
ar
X

iv
:s

ub
m

it/
50

44
75

1
 [

cs
.D

S]
 5

 A
ug

 2
02

3

ORIGINAL ARTICLE

Transcoding Unicode Characters with AVX-512

Instructions

Robert Clausecker1* | Daniel Lemire2†

1Zuse Institute Berlin, Germany

2DOT-Lab Research Center, Université du

Québec (TELUQ), Montréal, Canada

Correspondence

Daniel Lemire, DOT-Lab Research Center,

Université du Québec (TELUQ), Montreal,

Quebec, H2S 3L5, Canada

Email: daniel.lemire@teluq.ca

Funding information

Natural Sciences and Engineering Research

Council of Canada, Grant Number:

RGPIN-2017-03910

Intel includes in its recent processors a powerful set of in-

structions capable of processing 512-bit registers with a sin-

gle instruction (AVX-512). Some of these instructions have

no equivalent in earlier instruction sets. We leverage these

instructions to efficiently transcode strings between themost

common formats: UTF-8 and UTF-16. With our novel algo-

rithms, we are often twice as fast as the previous best solu-

tions. For example, we transcode Chinese text from UTF-8

to UTF-16 at more than 5GiB s−1 using fewer than 2 CPU in-

structions per character. To ensure reproducibility, we make

our software freely available as an open source library. Our

library is part of the popular Node.js JavaScript runtime.

KEYWORDS

Vectorization, Unicode, Text Processing, Character Encoding

1 | INTRODUCTION

Computers store strings of text as arrays of bytes. Unicode is a standard for representing text as a sequence of

universal characters represented by code points. Code points are stored as short sequences of bytes according to a

given unicode transformation format (UTF), the most popular being UTF-8 and UTF-16. Not all sequence of bytes are

valid UTF-8 or UTF-16 strings [1]. Validation is required to detect incorrectly encoded or corrupted text before it is

processed.

We often need to transcode strings between the two formats. For example, a database might store data in UTF-

16 and yet the programmer might need to produce UTF-8 strings for a web site. Thankfully, transcoding is relatively

efficient. Conventional transcoders often achieve a throughput between 0.5GiB s−1 to 1.5GiB s−1 on commodity

processors [2] (cf. § 8).1 Yet this falls far below the sequential-read speed of a fast disk (e.g., 5GiBs−1) or the throughput

1The speed is measured by taking the size of the input and dividing by the time elapsed.

1

http://arxiv.org/submit/5044751/pdf

2 Robert Clausecker and Daniel Lemire

of a fast network connection.

IBM mainframes based on z/Architecture provide special-purposes instructions named “CONVERT UTF-8 TO

UTF-16” and “CONVERT UTF-16 TO UTF-8” for translation between the two encodings [3]. By virtue of being im-

plemented in hardware, these exceed 10GiBs−1 processing speed for typical inputs. While commodity processors

currently lack such dedicated instructions, they can benefit from single-instruction-multiple-data (SIMD) instructions.

Unlike conventional instructions which operate on a single machine word (e. g. 64 bits), these SIMD instructions op-

erate on larger registers (128 bits, 256 bits, . . .) representing vectors of numbers. A single SIMD instruction may

add eight pairs of 16-bit words at once. We can transcode gigabytes of text per second [2] by a deliberate use of

conventional SIMD instructions (e.g., ARM NEON, SSE, AVX2).

In recent years, Intel introduced new SIMD instruction sets operating over registers as wide as 512 bits. If Intel

had merely doubled the width of the registers, there would be little need for further work on our part. However, our

experience suggests that to fully benefit from AVX-512 instructions, we need to use adapted algorithms [4]. Indeed,

while AVX-512 instructions benefit from wider registers, Intel has also added many more instructions than what is

typically found in SIMD instruction sets. There is also a slightly different model: AVX-512 instructionmay consume or

generate masks in mask registers which have no equivalent in prior commodity instruction sets. In AVX-512, a mask

is conceptually an array of 8, 16, 32, or 64 bits corresponding to vectors of 8, 16, 32, or 64 elements.

We present novel transcoding functions using AVX-512 instructions. On average, we are roughly twice as fast as

the previous fastest functions [2] on commodity processors.

2 | UNICODE AND ITS ENCODINGS

Unicode is a standard based on the Universal Character Set (UCS). An extension to ASCII, UCS is a character set whose

characters (called universal characters) have code points numbered from U+02 to U+10FFFF (decimal 1 114 111). These

code points are organized into 17 planes of 65 536 characters each, with the first plane U+0000–U+FFFF being called

the Basic Multilingual Plane (BMP). Code points in the range 0xd800–0xdfff are reserved for surrogates used in the

UTF-16 encoding and do not represent universal characters.

Unlike simpler character sets like ASCII, universal characters are seldomly stored directly as integers, as such a

storage format is wasteful and incompatible to existing byte-oriented environments. Instead, several Unicode Trans-

formation Formats (UTF) are employed to store and process universal characters, depending on the use case at hand.

A Unicode Transformation Format transforms each universal character into a sequence of integers, with the size

of the integer being dependent on the format. Popular Unicode Transformation Formats include:

UTF-32 representing each universal character as a 32-bit integer. Mainly used as an internal representation.

UTF-16 representing each universal character as one or two 16-bit integers [5]. All code-point values up to U+FFFF

are stored as 2-byte integer values directly. Otherwise we use surrogate pairs: two consecutive 2-byte values,

each storing 10 bits of the codepoint. Used by Java, Windows NT, databases, binary protocols, and others.

UTF-8 representing each universal character as 1–4bytes [6]. An extension toASCII, UTF-8 is by far themost popular

text encoding on the World Wide Web.

Though our software work covers many cases (from UTF-8 to UTF-16 or UTF-32, from UTF-16 to UTF-8 or UTF-32,

and so forth), we study the two most difficult cases: from UTF-8 to UTF-16 and back.

Multi-byte words in computers representing numerical values can be stored in either little-endian format or big-

endian format, depending on whether the first byte is the least significant or the most significant. Unicode Transfor-

2U+ followed by a hexadecimal number is notation for a universal character’s code point.

