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Abstract: Accurate and efficient orchard tree inventories are essential for acquiring up-to-date
information, which is necessary for effective treatments and crop insurance purposes. Surveying
orchard trees, including tasks such as counting, locating, and assessing health status, plays a vital role
in predicting production volumes and facilitating orchard management. However, traditional manual
inventories are known to be labor-intensive, expensive, and prone to errors. Motivated by recent
advancements in UAV imagery and computer vision methods, we propose a UAV-based computer
vision framework for individual tree detection and health assessment. Our proposed approach
follows a two-stage process. Firstly, we propose a tree detection model by employing a hard negative
mining strategy using RGB UAV images. Subsequently, we address the health classification problem
by leveraging multi-band imagery-derived vegetation indices. The proposed framework achieves an
F1-score of 86.24% for tree detection and an overall accuracy of 97.52% for tree health assessment.
Our study demonstrates the robustness of the proposed framework in accurately assessing orchard
tree health from UAV images. Moreover, the proposed approach holds potential for application in
various other plantation settings, enabling plant detection and health assessment using UAV imagery.

Keywords: unmanned aerial vehicle (UAV); DeepForest; YOLO; hard negative mining; vegetation
indices (VIs); random forest

1. Introduction

Tree diseases can have a significant impact on orchard quality and productivity, which
is a major concern for the agricultural industry. Unhealthy or stressed orchard trees are
more susceptible to pests, diseases, and environmental stressors, which can reduce the
yield and quality of fruit and lead to financial losses for growers. Therefore, developing
methods for surveying and monitoring tree health and production quality is essential for
orchard management. This can help growers make informed decisions about practices
such as irrigation, fertilization, and pest control, optimize orchard yield and quality, reduce
input usage, and improve the long-term sustainability of orchard production systems.

Traditional methods of monitoring orchard tree health, such as manual inspection
and visual examination, rely on human expertise to determine quantitative orchard tree
parameters. These methods are labor-intensive, time-consuming, costly, and subject to
errors. In recent years, remote sensing platforms such as satellites, airplanes, and unmanned
aerial vehicles (UAVs) [1–4] have provided new tools that offer an alternative to traditional
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methods. Deep neural networks (DNNs) [5] have also emerged as a powerful tool in the
field of machine learning. The high spatial resolution provided by UAV images combined
with computer vision algorithms have made tremendous advances in several domains such
as forestry [6], agriculture [7], geology [8], surveillance [9], and traffic monitoring [10].

Motivated by the latest advances in machine-learning-based computer vision systems,
this paper proposes a new framework to automatically detect orchard apple trees and assess
their health from UAV multi-band imagery. The proposed framework adopts a two-stage
approach. First, the tree localization problem is addressed using visual object detection.
The second stage deals with tree health assessment through image patch classification.

1.1. Tree Detection

Over the years, both classical machine learning and deep learning methods have been
extensively explored to address the tree detection problem.

Classical object detection methods often involve the utilization of handcrafted features
and machine learning algorithms. Local binary pattern (LBP) [11], scale-invariant feature
transform (SIFT) [12,13], and histogram of oriented gradients (HOG) [14,15] are the most
frequently used handcrafted features in object detection. For example, the work in [16]
presented a traditional method for walnut, mango, orange, and apple tree detection. It
adopts the template matching image processing approach to very high resolution (VHR)
Google Earth images acquired over a variety of orchard trees. The template is based on
a geometrical optical model created from a series of parameters, such as illumination
angles, maximum and ambient radiance, and tree size specifications. In [17,18], the authors
detected palm trees on UAV RGB images by extracting a set of key points using the scale-
invariant feature transform (SIFT). The key points are then analyzed with an extreme
learning machine (ELM) classifier, which is a priori trained on a set of palm and no-palm
tree keypoints. Similarly, ref. [19] employed a support vector machine (SVM) for image
classification into vegetation and non-vegetation patches. Subsequently, the HOG feature
extractor was applied on vegetation patches for feature extraction. These extracted features
were then used to train a SVM to recognize palm tree images from background regions.
The study in [20] proposed an object detection method using shape features for detecting
and counting palm trees. The authors employed circular autocorrelation of the polar shape
(CAPS) matrix representation as the shape feature and the linear SVM to standardize and
reduce the dimensions of the feature. Finally, the study uses a local maximum detection
algorithm based on the spatial distribution of standardized features to detect palm trees.
The work in [7] presented a method to detect apple trees using multispectral UAV images.
The authors identified trees using thresholding techniques applied on the Normalized
Difference Vegetation Index (NDVI) and entropy images, as trees are chlorophyllous bodies
that have high NDVI values and are heterogeneous with high entropy. The work in [21]
proposed an automated approach to detect and count individual palm trees from UAV
images. It is based on two processing steps: first, the authors employed the NDVI to
perform the classification of image features as trees and non-trees. Then, palm trees were
identified based on texture analysis using the Circular Hough Transform (CHT) and the
morphological operators. In [22], the authors applied k-means to perform color-based
clustering followed by a thresholding technique to segment out the green portion of
the image. Then, trees were identified by applying an entropy filter and morphological
operations on the segmented image.

