. Ji, and Y. Ding, “Crowd counting by using multi-
level density-based spatial information: A multi-scale cnn framework,”
Inf. Sci., vol. 528, pp. 79–91, 2020.

[52] Y. Hu, X. Jiang, X. Liu, B. Zhang, J. Han, X. Cao, and D. S. Doermann,
“Nas-count: Counting-by-density with neural architecture search,” in
ECCV, 2020.

[53] Y. Liu, G. Cao, H. Shi, and Y. Hu, “Lw-count: An effective lightweight
encoding-decoding crowd counting network,” IEEE Transactions on
Circuits and Systems for Video Technology, pp. 1–1, 2022.

[54] S. Aldhaheri, R. M. Alotaibi, B. A. M. Alzahrani, A. Hadi, A. Mahmood,
A. M. Alhothali, and A. Barnawi, “Macc net: Multi-task attention crowd
counting network,” Applied Intelligence, 2022.

[55] B. Sheng, C. Shen, G. Lin, J. Li, W. Yang, and C. Sun, “Crowd counting
via weighted vlad on a dense attribute feature map,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 28, pp. 1788–1797,
2018.

[56] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp.
3304–3311, 2010.

[57] N. Ilyas, A. Ahmad, and K. Kim, “Casa-crowd: A context-aware scale
aggregation cnn-based crowd counting technique,” IEEE Access, vol. 7,
pp. 182 050–182 059, 2019.

[58] Y. Tian, Y. Lei, J. Zhang, and J. Z. Wang, “Padnet: Pan-density crowd
counting,” IEEE Transactions on Image Processing, vol. 29, pp. 2714–
2727, 2020.

[59] Y. Lei, Y. Liu, P. Zhang, and L. Liu, “Towards using count-level weak
supervision for crowd counting,” Pattern Recognit., vol. 109, p. 107616,
2021.

[60] P. T. Do, “Attention in crowd counting using the transformer and density
map to improve counting result,” in 2021 8th NAFOSTED Conference
on Information and Computer Science (NICS), 2021, pp. 65–70.

[61] W. Liu, J. Zhou, B. Wang, M. Costa, S. M. Kaeppler, and Z. Zhang, “In-
tegratenet: A deep learning network for maize stand counting from uav
imagery by integrating density and local count maps,” IEEE Geoscience
and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.

[62] Y.-K. Lin, C.-F. Wang, C.-Y. Chang, and H. Sun, “An efficient frame-
work for counting pedestrians crossing a line using low-cost devices:
the benefits of distilling the knowledge in a neural network,” Multim.
Tools Appl., vol. 80, pp. 4037–4051, 2021.

[63] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
ArXiv, vol. abs/1804.02767, 2018.

[64] W. Bouachir, K. E. Ihou, H. Gueziri, N. Bouguila, and N. Bélanger,
“Computer vision system for automatic counting of planting microsites
using uav imagery,” IEEE Access, vol. 7, pp. 82 491–82 500, 2019.

[65] G. Hamed, M. A. E.-R. Marey, S. A. El-Sayed, and M. F. Tolba,
“Yolo based breast masses detection and classification in full-field digital
mammograms,” Computer methods and programs in biomedicine, p.
105823, 2021.

[66] W.-Y. Hsu and W.-Y. Lin, “Ratio-and-scale-aware yolo for pedestrian
detection,” IEEE Transactions on Image Processing, vol. 30, pp. 934–
947, 2021.

[67] T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV, 2014.

[68] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, pp. 1137–1149,
2015.

[69] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
936–944.

[70] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, pp. 211–252, 2015.

[71] H. Idrees, M. Tayyab, K. Athrey, D. Zhang, S. Al-Maadeed, N. Rajpoot,
and M. Shah, “Composition loss for counting, density map estimation
and localization in dense crowds,” ArXiv, vol. abs/1808.01050, 2018.

[72] M. Stone, “Cross-validatory choice and assessment of statistical predic-
tions,” Journal of the royal statistical society series b-methodological,
vol. 36, pp. 111–133, 1974.

[73] T. Fushiki, “Estimation of prediction error by using k-fold cross-
validation,” Statistics and Computing, vol. 21, pp. 137–146, 2011.

[74] A. Kopper, R. Karkare, R. Paffenroth, and D. Apelian, “Model selection
and evaluation for machine learning: Deep learning in materials process-
ing,” Integrating Materials and Manufacturing Innovation, vol. 9, pp.
287 – 300, 2020.

Ahmed Zgaren is a Ph.D. student in the Depart-
ment of Information Systems and Engineering at
Concordia University (Montréal, Canada). He holds
the Master degree in computer science from the
National Engineering School of Tunis (Tunisia),
and the engineer degree from the Military College
of Tunisia. His research interests include computer
vision, object detection/tracking, UAV imaging, and
speech analysis.

Wassim Bouachir is currently a professor of com-
puter science at the University of Québec (TÉLUQ).
He holds a Ph.D. degree in computer engineering
from Polytechnique Montréal and a M.Sc. in com-
puter science from the University of Moncton. His
research interests include fundamental problems in
computer vision, signal processing, and machine
learning. His research activities also aim to develop
AI-based systems for several application areas, such
as security, physical and mental health, and environ-
ment applications.

16

Nizar Bouguila (Senior member IEEE) received the
engineer degree from the University of Tunis, Tunis,
Tunisia, in 2000, and the M.Sc. and Ph.D. degrees in
computer science from Sherbrooke University, Sher-
brooke, QC, Canada, in 2002 and 2006, respectively.
He is currently a Professor with the Concordia In-
stitute for Information Systems Engineering (CIISE)
at Concordia University, Montreal, Quebec, Canada.
His research interests include image processing, ma-
chine learning, data mining,, computer vision, and
pattern recognition. Prof. Bouguila received the best

Ph.D Thesis Award in Engineering and Natural Sciences from Sherbrooke
University in 2007. He was awarded the prestigious Prix d’excellence de
l’association des doyens des etudes superieures au Quebec (best Ph.D Thesis
Award in Engineering and Natural Sciences in Quebec), and was a runner-up
for the prestigious NSERC doctoral prize. He was the holder of a Concordia
University research Chair Tier 2 from 2014 to 2019 and was named Concordia
University research Fellow in 2020. He is the author or co-author of more
than 400 publications in several prestigious journals and conferences. He is
a regular reviewer for many international journals and serving as associate
editor for several journals such as Pattern Recognition journal. Dr. Bouguila
is a licensed Professional Engineer registered in Ontario, and a Senior Member
of the IEEE.

	Introduction
	Related works
	Crowd counting using traditional approaches
	Detection-based methods
	Regression methods
	Density estimation-based methods

	Deep learning for Crowd counting
	Basic CNN approaches
	Scale-aware CNN approaches
	Context-aware CNN approaches

	Hybrid methods

	Proposed method
	Motivations and overview
	Local visual detection
	CNN architecture
	Training the detector
	Data augmentation

	Global count estimation
	Processing a new orthomosaic

	Experiments and results
	Dataset construction
	Evaluation metrics
	Implementation
	Ablation study
	Local visual detector
	Count correction using global features

	Real-world application results

	Discussion
	Local object detection challenges
	Global prediction performance

	Conclusion
	References
	Biographies
	Ahmed Zgaren
	Wassim Bouachir
	Nizar Bouguila