Robert Clausecker and Daniel Lemire 3

case UTF-16 UTF-8

ASCII 0000 0000 0GFE DCBA ---- ---- ---- ---- ---- ---- 0GFE DCBA

2-byte 0000 0LKJ HGFE DCBA ---- ---- ---- ---- 110L KJHG 10FE DCBA

3-byte RQPN MLKJ HGFE DCBA ---- ---- 1110 RQPN 10ML KJHG 10FE DCBA

4-byte 1101 10vu tsRQ PNML 1111 0WVU 10TS RQPN 10ML KJHG 10FE DCBA

1101 11KJ HGFE DCBA

(a) Bit-by-bit correspondence between UTF-16 and UTF-8 encodings in the four possible cases.

The bits are named A to W starting at the least significant bits with 0vuts = WVUTS − 1.

codepoint UTF-16 UTF-8

U+0 0000 0000 0000 0000 ---- ---- ---- ---- ---- ---- 0000 0000

U+7F 0000 0000 0111 1111 ---- ---- ---- ---- ---- ---- 0111 1111

U+80 0000 0000 1000 0000 ---- ---- ---- ---- 1100 0010 1000 0000

U+7FF 0000 0111 1111 1111 ---- ---- ---- ---- 1101 1111 1011 1111

U+800 0000 1000 0000 0000 ---- ---- 1110 0000 1010 0000 1000 0000

U+FFFF 1111 1111 1111 1111 ---- ---- 1110 1111 1011 1111 1011 1111

U+10000 1101 1000 0000 0000 1111 0000 1001 0000 1000 0000 1000 0000

1101 1100 0000 0000

U+10FFFF 1101 1011 1111 1111 1111 0100 1000 1111 1011 1111 1011 1111

1101 1111 1111 1111

(b) Examples of matched code-point values in UTF-32, UTF-16LE and UTF-8. For U+10000 and

U+10FFFF, UTF-16 requires a surrogate pair.

FIGURE 1 Correspondence between UTF-16 and UTF-8. Format-specific prescribed bits (tag bits) are underlined.

mation Formats representing characters in units larger than bytes are subject to endianess. If the endianess is not

known from the context3, it can be given by adding a LE or BE suffix to the name of the Unicode Transformation

Format, giving e. g. UTF-16BE or UTF-32LE. We can reverse the order of the bytes—between big and little endian—at

high speed: e.g., using one instruction per 64 bytes. For simplicity, we present our results on UTF-8 and UTF-16LE.

2.1 | UTF-16

When the Universal Character Set was initially defined, it was meant to be a 16-bit character set with UTF-16 being

its natural encoding, representing each universal character in one 16-bit word. It was later realized that 65 536 code

points are insufficient to represent thewriting systems of theworld’smany cultures, especiallywhen having to account

for over 50 000 Chinese, Japanese, and Korean ideographs. UCS was therefore extended past the Basic Multilingual

Plane to code points up to U+10FFFF and UTF-16 retrofitted with a surrogatemechanism to permit representation of

these newly added characters.

UTF-16 is a versatile Unicode Transformation Format as it permits (absent surrogates) easy processing of text in

many popular languages, while not being as memory-hungry as UTF-32. It is widely used in databases and binary file

3Big endian is the prescribed default byte order [5], although it is less common.

4 Robert Clausecker and Daniel Lemire

type range pattern

ASCII lead byte 0x00–0x7f 0XXX XXXX

continuation byte 0x80–0xbf 10XX XXXX

2-byte lead byte 0xc2–0xdf 110X XXXX

3-byte lead byte 0xe0–0xef 1110 XXXX

4-byte lead byte 0xf0–0xf4 1111 0XXX

TABLE 1 Types of UTF-8 bytes with tag bits underlined.

formats and is the preferred internal text representation onWindows NT. Nevertheless, with the advent and growing

popularity of universal characters outside of the Basic Multilingual Plane, UTF-16 has been steadily declining in use.

Despite big-endian byte order being prescribed for UTF-16, the little-endian variant UTF-16LE is more commonly

encountered under the influence of x86’s little-endianorientation. A common convention to deal with this ambiguity is

to prefix UTF-16 encoded documentswith the byte order mark (BOM) U+FEFF.4 Its byte-swapped counterpart U+FFFE

is a reserved “uncharacter” and should not occur in Unicode text. If a UTF-16 encoded document begins with U+FFFE,

it can thus be assumed to be in wrong byte order, permitting automatic byte-order detection in many situations. Our

algorithms do not make use of this convention and strictly assumeUTF-16LE throughout. A BOM is neither generated,

nor checked for, nor stripped.

As illustrated in the “UTF-16” column of Fig. 1, code points in the Basic Multilingual Plane are represented as

themselves. Code points outside of this plane have 0x10000 subtracted from them (the surrogate plane shift), yielding a

20-bit number. This number is split into two10-bit halves. The high half is taggedwith 0xd800, yielding a high surrogate.

Likewise, the low half is tagged with 0xdc00, yielding a low surrogate. The character is then encoded by giving its high

surrogate, directly followed by its low surrogate. It is for this purpose that code points in the range 0xd800–0xdfff

do not represent universal characters.

Decoding UTF-16 is a matter of joining the bits of surrogate pairs, leaving Basic-Multilingual-Plane characters

unchanged. Care must be taken to validate that each high surrogate is succeeded by a low surrogate and vice versa.

With this sequencing requirement ensured, all UTF-16 sequences are valid and have a 1:1 mapping to code points.

2.2 | UTF-8

The most popular Unicode Transformation Format is UTF-8, representing each universal character as a sequence of

1–4 bytes. Replacing the earlier UTF-1, the format was designed to be backwards-compatible to ASCII while also

being safe for use in UNIX file names, and comes with many other desirable features. Under many circumstances,

UTF-8 text can be processed as if it was a conventional ASCII-based 8-bit encoding like those of the ISO-8859 family.

This includes common applications like concatenation, substring search, field-splitting (with ASCII characters or UTF-8

strings for separators), and collation, rendering it the most popular UTF.

UTF-8 can be seen as an extension to ASCII, where each ASCII character (U+00–U+7F) is represented as itself with

other characters being represented by sequences of bytes in the range 0x80–0xf4 (cf. Table 1). Such sequences start

4U+FEFF only has this function as the first character of a document. In other positions, it should be treated as an ordinary universal character and must not

be stripped or altered.