On the other hand, numerous studies have investigated the use of deep-learning
algorithms to detect trees in UAV RGB imagery. For instance, ref. [23] detected citrus
and other crop trees from UAV images using a CNN algorithm applied to four spectral
bands (i.e., green, red, near infrared and red edge). The initial detection was followed
by a classification refinement procedure using superpixels derived from a Simple Linear
Iterative Clustering (SLIC) algorithm and a thresholding technique to address the confusion
between trees and weeds and deal with the difficulty in distinguishing small trees from
large trees. In [24], the authors adopted a sliding window approach for oil palm tree
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detection. A sliding window was integrated with a pre-trained AlexNet classifier to scan
the input image and identify regions containing trees. The work in [25] exploited the use of
state-of-the-art CNNs, including YOLO-v5 with its four sub-versions, YOLO-v3, YOLO-v4,
and SSD300 in detecting date palm trees. Similarly, in [26], the authors explored the use
of the YOLO-v5 with its subversions and DeepForest for the detection of orchard trees.
In [27], three state-of-the-art object detection methods were evaluated for the detection of
law-protected tree species: Faster Region-based Convolutional Neural Network (Faster
R-CNN) [28], YOLOv3 [29], and RetinaNet [30]. Similarly, the work in [31] explored the use
of Faster R-CNN, Single Shot Multi-Box Detector (SSD) [32], and R-FCN [33] architectures
to detect seedlings.

Most of these works explored fine-tuning state-of-the-art object detectors for tree detec-
tion by taking an object detection model that is pre-trained on Benchmark datasets [34–36] and
adapting it specifically for the task of detecting trees. However, applying these methods
to UAV images has particular challenges [37] compared to conventional object detection
tasks. For example, UAV images often have a large field of view with complex background
regions, which can significantly disrupt detection accuracy. Furthermore, the objects of
interest are often not uniformly distributed with respect to the background regions, cre-
ating an imbalance between positive and negative examples. Data imbalance can also
be observed between easy and hard negative examples, since with UAV images, a large
part of the background has regular patterns and can be easily analyzed for detection. We
believe that applying deep learning detection algorithms directly in these situations is not
an optimal choice [38], as they mostly assign the same weight to all training examples,
so that during the training step easy examples may dominate the total loss and reduce
training efficiency.

To mitigate this issue, hard negative mining (HNM) can be adopted for object detection.
Various HNM approaches [37,39,40] involve iteratively bootstrapping a small set of negative
examples, by selecting those that trigger a false positive alarm in the detector. For example,
ref. [41] presented a training process of a state-of-the-art face detector by exploiting the idea
of hard negative mining and iteratively updating the Faster R-CNN-based face detector
with hard negatives harvested from a large set of background examples. Their method
outperforms state-of-the-art detectors on the Face Detection Data Set and Benchmark
(FDDB). Similarly, an improved version of faster R-CNN is proposed in [42], by using hard
negative sample mining for object detection using PASCAL VOC dataset [36]. Likewise,
ref. [43] used the bootstrapping of hard negatives to improve the performance of face
detection on WIDER FACE dataset [44]. The authors pre-trained Faster R-CNN to mine
hard negatives, before retraining the model. The work of [45] presented a cascaded Boosted
Forest for pedestrian detection, which performs effective hard negative mining and sample
reweighting, to classify the region proposals generated by RPN. The A-Fast-RCNN method,
described in [46], adopts a different approach for generating hard negative samples, by
using occlusion and spatial deformations through an adversarial process. The authors
conducted their experiments on PASCAL VOC and MS-COCO datasets. Another approach
to apply HNM using Single Shot multi-box Detector (SSD) is proposed in [47], where the
authors use medium priors, anchor boxes with 20% to 50% overlap with ground truth
boxes, to enhance object detector performance on the PASCAL VOC dataset. The proposed
framework updates the loss function so that it considers the anchor boxes with partial and
marginal overlap.

In our work, we propose a HNM approach for the tree detection stage, where the
mined hard negative samples are included in the initial tree dataset to be considered during
training. Then, we retrain the object detector using the true positive and false positive
examples to enhance the discrimination power of the model. To the best of our knowledge,
our work is the first to use a HNM approach for tree detection.
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1.2. Tree Health Classification

Vegetation indices (VIs) have been introduced as indicators of vegetation status, as
they provide information on the physiological and biochemical status of trees. These math-
ematical combinations of reflectance measurements are sensitive to different vegetation
parameters, such as chlorophyll content, leaf area, and water stress. It has been shown
through many studies [48–50] that by analyzing these indices, we can gain insights into the
health and vitality of trees.