Robert Clausecker and Daniel Lemire 5

expression description

¬a bitwise complement of a

ctz(a) number of trailing zeroes in a

width(a) number of bits needed to represent a

popcount(a) number of bits set in a

pext(a , b) the bits given in a extracted from b

pdep(a , b) b deposited into the bits given in a

compress(m,v) vector v compressed by mask m

a + b sum of a and b

a ≪ b a logically shifted to the left by b places

a ≫ b a logically shifted to the right by b places

a = b mask indicating elements of a equal to those of b

a ∧ b bitwise and of a and b

a ∨ b bitwise or of a and b

a ⊕ b bitwise exclusive-or of a and b

a ? b : c ternary operator; equal to a ∧ b ∨ ¬a ∧ c

TABLE 2 Summary of notation

with a lead byte (0xc25–0xf4) indicating the length of the sequence in its tag bits, followed by 1–3 continuation bytes

(0x80–0xbf), making the encoding stateless, and self-synchronizing.

The details are summarized in the “UTF-8” column of Fig. 1: The bits of the code point are numbered A–W starting

at the least significant bit. For each of the four possible cases (the ASCII/1-byte case, the 2-byte case, the 3-byte

case, and the 4-byte case6), the bits of the code point are copied into the lead and continuation bytes as indicated in

the figure. Tag bits are applied (underlined in Fig. 1) to distinguish ASCII, lead, and continuation bytes.

For many universal characters, more than one encoding seems to be possible according to the figure. However,

only the shortest possible encoding for each character is permitted to ensure uniqueness of the encoding. While 4-

byte sequences could encode code points in excess of U+10FFFF, such sequences are not legal either. The bytes 0xc0,

0xc1, and 0xf5–0xff are thus not used by UTF-8.

Decoding UTF-8 begins by looking at the tag bits to tell the start and length of each sequence. Then, the code

point is assembled from the payload of these bytes. A critical part in decoding UTF-8 is validation, especially against

overly-long sequences and illegal code points (surrogates, code points greater than 10FFFF). In the algorithmpresented

in § 6 we demonstrate how decoding UTF-8 with comprehensive validation and then reencoding it into UTF-16 can

be implemented efficiently, leveraging AVX-512 instructions.

50xc0 and 0xc1 would introduce 2-byte sequences corresponding to ASCII characters, which are encoded as single bytes instead.

6the 1–3-byte cases represent Basic-Multilingual-Planecharacters, the 4-byte case corresponds to characters represented as surrogate pairs in UTF-16.

6 Robert Clausecker and Daniel Lemire

3 | RELATEDWORK

There are relatively few academic publications on Unicode string processing using SIMD instructions. Cameron [7]

proposed a UTF-8 to UTF-16 transcoder using SIMD instruction using bit streams. A bit stream is a transposition on

the character inputs. For example, from 128 bytes of data, we produce eight 128-bit registers with the first register

containing the most significant bits of each input byte, and the last register containing the least significant bit of each

input byte. The transcoding from UTF-8 to UTF-16 is done in this bit stream form with a final phase where unused

bytes are removed. Inoue et al. [8] presented a limited UTF-8 to UTF-16 transcoder which lacked validation and could

not handle 4-byte UTF-8 characters. They rely on a 105KiB lookup table.

Lemire andMuła [2] presented a generic approach that does full UTF-8 toUTF-16 andUTF-16 toUTF-8 transcod-

ing, with validation. Their UTF-8 to UTF-16 transcoding function is similar in principle to the strategy used by Inoue et

al. [8] in that they rely on the presence of instructions to quickly permute bytes within a register in an arbitrary manner,

based on a lookup table. The accelerated UTF-8 to UTF-16 transcoding algorithm processes up to 12 input UTF-8

bytes at a time. Given the input bytes, it finds beginning of each character, forming a 12-bit word which is used as a

key in a 1024-entry table. Each entry in the table contains the number of UTF-8 bytes to consume and an index into

another table where we find shuffle masks. The tables use about 11KiB. The shuffle masks are applied to the 12 input

bytes to form a vector register that can be transformed efficiently. This 12-byte routine works within 64-byte blocks.

The 64-byte blocks are validated using a fast technique [1]. Their UTF-16 to UTF-8 algorithm iteratively reads a block

of input bytes in a SIMD register. Depending of the values of 16-bit words, the algorithm uses one of several paths.

E.g., if all 16-bit words are in the range U+0000–U+07FF, the 16-bit words are converted to 32-bit words to ultimately

produce 1-byte, 2-byte or 3-byte characters. A series of lookup tables allow the efficient permutations, using a total

of 8.5KiB.

Gatilov [9] produced one of the best and most complete software library for Unicode transcoding (utf8lut). It is

similar in spirit to the work of Lemire and Muła [2], but utf8lut requires larger tables: 2MiB for the UTF-8 to UTF-16

transcoder and 16KiB for the UTF-16 to UTF-8 transcoder.

Unlike this prior work, our proposals do not require lookup tables. This is possible through the use of novel

compression instructions introduced with AVX-512VBMI2 (see § 4.3, Tbl. 3), allowing us to move bytes to the right

places within registers entirely in hardware, without in-memory tables.

4 | NOTATIONAL CONVENTIONS

In the algorithms described below, all logical symbols refer to bitwise logic. Comparisons are performed between cor-

responding elements of vectors, yielding a bit mask of those elements for which the comparison holds. All arithmetic

operations, shifts, and comparisons are performed on unsigned numbers. The width of the number depends on the

vector used.

As a general convention, scalars, vectors of bytes, and masks derived from them are indicated with lowercase

letters. Vectors of 16- or 32-bit words are indicated with uppercase letters.7 The symbol n is number of bytes in a

vector; for AVX-512 it is n = 64. This convention permits us to explain the algorithms in terms of AVX-512 instructions

while giving generic formulæ potentially applicable to other future instruction sets.

7The convention attempts to underline that byte vectors correspond to UTF-8 whereas word vectors correspond to UTF-16.

Robert Clausecker and Daniel Lemire 7

The operator precedence follows C precedence rules with

a + b ≪ c = d ∧ e ∨ f

being parsed as

((((a + b) ≪ c) = d) ∧ e) ∨ f .

Table 2 gives a list of symbols used in decreasing order of precedence.