For example, the work in [51] presented a framework for orchard tree segmentation
and health assessment. The proposed approach is applied to five different orchard tree
species, namely plum, apricot, walnut, olive, and almond. Two vegetation indices, includ-
ing visible atmospherically resistant index (VARI) and green leaf index (GLI) were used
with the standard score (which is also known as z-score) for tree health assessment. The
study in [52] proposed a process workflow for mapping and monitoring olive orchards
at tree scale detail. Five VIs were investigated, including normalized difference vege-
tation index (NDVI), modified soil adjusted vegetation index 2 (MSAVI 2), normalized
difference red edge Vegetation index (NDRE), modified chlorophyll absorption ratio index
improved (MCARI2), and NDVI2. The authors applied statistical analyses to all calculated
VIs. Similarly, ref. [53] presented an approach for Huanglongbing (HLB) disease detection
on citrus trees. First, the trees were segmented using thresholding techniques applied on
the normalized difference vegetation index (NDVI). Then, for each segmented tree, a total
number of thirteen spectral features was computed, which include six spectral bands and
seven vegetation indices. The indices studied were: NDVI, green normalized difference
vegetation index (GNDVI), soil-adjusted vegetation index (SAVI), near infrared (NIR)—
red(R), R/NIR, green (G)/R and NIR/R. A SVM classifier is then applied to distinguish
between healthy and HLB-infected trees. The work in [54] presented a method for the
identification of stress in olive trees. An SVM model was applied to VIs to classify each tree
pixel into two categories: healthy and stressed. The work in [48] presented a method to
monitor grapevine diseases affecting European vineyards. The authors explored the use of
different features including spectral bands, vegetation indices and biophysical parameters.
They conducted a statistical analysis for the selection of the best discriminating variables
to separate between symptomatic vines including FD and GTD from asymptomatic vines
(Case 1) and FD vines from GTD ones (Case 2).

In our work, we conducted a comprehensive investigation on the assessment of apple
tree health using twelve different vegetation indices derived from muli-band UAV imagery.
We also explored a set of machine learning classifiers to perform health classification based
on vegetation indices.

The main contributions of this paper are summarized as follows:

• We propose a novel framework for automatic apple orchard tree detection and health
assessment from UAV images. The proposed framework could be generalized for a
wide range of other UAV applications that involve a detection/classification process.

• We adopt a hard negative mining approach for tree detection to improve the perfor-
mance of the detection model.

• We formulate the tree health assessment problem as a supervised classification task
based on vegetation indices calculated from multi-band images.

• We present an extensive experimental analysis covering various aspects of the pro-
posed framework. Our analysis includes an ablation study demonstrating the impor-
tance of the HNM technique for tree detection, an exploration of several classification
methods for health assessment, and a feature importance analysis within the context
of health classification.

The rest of the paper is structured as follows. Section 2 provides a detailed description
of the proposed framework. The experimental results are presented in Section 3 and
discussed in Section 4, where we also suggest directions for future work. Finally, Section 5
concludes the paper.
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2. Materials and Methods
2.1. Study Area

Images were captured during the summer of 2018 over two apple orchards in Souris,
Prince Edward Island, Canada (Lat. 46.44633N, Long. 62.08151W), as shown in Figure 1.
The surveyed orchard consists of 18 distinct types of apple trees, such as Cortland, Gala,
Sunrise, Virginia Gold, Honey Gold, a mixed variety, Jona Gold, Russet, and Spygold.
These trees vary in age, with some being young while others are older. The UAV images
were taken using a MicaSense RedEdge3 multispectral camera (MicaSense Inc., Seattle, WA,
USA). It has five sensors, including one sensor for each of the following spectral bands: B1
(blue) centered at 475 nm; B2 (green) centered at 560 nm; B3 (red) centered at 668 nm; B4
(RE) centered at 717 nm, and B5 (NIR) centered at 840 nm. The camera was mounted under
a DJI Matrice 100 light Unmanned Aerial Vehicle (UAV). Its weight is slightly less than
2.0 kg. Both the camera and the UAV were connected to mission planner software from
MicaSense to fly at 100 m above the ground with 70% overlap between adjacent images.
Wind speed during image acquisition was less than 20 km/h and the weather condition
was sunny-cloudy. The captured images were orthorectified and mosaicked together using
Pix4D to cover the whole study area.

Figure 1. Location of the study area.

2.2. Dataset Construction

In order to prepare the data for object detection, the orthomosaic was subdivided into
515 × 512-pixel patches using a regular grid. Then, we performed manual annotation for
patches, which consists of localizing our objects of interest (apple trees) manually through
bounding boxes using the open-source VGG Image Annotator (VIA) tool [55]. We used the
field observations performed by specialists to validate our data annotation. These patches
were split into three subsets: training, validation, and testing, using 3-fold cross-validation
to ensure an impartial evaluation of object detection models.

To prepare the dataset for tree health classification, we utilized field inventory data.
This involved gathering tree localization information through GPS, measuring tree param-
eters using specialized instruments, and recording all observations in a field notebook.
By mapping these findings to the acquired images, two different tree health status were
assigned: healthy and unhealthy to each individual tree. Finally, we performed data split-
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ting using stratified cross-validation to divide the dataset into training, validation, and
testing subsets.

Figure 2 illustrates two instances of trees captured at ground level: one depicting a
healthy tree and the other representing an unhealthy tree. Stressed apple trees exhibit a
reduction in chlorophyll content, red or brown discoloration on apple leaves, and infected
flowers turning black, produced by a loss of photosynthetic metabolism due to bacterial
disease or fungus [56,57].

Figure 2. Ground pictures of trees according to their health status. (a) Healthy tree. (b) Unhealthy
tree. The unhealthy tree reveals stress symptoms that can be observed through its yellow and brown
leaves, indicated by blue circles.

Our final dataset contained 2828 trees in total, where 2240 are healthy and 588 are
unhealthy. Using stratified 10-fold cross-validation, the tree images were divided into
training, validation, and testing sets, ensuring that the ratio of healthy to stressed trees
remains consistent across subsets.

2.3. Proposed Framework

The objective of this research is to propose an automated framework for assessing
tree health using UAV images. The proposed framework, as depicted in Figure 3, em-
ploys a two-stage approach to sequentially address two tasks: tree detection and tree
health classification.

In the first stage, the input orthomosaic is subdivided into multiple patches of 512 by
512 pixels using a regular grid to fit the framework input. Then, each patch is subjected
to a tree detection procedure, which aims to identify and locate trees within that patch.
This is accomplished by outlining the detected trees using bounding boxes. Once the trees
are identified through the tree detection module, the corresponding boxes containing the
detected trees are extracted and cropped. These cropped boxes are then subjected to tree
classification to determine their health status.

Due to potentially distracting complex backgrounds, tree recognition is a challenging
task. As shown in Figure 4, some background objects (red rectangles) have a similar color,
shape, and texture as the target tree objects (blue rectangles).
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Figure 3. Overview of the proposed framework. In the health tree map, green rectangles correspond
to healthy trees and red boxes correspond to stressed trees. The images are displayed in false color
(near-infrared (NIR), red edge (RE), red (R)).

Figure 4. Detection results of a baseline object detector without the use of hard negative mining. Red
rectangles are false detections (FP) and blue rectangles are correct detections (TP).

For tree health assessment, we investigated the use of vegetation ondices as it has been
shown that these spectral features are of great importance to identify the tree health status.

2.3.1. Tree Detection Stage

The proposed method for tree detection, depicted in Figure 5, starts by training a
baseline object detector on UAV RGB images manually annotated for tree detection. The
performance of the baseline model is then assessed to identify false detections, correspond-
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ing to objects incorrectly detected as trees. In the object detection task, a detection is
considered as false if its overlap with the ground truth object is lower than an overlap
threshold. In our work, we select the samples that have no overlap with the target object
and consider them as the hard negative samples. These hard negative examples are then
used to create a new class, which is added to the training data. Afterward, we perform
fine-tuning of the baseline tree detector using the updated training dataset that contains
the two classes. Using false positive detections with no overlap with target objects as a
new class is motivated by the fact that these samples represent a source of disturbance in
the training data, which can lead to inaccurate detection. By doing this, the model can
learn to distinguish between true positive (trees) and false positive (non-trees) examples.
To address the imbalance problem between the target class and the hard negative class,
we use the focal loss [30] as the objective function during fine-tuning of the object detector.
This method helps to improve the accuracy of the tree detector by reducing the impact of
the noise caused by hard negative samples in the training data.

In our work, we explored two state-of-the-art baseline models for object detection:
YOLO [58] using its COCO pre-trained model and DeepForest prebuilt model [59] trained
on The National Ecological Observatory Network (NEON [60]) crowns data set. The two
baseline architectures are explained further in the Appendix A. The choice of YOLO-v5 and
DeepForest as baseline models is motivated by their impressive performance, popularity,
and suitability for the task. These models have achieved state-of-the-art accuracy and
efficiency in object detection, making them strong candidates for comparison. Note that we
finally adopted DeepForest as a baseline detection model in our framework. This choice is
based on a performance analysis of the two architectures, as discussed further.

Figure 5. Tree detection stage using a hard negative mining strategy.

2.3.2. Tree Health Assessment

Figure 6 summarizes the proposed method for tree health mapping. It follows a
machine learning pipeline. Each detected tree image from the first stage is extracted and
cropped by selecting pixels within a rectangular area around the tree center using a 32-pixel
box size.

First, we compute vegetation indices from the five-band raw reflectance tree images.
Among the large number of vegetation indices that are typically used as indicators of
vegetation status [61], there is a subset of VIs that are commonly applied for health assess-
ment [62–64]. Because of their high sensitivity to changes in moisture content, pigment
indices, and vegetation health, red, green, blue, red edge, and near-infrared bands are
frequently used to evaluate the status of vegetation [65]. Using these bands, a total of
12 vegetation indices (Table 1) were calculated based on their ability to reveal stress. The
difference vegetation index (DVI) and the normalized difference vegetation index (NDVI)
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were estimated based on the evidence of correlation with tree stress [53,66]. The green
normalized difference vegetation index (GNDVI) and normalized difference red-edge
(NDRE) were also estimated, as both have demonstrated high sensitivity to variations in
chlorophyll concentrations [65,67,68]. As an ideal vegetation index should be most sensitive
to vegetation dynamics and not sensitive to changes in soil background or variable illumi-
nation or atmospheric effects, The intensity-normalization method [69] was introduced to
minimize errors due to these changes. The normalized Green (NG), normalized Red (NR),
and normalized NIR (NNIR) were calculated using this method and included with features.

Figure 6. Tree health assessment using a ML classifier based on a selected set of vegetation indices.
The feature vector is composed of the mean of each vegetation index map generated from the tree
image patch.

Table 1. Vegetation indices derived from UAV band reflectance.

Vegetation Index Equation Reference

Difference Vegetation Index DVI = Near-infrared (NIR)-Red [70]

Generalized Difference Vegetation Index GDVI = NIR − Green [71]

Green Normalized Difference
Vegetation Index GNDVI = (NIR − Green)/(NIR + Green) [72]

Green-Red Vegetation Index GRVI = NIR/Green [71]

Normalized Difference Aquatic
Vegetation Index NDAVI = (NIR − Blue)/(NIR + Blue) [73]

Normalized Difference Vegetation Index NDVI = (NIR − Red)/(NIR + Red) [70]

Normalized Difference Red-Edge NDRE = (NIR −
RedEdge)/(NIR + RedEdge) [74]

Normalized Green NG = Green/(NIR + Red + Green) [69]

Normalized Red NR = Red/(NIR + Red + Green) [69]

Normalized NIR NNIR = NIR/(NIR + Red + Green) [69]
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Table 1. Cont.