4.1 | Mask Operations

Masks are conceptually arrays of bits—containing between 8 and 64 bits—meant to be used in conjunction with

vectors having the same number of elements. For example, bytemasks (notedm1,m234, . . .) may contain 64 bits if they

correspond to vectors of 64 bytes. We also have word masks (e.g., M3) containing 16 bits when they corresponding

to 512-bit vectors of 32-bit values. See Appendices A and B for detailed lists of our masks and other variables. We

operate on masks as if they were unsigned integer values: m+3 = m4 ≪ 3 means that the whole maskm4 is shifted to

the left by three places to give m+3; the 64 individual mask bits are always either 0 or 1. The logical operations or (∨),

and (∧) and not (¬) are applied bitwise. We have that m = 0 sets all bits to zero whereas m = ¬0 sets all bits to one.

In practice, the processor has several instructions dedicated to AVX-512 mask registers (e. g., kshiftrd, kandq,

korb). Mask registers can be converted back and forth to general-purpose registers as needed—with the caveat that

the conversion from mask registers to general-purpose registers may have a high latency (e. g., 3 cycles).

4.2 | Vector Operations

When operating on vectors, equations have to be read as “SIMD formulæ” applying element-by-element. For example,

we write

w = m ? a + b : c

to mean “each element ofw is set to the sum of the corresponding elements in a and b if the corresponding bit is set

in m or to c otherwise.” With an explicit index i = 0 . . . n − 1, the previous expression could be written as

w [i] = m ∧ 1 ≪ i ? a [i] + b [i] : c [i] for i = 0, 1, . . . , n − 1.

We believe that the presentation as “SIMD formulæ” is easier to understand and prefer it where possible. Explicit

indices are only used when permutations are involved. For example, we write

w [i] = v
[
p [i]

]

to mean “w is v permuted by the index vector p .”

Conversions from one element size to another are not explicitly written out; watch the letter case of the variables

used to see when this happens. All such conversions are zero-extensions or truncations.

8 Robert Clausecker and Daniel Lemire

Remark The conventional binary notation presents the least significant bits last. When working with masks and

vectors, these least significant bits correspond to the first elements of the vectors. This discrepancy in the order is a

source of confusion, but it is difficult to avoid. Intel intrinsic functions reflect this confusion by providing two sets of

functions to create new vectors: _mm512_set_* and _mm512_rset_* depending on the prefered order [10].

4.3 | Special Functions

We use several special bit-manipulation functions corresponding to instructions available on contemporary x86 com-

puters:

ctz The count trailing zeroes operation ctz(a) counts the number of trailing (least significant) zero bits in a , i. e. how

often a can be divided by 2 until leaving an odd number. It corresponds to the bsf/tzcnt instructions of the

x86 instruction set. Our algorithms never invoke ctz(0) .

width The bit width operation width(a) counts the number of bits needed to represent a . It is

width(a) = (a , 0) ? ⌊log2 a ⌋ + 1 : 0. (1)

This operation is efficiently implemented onmany architectures through the count leading zeroes operation (x86 in-

struction bsr/lzcnt). Our algorithms never invoke width(0) .

popcount The population count operation popcount(a) computes the number of bits set in a . This can also be under-

stood as the sum of the bits of a . It corresponds to the popcnt instruction of the x86 instruction set.

pext The parallel extract operation pext(a , b) takes a bit mask a indicating a possibly non-consecutive bit field and

extracts those bits from b , packing them into popcount(a) bits. This corresponds to the pext instruction on

recent x86 processors. The operation is perhaps best understood with a diagram:

a 1010111011000100

b 1000101011110001

bit field 1-0-101-11---0--

pext(a , b) 0000000010101110

(2)

pdep The parallel deposit operation pdep(a , b) takes a bit mask a indicating a possibly non-consecutive bit field and

deposits the bits from b into this field. It performs the opposite operation to pext and corresponds to the pdep

instruction on recent x86 processors. We can likewise visualize its operation through a diagram:

a 1010111011000100

b 1011010010101110

bit field 1-0-101-11---0--

pdep(a , b) 1000101011000000

(3)

compress The compress vector operation compress(m,v) is the only vector operation among our special functions. It

performs the same operation as the parallel extract operation pext, but instead of extracting bits from a bit field, it

extracts elements from a vector. This corresponds to the vpcompressb instruction on recent x86 processors. For

the visualization, we have given the maskm = 0xcd with the least significant bit on the left to make the operation

easier to see. The least significant mask bit decides whether to keep the first vector element and so on until the

Robert Clausecker and Daniel Lemire 9

most significant mask bit decides whether to keep the last vector element:

m 1 0 1 1 0 0 1 1

v 12 34 56 78 9a bc de f0

kept elements 12 -- 56 78 -- -- de f0

compress(m,v) 12 56 78 de f0 00 00 00

(4)

Observe how we reversed the bit order of the mask m to match the natural vector order: its usual binary repre-

sentation is 11001101.

5 | AVX-512

Our algorithms are based on the AVX-512 family of instruction-set extensions to the Intel 648 instruction-set archi-

tecture [11]. An extension to the AVX family of instruction-set extensions, AVX-512 provides a comprehensive set of

SIMD instructions for operation on vectors of 16, 32, or 64 bytes organized into bytes or words of 16, 32, or 64 bits.

A register file of 32 vector registers zmm0–zmm31 complemented by 8 mask registers k0–k7 is provided.

AVX-512 instructions are generally non-destructive, writing their output into a separate operand from their inputs.

In most AVX-512 instructions, one operand is permitted to be a memory operand with the remaining operands being

register or immediate operands. This is usually the first input operand, but for some instructions it may also be the

output operand.

The AVX-512 instruction set is split into a set of extensions. Each extension adds new instructions to the Intel 64

architecture, enhancing the capabilities of AVX-512. Depending on the microarchitecture used, not all AVX-512

extensions might be available. Table 3 gives a list of AVX-512 instructions used and the extension they hail from. In

the following, we list those AVX-512 extensions needed to execute the algorithms described in this paper:

AVX-512F The foundation extension implements the basic AVX-512 instruction set on 64-byte vectors. Every AVX-

512 implementation must support AVX-512F.

AVX-512BW The byte/word extension extends the AVX-512F instructions to vectors of bytes and 16-bit words.

AVX-512DQ The dword/qword extension provides additional instructions on 32- and 64-bit words.