Vegetation Index Equation Reference

Red simple ratio Vegetation Index RVI = NIR/Red [75]

Water Adjusted Vegetation Index WAVI = (1.5*(NIR − Blue))/((NIR +
Blue) + 0.5) [73]

Each detected tree image is represented by a feature vector that contains the average
value of each vegetation index map. This feature vector comprises 12 values, where each
value represents the average of a specific vegetation index map. To address class unbalance,
we applied the synthetic minority oversampling technique (SMOTE) to oversample the
examples in the minority class.

Finally, we applied a set of classifiers to perform the classification of the health status of
apple trees. These classifiers were chosen based on their suitability for handling multivariate
data and their recognized performance in similar studies. In our work, we explored the use of
support vector machines (SVM) [76], decision tree [77], random forests (RF) [78], k-nearest
neighbors (KNN) [79], and light gradient boosting machine (LightGBM) [80], which are
explained further in Appendix B.

2.4. Implementation

All experiments were conducted on a PC with Intel Core i7-7700 CPU, NVIDIA
GeForce GTX1080 GPU, and 64 GB of RAM. The operating system used by the PC was
Windows 10. For the tree detection stage, our approach involved using two benchmark
models. We applied transfer learning to the YOLO model (with 300 epochs and a batch
size of 16) and fine-tuned the DeepForest model (with 100 epochs and a batch size of
16). After mining hard negatives and updating our dataset, we further fine-tuned the
detection model using the updated dataset. We experimented with freezing the entire
backbone and varying numbers of layers. YOLO model (with 4 frozen backbone layers)
yielded the best results. In the case of the DeepForest model, we performed a full retraining
process using the updated dataset. For the tree health classification, we explored the use
of various supervised classifiers. To handle the issue of class imbalance, we employed the
SMOTE technique. A grid search strategy was used to identify the best parameters for each
classifier. With respect to our chosen model, Random Forest, we selected the Gini index as
the splitting criterion.

2.5. Evaluation Metrics

To evaluate the performance of our framework for tree detection, we use the follow-
ing metrics.

• Precision Pd (Equation (1)) is the percentage of correct detections among all the de-
tected trees.

Pd =
TPd

TPd + FPd
(1)

• Recall Rd (Equation (2)) is the percentage of correctly detected trees over the total
number of trees in the ground truth.

Rd =
TPd

TPd + FNd
(2)

• F1-scored (Equation (3)) is the harmonic average of precision and recall.

F1-scored = 2 ∗ Pd ∗ Rd
Pd + Rd

(3)
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In Equations (1)–(3), the subscript d denotes detection, TPd is the number of true
positives (i.e., correctly detected trees), FPd is the number of false positives (i.e., regions
incorrectly detected as trees), and FNd denotes the number of false negatives (i.e., the
number of missed trees). On a test image, a detection is considered as correct if the overlap
between the detected tree and the tree in the ground truth was greater than 50%. The
overlap between the detection and the ground truth is computed using the Intersection
Over Union (IOU) metric (Equation (4)).

IOU =
Area(B1 ∩ B2)

Area(B1 ∪ B2)
, (4)

where B1 is the ground truth bounding box and B2 is the predicted bounding box.

To evaluate the performance of our framework for tree health classification, we use
the following metrics.

• Precision Pc (Equation (5)) is defined as the ratio of correct classifications for a given
class to the total number of classifications made for that class.

Pc =
TPc

TPc + FPc
(5)

• Recall Rc (Equation (6)) is defined as the ratio of correct classifications for a given class
to the total number of instances that actually belong to that class.

Rc =
TPc

TPc + FNc
(6)

• F1-scorec is the harmonic average of Pc and Rc of a given class.
• Accuracy (Equation (7)) is defined as the ratio of the correct classifications to the total

number of tree instances classified.

Accuracy =
Number of correct classifications
Total number of trees classified

(7)

In Equations (5)–(7), the subscript c denotes classification, TPc is the number of cor-
rectly classified instances of a given class, FPc is the number of instances incorrectly classi-
fied as belonging to a given class, and FNc is the number of instances incorrectly classified
as not belonging to a given class.

3. Results
3.1. Tree Detection

Table 2 shows the detailed and overall cross-validation results of the proposed tree
detection approach using a hard negative mining approach for each baseline model. We
can notice that the proposed detection method using the two baselines is stable across all
folds. This demonstrates the robustness of our model, which is able to perform well and
consistently on different partitions. We can also see that the DeepForest model is slightly
better than YOLO, achieving a higher F1-score average of 86.24%.

DeepForest’s superior performance could be explained by the fact that it is specifically
designed for tree detection in aerial imagery. It offers several kernel-specific advantages
over YOLO for tree detection. DeepForest is trained on a large dataset that includes UAV
images of different tree species, ages, and environmental conditions. This specialized train-
ing allows it to leverage domain-specific knowledge and detect trees with high accuracy
and specificity, even in challenging scenarios such as partial occlusions or low contrast with
the background.
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Table 2. Detailed and overall cross-validation results of the tree detection stage using hard negative
mining approach in terms of precision, recall, and F1-score. Values in bold font correspond to the
best-achieved results.