AVX-512VBMI The vector byte manipulation instructions extension adds instructions to permute and manipulate

bytes.

AVX-512VBMI2 The vector byte manipulation instructions 2 extension adds compress/expand support and double-

width shifts for bytes and 16-bit words.

The first generation of Intel 64 processors supporting all required AVX-512 extensions are those code named Icelake,

based on the microarchitecture code named Sunny Cove. By emulating vpcompressb through other instructions, it

is likely possible to adapt the algorithms to processors as early as the generation code named Cannon Lake, albeit at

significant reduction in performance.

8The 64 bit variant of the x86 (IA-32) instruction-set architecture, also known as AMD64, x86-64, EM64T, and IA-32e.

10 Robert Clausecker and Daniel Lemire

instruction extension description

vmovdqu8/16 BW move byte/word/dword vector

vpblendmw/d BW/F blend words/dwords with mask

vpbroadcastd/q F broadcast dword/qword to vector

vextracti32x8 DQ extract 256-byte word from vector

vpmovzxbw/wd BW/F zero-extend byte to word or word to dword

vpaddb/w/d BW add bytes/words/dwords

vpsubb/w/d BW subtract bytes/words/dwords

vpcmpub/w BW compare unsigned bytes/words

vpternlogd F logic on 3 operands by given truth table

vpandd F bitwise and dwords

vpandnd F bitwise and-not dwords

vpsllw/d BW/F logically shift words/dwords left by immediate

vpsrlw/d BW/F logically shift words/dwords right by immediate

valignd F right-shift elements between operands

vpmultishiftqb VBMI shift bytes within qword, see § 7.3

vpcompressb VBMI2 compress byte vector, see § 4.3

vpermb VBMI permute byte vector by byte index vector

kmovd/q BW move 32/64-bit mask

kord/q BW bitwise or 32/64-bit mask

kandnd/q BW bitwise and-not 32/64-bit mask

knotd/q BW bitwise complement 32/64-bit mask

kshiftrd/q BW logically shift 32/64-bit mask right by imm.

ktestd/q BW test bitwise and/and-not of masks for all-zero

kortestd/q BW test bitwise or of masks for all-zero/all-one

TABLE 3 Selected AVX-512 instructions.

5.1 | Masking

The output of most vector instructions is subject to masking, a novel feature of AVX-512. A mask register k1–k79 is

applied to the output operand, specifying eithermergemasking or zeromasking. Withmergemasking, only those vector

elements indicated by bits set in the mask register are modified in the output operand. The other vector elements

remain unchanged. With zero masking, vector elements for which the bits in the mask register are clear are zeroed

out.

9Mask register k0 cannot be used for masking, but remains available for logic on masks.

Robert Clausecker and Daniel Lemire 11

For example, the merge and zero masking instructions

vpaddb zmm0{k1}, zmm2, zmm3 (merge masking), and

vpaddb zmm4{k5}{z}, zmm6, zmm7 (zero masking)

perform a packed addition of bytes, giving

zmm0 = k1 ? zmm2 + zmm3 : zmm0 and

zmm4 = k5 ? zmm6 + zmm7 : 0.

Masking on register operands is free for most instructions, though merge masking introduces an input dependency

on the old value of the output operand.

Masking on memory operands enables memory fault suppression for most instructions. This means that the CPU

does not signal memory faults for masked-out vector elements, permitting masked out elements to extend into un-

mapped or non-writable pages. This suppression affects both input and output memory operands.

5.2 | Microarchitectural Details

To simplify the implementationof AVX-512 onmicroarchitectures designed to execute the older SSE and AVX families

of instruction-set extensions, most SIMD instructions operate within lanes of 16 bytes. That is, in many ways, it is as

if the 64-byte vector registers were made of four nearly independent 16-byte subregisters. Instructions that process

data across lanes (such as vpermb or vpcompressb) exist, but can typically execute on less execution units and take

longer to execute in comparison to instructions that do not. We thus want to avoid cross-lane operations if feasible.

On current Intel microarchitectures including Sunny Cove (Icelake), Cypress Cove (Rocket Lake), andWillow Cove

(Tiger Lake), most AVX-512 instructions10 can execute on execution ports 0, 1, and 5. Instructions that do not cross

lanes usually execute in a single cycle, instructions that do take 3 or more cycles. Some instructions are restricted in

the ports they can execute on: shifts can only execute on ports 0/1, permutations and other cross-lane instructions,

as well as comparisons into masks can only execute on port 5. Instructions operating on masks (i. e. those whose

mnemonics start with k) are restricted to one of ports 0 or port 5, depending on the instruction [12, 13].

In addition to these restrictions, ports 0 and 1 support a vector length of only 32 bytes while port 5 supports the

whole 64 bytes. Instructions operating on a vector length of 64 bytes are executed either on port 5 or on ports 0/1

joined together, occupying both ports for one cycle simultaneously. Thus, there are effectively only twoports available

to execute instructions with a 64-byte vector length. While 32-byte vectors are processed at 3 vectors of 32 bytes

(i. e. 6 lanes) per cycle, 64-byte vectors are processed at only 2 vectors of 64 bytes (or 8 lanes) per cycle, leading to

a theoretical speedup by a factor of 4/3 or 33% of 64-byte vectors over 32-byte vectors for an otherwise identical

algorithm. This stands in contrast to the factor 2 or 100% speedup one would naïvely expect from doubling the vector

length.

It is vital for the performance of AVX-512 code to keep track of which ports instructions execute on, rearranging

or editing the code such that both port 0/1 and port 5 can execute instructions at the same time [14]. Through the

use of microarchitectural simulation [15] in the design of the algorithms, good port utilization has been ensured.

10assuming no memory operands

12 Robert Clausecker and Daniel Lemire

6 | TRANSCODING FROM UTF-8 TO UTF-16

We transcode UTF-8 to UTF-16 by gathering the bytes that make up each character from the last byte of each char-

acter to its first byte. This exploits the similarity in bit arrangement between the four cases (ASCII, 2-byte, 3-byte,

and 4-byte) highlighted in Fig. 1a. The bytes of each UTF-8 sequence are isolated from the input string, liberated of

their tag bits, shifted into position, and finally summed up into a code point.

Using the exact correspondence between 4-byte UTF-8 characters and characters represented as surrogate pairs

in UTF-16, we treat 4-byte characters as an overlapping pair of a 3-byte sequences and a 2-byte sequence that is later

fixed up into a high and a low surrogate. This saves us extra code for extracting the fourth-last byte of each sequence

and avoids the costly use of 32-bit words for intermediate results.

To illustrate this idea, consider the following example, translating the Unicode characters U+40 (@), U+A7 (§),

U+2208 (∈), and U+1D4AA (O) from UTF-8 to UTF-16:

@ § ∈ O

40 C2 A7 E2 88 88 F0 9D 92 AA

40

C2 A7

E2 88 88

F0 9D 92

92 AA

0040 00A7 2208 D835 DCAA

(5)

These four characters demonstrate the behavior of the algorithm on the four UTF-8 cases, representing ASCII, 2-

byte, 3-byte, and 4-byte respectively. Observe especially how the code sequence F0 9D 92 AA for O is split into two

overlapping sequences F0 9D 92 and 92 AA. The first of these two is translated into the high surrogate D835 with the

second one becoming the low surrogate DCAA.

The algorithm can be roughly described with the following plan of attack:

1. Read a vector of 64 bytes.

2. Classify each byte according to whether it is an ASCII byte, continuation byte, 2-byte lead byte, 3-byte lead byte,

or 4-byte lead byte.

3. Construct a mask indicating the last byte of each UTF-8 sequence. For 4-byte characters, the third byte is indi-

cated, too, treating them as a 3-byte sequence for the high surrogate and a 2-byte sequence for the low surrogate.

4. Use the mask to gather the last, 2nd last, and 3
rd last byte of each sequence.

5. Strip tag bits, shift bits into place and or them into UTF-16 words.

6. Postprocess surrogates by shifting their bits into place, and applying tag bits and surrogate plane shift.

7. Write the resulting bytes to the output, incrementing the input and output pointers by the number of bytes

consumed/generated.

8. Repeat until the end of input or an encoding error are encountered.

Apart from this general plan, there are also fast paths for the cases (a) ASCII characters only, (b) ASCII, and 2-byte

sequences only, and (c) 1–3-byte sequences only.

Validation is performed throughout the transcoding process, as explained in § 6.4. In comparison to previous

algorithms, it is simplified by advancing the input only by complete UTF-8 sequences; if the input is correct UTF-8,

Robert Clausecker and Daniel Lemire 13

each vector of input thus begins with a complete sequence.

6.1 | Classification and Masks

After reading a vector of bytes from the input buffer, the characters in it are classified according to the range they

fall into. Various masks are then built from this classification. In the following explanations, we follow the convention

from § 4 where names of the form m ... refer to masks about the input vector win while names of the form M ... refer

to masks about the output vector.

These two kinds of masks are connected through the pext and pdep operations, relating the end bytes of the

decoded UTF-8 sequences to the UTF-16 words they correspond to and vice versa.

The first set of masks is derived directly from win, classifying the input into ASCII

m1 = (win < 0x80), (6)

2/3/4-byte sequence lead bytes

m234 = (0xc0 ≤ win), (7)

3/4-byte sequence lead bytes

m34 = (0xe0 ≤ win) (8)

and 4-byte sequence lead bytes

m4 = (0xf0 ≤ win) . (9)

From these we then derive a mask

m1234 = m1 ∨ m234 (10)

indicating the presence of any kind of lead byte. All other bytes (¬m1234) are continuation bytes.

Then we construct the important mask mend identifying the last bytes of each sequence to be decoded. These

are the last bytes of each UTF-8 sequence as well as the third byte of each 4-byte sequence. Working backwards

from these last bytes, we later use this mask to gather the last, second-last and third-last bytes of each sequence.

The key insight in constructing mend is that as each UTF-8 sequence is followed by another UTF-8 sequence, we

can find the positions of the last bytes as those preceding the lead bytes of the next sequence (m1234 ≫ 1). The third

byte of each 4-byte sequence is added by first computing the fourth byte of each sequence

m+3 = m4 ≪ 3 (11)

and then shifting the result to the right to obtain the last third bytes

mend = (m+3 ∨ m1234) ≫ 1 ∨m+3 . (12)

14 Robert Clausecker and Daniel Lemire

An unfortunate consequence of defining mend by going backwards from the lead bytes of the next characters is

that we only catch the last character of the vector when it is followed by an incomplete character whose lead byte

we can shift to the right. For 4-byte sequences right at the end of the vector, this leads to us only detecting the third

last byte in the character. Oring in m+3 at the end fixes this problem for the 4-byte case.

For the other cases, the only effect of this process is that if win does not end in a partial character, decodes to

no more than 32 words of UTF-16, and the last character is not a 4-byte sequence, we process one less character

in the current iteration than possible. However, the minor performance impact of hitting this edge case is more than

outweighed by not spending extra time computing the mask correctly.11

To visualize the various masks, consider the strings “x+P” and “ε≤±1” with a vector length of n = 8 bytes:

x + P ε ≤ ± 1

win 78 e2 88 87 f0 9d 94 93 ce b5 e2 89 a4 c2 b1 31

m1 = win < 0x80 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

m234 = 0xc0 ≤ win 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0

m34 = 0xe0 ≤ win 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0

m4 = 0xf0 ≤ win 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

m1234 = m1 ∨m234 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1

m+3 = m4 ≪ 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

mend = (m+3 ∨m1234) ≫ 1 ∨m+3 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0

(13)

In this example, masks are arrays of eight bits corresponding to eight-byte sequences: in our actual implementation,

we use 64-bit masks. Note in particular how mend accounts for the last character in the left string (being a 4-byte

character), but not in the right string, where it is an ASCII character. Also note how the character P has two end bits,

being treated as a 3-byte sequence overlapping a 2-byte sequence.

6.2 | Assembling Characters

With these masks in hand, we can strip off the tag bits and assemble characters. The UTF-8 tag bits are stripped off

by clearing the most significant two bit of each non-ASCII byte inwin, giving

wstripped = m1 ? win : win ∧ 0x3f. (14)

The tag bits of 3/4-byte lead bytes are not completely removed by this step; this is sufficient for our purposes as these

tag bits get shifted out later on.