Baseline 1: DeepForest Baseline 2: YOLO

Fold Pd (%) Rd (%) F1-Scored
(%) Pd (%) Rd (%) F1-Scored

(%)

Fold 1 82.25 87.24 84.67 83.89 87.27 85.15

Fold 2 87.57 88.06 87.82 79.12 92.35 84.91

Fold 3 87.87 84.73 86.27 83.09 87.45 84.38

Average 85.85 86.67 86.24 82.01 88.99 84.81

We conducted an ablation study to evaluate the importance of mining hard examples
for tree detection. We reported the results of training baseline object detectors without hard
negative samples by comparison to our HNM-based approach. Table 3 reports the overall
3-fold cross-validation results using two baseline models: DeepForest and YOLO-v5 [81].
We train YOLO-v5 using the COCO pre-trained model and DeepForest using its prebuilt
model. The reported results show that both YOLO and DeepForest benefited from hard
negative mining.

Table 3. Ablation study result of the detection step: overall 3-fold cross-validation results of two
baseline models applied with and without HNM. Values in bold font correspond to the best results.

Baseline Model Pd (%) Rd (%) F1-Scored (%)

Without HNM

Baseline 1: DeepForest 84.82 86.18 85.46
Baseline 2: YOLO 79.40 88.05 82.64

With HNM

Baseline 1: DeepForest 85.85 86.67 86.24
Baseline 2: YOLO 82.01 88.99 84.81

YOLO fine-tuned with the mined hard negatives achieved an F1-score of 84.81%,
outperforming the YOLO baseline by 2.17%, which suggests that the detector learns to
eliminate a number of false detections. Using the DeepForest model, the inclusion of hard
negatives in training improves the performance compared to the baseline, with an improve-
ment of 0.78% based on the F1-score. Overall, our results demonstrate the importance of
HNM in tree detection to improve the detection ability in both baseline models.

3.2. Health Classification

The tree health assessment stage is formulated as a patch image classification problem.
We applied different classifiers including SVM, decision tree, and Random Forest using
twelve spectral features computed from five-band imagery (Red, green, blue, near-infrared,
and red edge). Table 4 presents the performance of each classifier for each class in terms of
precision, recall, F1-score, and overall accuracy.

We can notice that all the explored classifiers performed well in the two classes.
Specifically, they achieved higher results for the healthy class. Based on the overall accuracy,
RandomForest [78] is the best classifier, achieving 97.52%. Random forests classifier adopts
an ensemble approach by combining multiple decision trees to improve the accuracy and
robustness of predictions. It randomly selects subsets of features and samples from the
dataset to create a set of decision trees. Each tree independently makes predictions based
on the selected features. The final prediction is obtained by combining the predictions of
all the trees in the forest.
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Table 4. Overall cross-validation results of different ML classifiers for tree health classification using
vegetation indices in terms of precision, recall, F1-score, and overall accuracy. Values in bold font
correspond to the best-achieved accuracy.

Health Status Pc (%) Rc (%) F1-Scorec (%) Accuracy (%)

Random Forest Classifier (RF)

Healthy 98.8 98.8 98.8 97.52Unhealthy 95.5 95.5 95.5

Light Gradient Boosting Machine (LightGBM)

Healthy 99 98.8 98.9 97.47Unhealthy 95.6 96.1 95.8

K-nearest neighbors (KNN)

Healthy 98.6 98.1 98.4 97.07Unhealthy 92.9 95 93.9

Support Vector Machine (SVM)

Healthy 99.4 95.8 97.6 96.31Unhealthy 86.2 97.8 91.6

Decision Tree Classifier (DT)

Healthy 98.4 97.9 98.1 95.91Unhealthy 92.3 93.9 93.1

These results show the effectiveness of random forest in accurately classifying tree
health status based on the selected vegetation indices.

In Table 5, we present the feature importance ranking generated by the Random Forest
classifier. It allows us to assess the contribution of each feature to the overall accuracy of the
model. The feature importance is determined using a Gini importance metric [82], which
measures the frequency with which a particular feature is utilized for data splitting across
all trees in the forest. This metric is weighted by the number of samples in each node.

Table 5. Feature importance using Random Forest.

Ranking Feature Contribution

1 NR 34%
2 NNIR 25%
3 RVI 16%
4 NDAVI 15%
5 DVI 10%

We can conclude that the Normalized Red (NR) and Normalized Near-Infrared (NNIR)
features are the most important features used by RandomForest to distinguish between
healthy and stressed trees.

The Normalized Red (NR) index measures the reflectance of red light in vegetation. It
is often used to estimate the amount of chlorophyll in plant leaves, which is an indicator
of plant health. Chlorophyll is responsible for photosynthesis, and healthy trees typically
have higher chlorophyll content than unhealthy trees. Therefore, the contribution of NR
suggests that chlorophyll content is a key factor in determining tree health.

On the other hand, the Normalized Near-Infrared (NNIR) index measures the re-
flectance of near-infrared light in vegetation. It is often used to estimate the amount of
vegetation biomass, which is an indicator of tree productivity. Healthy trees typically have
a higher biomass than unhealthy trees. Therefore, the importance of NNIR suggests that
biomass is also a key factor in determining tree health.