Characters are assembled by selecting fromwstripped the last (Wend), second-last (W−1) and third-last bytes (W−2)

of each sequence, zero-extending them to 16 bits and joining their bits into a UTF-16 word. We do this by first

preparing a permutation vector P that holds for each word in the output vector, the index of the last byte of the

11 If a perfect mask is desired, you can instead use

m′
end

= (m1 ∨ m2 ≪ 1 ∨ m34 ≪ 2 ∨ m4 ≪ 3) ∧ ¬
(
m4 ≪ 2 ∧ 1 ≪ (n − 1)

)
,

where m2 = m234 ∧ ¬m34 indicates 2-byte sequence lead bytes. The first byte of each sequence is shifted to the position of its last byte (and the third

byte of a 4-byte sequence). The mask is then post-processed by clearing the third byte of a 4-byte sequence starting in the third-last byte of win , as only

complete sequences can be processed.

Robert Clausecker and Daniel Lemire 15

corresponding sequence. This vector is prepared by compressing (vpcompressb) a byte vector holding an identity

permutation (0, 1, . . . , 63) subject tomend. The compressed vector is then zero-extended (vpmovzxbw) to 16-bit words,

keeping its first n/2 elements:

P = compress
(
mend, (0, 1, . . . , n − 1)

)
. (15)

We only generate one vector of UTF-16 words per iteration representing at most 32 characters. When the input

contains ASCII characters, it might be possible for mend to contain more than 32 set bits. Bits set in mend past the

32nd bit are discarded during the processing: P contains only n/2 (or 32) elements. With P in hand, we can load the

last byte of each sequence

Wend [i] = wstripped

[
P [i]

]
(16)

with a single permutation instruction (vpermb).12

By decrementing the entries of P , we produce index vectors corresponding to the second-last and third-last bytes

of each sequence. To avoid loading the third-last byte of a 1/2-byte sequence or the second-last byte of an ASCII

sequence, we maskwstripped with masks

m−1 = ¬m1 ≫ 1 and (17)

m−2 = m34 ∧ ¬0 ≫ 2 (18)

to clear out bytes before ASCII characters resp. those that do not start a 3/4-byte sequence, accounting for possible

wrap around.13 We then obtain our vectors

W−1 [i] =
(
m−1 ? wstripped : 0

) [
P [i] − 1

]
and (19)

W−2 [i] =
(
m−2 ? wstripped : 0

) [
P [i] − 2

]
(20)

as desired. The last, second-last, and third-last bytes are shifted into place and ored such that the bits A–W are con-

tiguous, giving

Wsum =W−2 ≪ 12 ∨W−1 ≪ 6 ∨Wend . (21)

12as vpermb permutes each byte, we zero-mask its result with 0x5555555555555555 to only permute into the less significant byte of each 16-bit word, zero-

extending for free.

13P [i] − 1 and P [i] − 2may yield negative numbers; we assume that in a permutation, such indices either wrap around to the end of the vector or produce 0

as an output. If negative permutation indices yield zeroes, the term ¬0 ≫ 2, serving as wraparound protection, can be omitted from m−2 .

16 Robert Clausecker and Daniel Lemire

The value ofWsum depending on the case taken can be visualized as follows:

case byte sequence Wsum

ASCII 0GFE DCBA 0000 0000 0GFE DCBA

2 byte 110L KJHG 10FE DCBA 0000 0LKJ HGFE DCBA

3 byte 1110 RQPN 10ML KJHG 10FE DCBA RQPN MLKJ HGFE DCBA

hi surr 1111 0WVU 10TS RQPN 10ML KJHG 0WVU TSRQ PNML KJHG

lo surr 10ML KJHG 10FE DCBA 0000 MLKJ HGFE DCBA

(22)

This representation is close to UTF-16LE format with only the surrogate cases diverging. To address this differ-

ence, we first identify the locations of surrogates inWout. Sequences in win corresponding to low surrogates end at

the fourth bytes of 4-byte sequences. By extracting the locations of these through mend into the space ofWout, we

obtain the locations of low surrogates

M lo = pext(mend,m+3) (23)

inWout. High surrogates

Mhi = M lo ≫ 1 (24)

always precede low surrogates.

Surrogates are fixed up by shifting high surrogates into position and applying surrogate plane shift and tag bits,14

giving

Wout =




(Wsum ≫ 4) + 0xd7c0 if Mhi

Wsum ∨ 0xdc00 if M lo

Wsum otherwise.

(25)

The operation of Eq. 25 can be visualized as follows, where 0vuts = WVUTS − 1:

case Wsum Wout

high surrogate 0WVU TSRQ PNML KJHG 1101 10vu tsRQ PNML

low surrogate 0000 MLKJ HGFE DCBA 1101 11KJ HGFE DCBA

other RQPN MLKJ HGFE DCBA RQPN MLKJ HGFE DCBA

(26)

For illustration purposes, we provide C code implementing equation Eq. 25 using Intel intrinsic functions: see Fig. 2.

The vectorWout holds the UTF-16LE encoded characters wewant to write out. There is a final issue: the 64 bytes

of UTF-8 data in the input may correspond to anywhere from 21 to 64 words of output, of which the first up to

32 words are processed.15 If a surrogate pair happened to straddle the end ofWout, we would discard the correspond-

ing low surrogate and produce an incorrect result. So once again, special care must be taken to omit the 32nd word of

14Adding 0xd7c0 = 0xd800 − 0x0020 applies the tag bits and the surrogate plane shift in one step.

15 Input data corresponding to the remaining words (if any) is reprocessed in the next iteration.

Robert Clausecker and Daniel Lemire 17

__m512i mask_d7c0d7c0 = _mm512_set1_epi32(0xd7c0d7c0);
__m512i mask_dc00dc00 = _mm512_set1_epi32(0xdc00dc00);
//...
// Mlo, Mhi and Wsum have been computed, we compute Wout.
__m512i lo_surr_mask = _mm512_maskz_mov_epi16(Mlo, mask_dc00dc00);
__m512i shifted4_Wsum = _mm512_srli_epi16(Wsum, 4);
__m512i tagged_lo_surrogates = _mm512_or_si512(Wsum, lo_surr_mask);
__m512i Wout = _mm512_mask_add_epi16(tagged_lo_surrogates, Mhi,

shifted4_Wsum, mask_d7c0d7c0);

FIGURE 2 C code using Intel intrinsic functions equivalent to Eq. 25.

output if it is a high surrogate. We do so by computing a mask

Mout = ¬
(
Mhi ∧ 1 ≪ (n/2 − 1)

)
(27)

of the elements ofWout excluding the last element if it happens to be a high surrogate. We introduce a variable b

which is set to all ones (b = ¬0) except at the end of the input (cf. § 6.3). By depositing the mask Mout into the last

bytes of each sequence, we obtain a mask

mprocessed = pdep(b ∧ mend,Mout) (28)

holding the locations of the last byte of each sequence that has been processed into a word inWout.