Taken together, the importance of NR and NNIR indicates that tree health status is
determined by a combination of factors related to chlorophyll content and biomass.
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4. Discussion

Over the years, the use of unmanned aerial vehicles (UAVs) in precision agriculture
has experienced significant growth. Initially used for crop monitoring, UAV applications
have expanded to include pest and disease control, treatment, and even providing real-time
decision support. Our study specifically focuses on mapping individual tree crowns and
evaluating their health using high-resolution UAV imagery and computer vision techniques.
Our proposed method utilizes hard negative mining strategy to perform individual tree
detection. To assess the health of the detected trees, vegetation indices derived from
multi-band UAV images were employed.

4.1. Tree Detection

Our proposed method for individual tree detection based on the HNM technique
demonstrated its efficiency compared to the use of a baseline object detector. The inclusion
of hard negative samples during model training improves the model’s ability to distinguish
between the target object (apple trees in our case) and other background objects. We
believe that the application of the hard negative mining (HNM) learning strategy could
be promising on UAV images as this kind of image displays the challenge of a complex
background that may distract the visual object detection as shown in Figure 4. To the best
of our knowledge, this is the first work to apply the HNM strategy for tree detection. In
comparison to existing works in the literature, our proposed tree detection method achieves
interesting results that are comparable or better than other studies. Our F1-score of 86.24%
is comparable to the F1-score of [83] (86%), who uses a local maximum algorithm to detect
pine trees on UAV-derived canopy height model imagery. Similarly, ref. [20] obtained an
F1-score of 75.75% using a SVM based on shape features to detect palm trees on UAV RGB
images, which is also slightly lower than our achieved F1-score.

Overall, our results demonstrate the effectiveness of hard negative mining approach
for tree detection and highlight the importance of using specialized models like DeepForest
for this task.

4.2. Trees Health Assessment

In comparison to previous studies carried out to address tree health assessment, our
classification accuracy of 98.06% was higher than the one obtained by [84] (93.17%) using
an SVM classifier to map the degree of damage caused by forest pests on UAV-based
hyperspectral images. It was also higher than the one obtained by [85], who mapped
tree health status using multispectral imagery (95%) or hyperspectral imagery (91%).
Our method also outperforms statistical methods reviewed in [86] using generalized
linear models (GLM), maximum entropy (ME), and random forests (RF), achieving an
overall accuracy of 87.3%, 93.9%, and 97.1%, respectively, to identify areas affected by
bark beetles on satellite imagery. Generally, these results showed that our approach
utilizing supervised classification via Random Forests provides similar or better levels of
accuracy to comparable studies. Furthermore, the conducted feature importance analysis
underscores the contribution on NR and NNIR indices in assessing apple trees’ health.
This highlights the value and efficiency of vegetation indices derived from remote sensing
imagery in autonomously assessing vegetation health, eliminating the need for manual
human intervention.

In the context of precision agriculture, these findings align with numerous studies that
have leveraged Unmanned Aerial Vehicles (UAVs) for efficient and precise applications
such as monitoring water stress [87,88], production volume estimation [89], and assessment
of resource efficiencies [90]. This reinforces the paradigm shift towards technology-driven
agricultural practices, promoting enhanced productivity and sustainable resource use.

Our future work aims to investigate the use of other bands such as red edge and near-
infrared for tree detection, as they may contain relevant information for accurate detection.
Moreover, hyperspectral imaging technology can also be explored for tree detection. It
can provide both spatial geometric information, such as the tree crown shape, size, and
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texture, as well as the relationship between adjacent tree crowns, and precise spectral
information. Forestry and agriculture have benefited from the use of this technology [91] for
tree identification, species classification [92], tree health monitoring [93], and biodiversity
assessment [93].

5. Conclusions

In this paper, an effective two-stage framework is proposed to automate orchard apple
tree health assessment from UAV images. The first stage addresses the tree detection
problem using a hard negative mining approach to improve tree detection performance.
The second stage deals with tree health classification, where we use Random forest based
on twelve selected vegetation indices. The proposed framework has the potential to reduce
errors associated with manual field inventory, and eliminate the need for time-consuming
and expensive field surveys. Furthermore, our framework produces maps showcasing
stressed trees across orchards. Utilizing a tree health map for an orchard provides multiple
advantages for growers. It enables the identification of potential issues at an early stage,
precise intervention, strategic planning for harvesting, and enhanced crop management.
This map can be used as a guide for further investigation by growers. Thus, orchard
managers can benefit from the early detection of stress to perform targeted plantation
management strategies. By leveraging this valuable information, growers can enhance
productivity, minimize risks, and promote the long-term health and success of their orchard.
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Appendix A. Brief Description of the Explored Object Detectors Used as Baseline
Models in the Hard Negative Mining Approach to Address Tree Detection, That Is,
YOLO and DeepForest

DeepForest [59] is a deep-learning model developed to detect individual trees on
high-resolution RGB imagery. It is mainly based on the Retinanet model [30], a one-stage
object detector that enables the focal loss function to address the excessive foreground-
background class imbalance between RetinaNet and state-of-the-art two-stage detectors
like Faster R-CNN with FPN while operating at higher speeds. RetinaNet is a network
architecture based on ResNet as a backbone [94] that generates a rich, multiscale convo-
lutional Feature Pyramid Network (FPN) [95] that is connected to two subnetworks: one
for classifying anchor boxes and another one for regressing object boxes. There are several
barriers to applying deep learning to ecological applications including insufficient technical
expertise, a lack of a large amount of training data, and the need for significant computa-
tional resources. A key advantage of DeepForest’s neural network is that we can retrain the
prebuilt model to learn new tree features and image backgrounds while leveraging infor-
mation from the existing model weights based on data from a diverse set of forests. The
DeepForest prebuild model was trained on data from the National Ecological Observatory
Network (NEON) using a semi-supervised approach. The model was pre-trained on data
from 22 NEON sites using an unsupervised LiDAR-based algorithm to generate millions
of moderate-quality annotations for model pretraining. The pre-trained model was then
retrained based on over 10.000 hand annotations of airborne RGB imagery from six sites.
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You Only Look Once (YOLO) is a one-stage object detector. Its network architecture
is made up of three primary parts: the backbone, the neck, and the head. The YOLO-V5
model backbone is based on the Cross Stage Partial Network (CSP-Net). It aims to extract
high-level features while maintaining high accuracy and shortening the model processing
time. This is accomplished by splitting the base layer’s feature map into two sections
and then merging them using a suggested cross-stage hierarchy. The fundamental idea
is to separate the gradient flow in order to make it propagate over several network paths.
Furthermore, CSPNet can significantly minimize the amount of computation required and
increase both the speed and accuracy of inference. It deals with three important problems:
Strengthening the learning ability of a CNN, removing computational bottlenecks, and
reducing memory costs. The model neck is used to collect feature maps from various stages
to generate feature pyramids. At this level, the Path Aggregation Network (PANet) [96] and
Spatial Pooling Pyramid (SPP) [97] are adopted for parameter aggregation from different
backbone levels for different detector levels, instead of FPN used in YOLO-v3 [29]. Finally,
for the head, the YOLO-v3 anchor-based head architecture is adopted for the used YOLO
version. Within each portion of the network, YOLO-V5 has numerous key components,
including Focus, CBL (Convolution, Batch Normalization, and Leaky- ReLU), CSP (Cross-
Stage Partial Connections), and SPP (Spatial Pyramid Pooling). The Focus module divides
the input image into four parallel slices, which are then utilized to construct feature maps
with the CBL module. The CBL module is a basic feature extraction module that employs a
convolution operation, batch normalization, and a leaky-ReLU activation function. The CSP
module is a CSPNetbased module that is used to improve the model’s learning capability.
The SPP module is a module that allows the mixing and pooling of spatial elements. It
concatenates to its initial features after downsampling the input features through three
parallel max-pooling layers. YOLO-v5 implies some new data augmentation techniques
such as Mosaic and SAT (Sel Adversarial Training).

Appendix B. Brief Description of the Explored Machine Learning Classifiers for Tree
Health Classification

KNN [79] is a machine learning algorithm used for both classification and regression
tasks. Its basic idea is to classify or predict the label of a given input data point by
finding the K nearest neighbors in the training dataset and taking a majority vote among
their labels. To determine the K nearest neighbors, KNN uses a distance metric such as
Euclidean distance, Manhattan distance, or cosine similarity to measure the similarity
between the input data point and each data point in the training dataset. The algorithm
then selects the K data points with the smallest distance to the input data point. KNN
is a non-parametric algorithm, which means it does not make any assumptions about
the underlying distribution of the data. It is also known as a lazy learner, as it simply
memorizes the training dataset and does not learn a model or parameters. One advantage
of KNN is its simplicity and ease of implementation, especially for small datasets. However,
it can be computationally expensive and may not perform well on high-dimensional or
sparse datasets. Additionally, the choice of K and the distance metric can have a significant
impact on the performance of the algorithm.

LightGBM [80] is a gradient-boosting framework that uses tree-based learning algo-
rithms for solving supervised learning problems. It uses a technique called histogram-based
gradient boosting, which discretizes continuous features into discrete bins to speed up the
training process. It also implements features such as bagging, feature sub-sampling, and
regularization to prevent overfitting and improve model generalization. One of the key
advantages of LightGBM is its scalability, making it ideal for large datasets with millions of
samples and thousands of features. It also has high accuracy and is often used for a wide
range of applications, including image classification, text classification, and recommenda-
tion systems. Overall, LightGBM is a powerful machine-learning framework that provides
efficient and accurate solutions for a variety of supervised learning problems.
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SVM [76] is a supervised learning method that separates data into classes by finding
the optimal hyperplane that maximally separates the classes. Its basic idea is to find the
optimal hyperplane that maximizes the margin between the classes. The margin is the
distance between the hyperplane and the closest data points of each class. SVM aims to find
the hyperplane that maximizes this margin, which helps to minimize the generalization
error and improves the model’s ability to classify new data.

The DT [77] classifier is a machine learning algorithm used for classification tasks. It
works by partitioning the input data into smaller subsets based on the values of the input
features, and recursively splitting the subsets until a pure subset is obtained, or until a
predefined stopping criterion is met. It uses a criterion, such as Gini impurity or entropy,
to measure the homogeneity of the data at each node and determine the best feature to
split the data. It recursively splits the data based on the feature that maximally reduces the
impurity of the data, until a stopping criterion is met.
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