With this mask, we can compute the number of bytes of input processed

nin = width(mprocessed) (29)

and the number of words of output produced

nout = popcount(mprocessed) . (30)

The first nout bytes of the output vector are then deposited into the output buffer, input and output buffers are

advanced by nin and nout and we continue with the next iteration.

To visualize the generation of mprocessed, consider the example string “±1=O” with a vector length of n = 8 bytes:

± 1 = O

win C2 B1 31 3D F0 9D 92 AA

mend 0 1 1 1 0 0 1 1

(31)

As the character D835 DCAA straddles the end of the vector, it cannot be processed in the current iteration:

± 1 = O

Wout 00B1 0031 003D D835 (DCAA)

Mhi 0 0 0 1

1 ≪ (n/2 − 1) 0 0 0 1

Mout 1 1 1 0

(32)

18 Robert Clausecker and Daniel Lemire

Depositing the bits of Mout through mend, we then obtain

mprocessed 0 1 1 1 0 0 0 0

bytes processed C2 B1 31 3D -- -- -- --

words produced 00B1 0031 003D ----

(33)

and advance buffers by nin = 4 bytes and nout = 3words respectively. The bytes corresponding to O will be processed

again in the next iteration.

6.3 | Processing the Tail

The final bit of input with less than 64 characters remaining (tail) is handled through the variable b . This variable holds

a mask of those bytes inwin we are permitted to process. Initially we set b = ¬0, permitting all bytes to be processed.

When the end of the input with ℓ < n bytes remaining to be processed is reached, we set b to a mask of the first

ℓ bytes ofwin, giving

b = (1 ≪ ℓ) − 1. (34)

The tail of input is read zero-masked by b , padding it with NUL bytes. Then, a final iteration of the main loop is

performed, processing only the bytes accounted for in b .

6.4 | Input Validation

Throughout the transcoding process, we check the input for encoding errors and abort transcoding if any such error

occurs. Aborting is done by determining the location of the encoding error and setting the remaining input length ℓ

to the number of bytes preceding the first error. We then clear all input bytes starting at the first erroneous byte and

jump to the tail-handling code from § 6.3, effectively restarting the current iteration as “final” iteration.

Having talked about how to continue after an error has occurred, we shall now direct our attention to the kinds

of errors we have to check for. A UTF-8 encoded document must conform to the following rules:

1. Bytes 0xf5–0xff must not occur.

2. Lead and continuation bytes must match: each byte in 0xc0 to 0xdf must be followed by one continuation byte,

each byte from 0xe0 to 0xef by two continuation bytes and each byte from 0xf0 to 0xf4 by three continuation

bytes.

3. Continuation bytes may not otherwise occur.

4. The decoded character must be larger than U+7F for 2-byte sequences, larger than U+7FF for 3-byte sequences,

and larger than U+FFFF for 4-byte sequences.

5. The character must be no greater than U+10FFFF.

6. The character must not be in the range U+D800–U+DFFF.

We check for these rules throughout the algorithm, mostly reusing masks we already have to compute for other

steps of the code. Three checks are performed in total:

Robert Clausecker and Daniel Lemire 19

Overlong 2-byte sequences

Right at the beginning, we check whether any of the bytes 0xc0 or 0xc1 occur. Presence of these bytes indicates a

2-byte sequence that encodes a code point below U+80, violating condition 4. The first invalid input byte is the first

0xc0 or 0xc1 byte found:

valid if
(
m234 ∧ (win < 0xc2)

)
= 0. (35)

Mismatched continuation bytes

After computing the various classificationmasks, we check if conditions 2 and 3 hold. As each byte of UTF-8 is either

a lead or continuation byte, we check this by computing where continuation bytes should be (mc) and comparing this

with where lead bytes are not:

valid if mc = ¬m1234. (36)

We computemc from the location of the second (m+1), third (m+2), and fourth byte (m+3, see Eq. 11) of each sequence:

m+1 = m234 ≪ 1, (37)

m+2 = m34 ≪ 2, (38)

mc = m+1 ∨m+2 ∨m+3 . (39)

Conveniently, this check also fails on the input if it starts with continuation bytes, violating the invariant estab-

lished earlier. We do not catch aUTF-8 sequence straddling the end of the vector; such a sequence is checked properly

in the next iteration once additional bytes have been fed in.

If this check fails, we must distinguish two cases to determine the location of the first encoding error: If the first

mismatch of mc and m1234 is due to a continuation byte present where there should not be one, the first invalid byte

is that byte, giving

ℓ = ctz(mc ⊕ ¬m1234) . (40)

Otherwise a continuation byte is missingwhere there should be one and the corresponding lead byte is the first invalid

byte. This byte can be found by masking m1234 to all bits preceding the mismatch

mpre =
(
1 ≪ ctz(mc ⊕ ¬m1234)

)
− 1 (41)

and then finding the last (most significant) bit in it, corresponding to the lead byte that is missing a continuation byte.

This gives

ℓ = width(m1234 ∧mpre) − 1. (42)

Encodings out of range

Finally, we check if the codepoints encoded by 3- and 4-byte sequences are in range (conditions 4 and 5) and that

3-byte sequences do not encode surrogates (condition 6). The algorithm treats input bytes in the range 0xf5–0xff as

lead bytes of 4-byte sequences. Such sequences encode code points well in excess of U+110000, allowing us to verify

20 Robert Clausecker and Daniel Lemire

condition 1 as a side effect with no extra code.

We augment our existing mask set with a mask

m3 = m34 ∧ ¬m4 (43)

indicating the location of 3-byte sequence start bytes inwin. Shifting the mask to indicate the last byte of each 3-byte

sequence, extracting through mend , and truncating to n/2 bits, we obtain a mask

M3 = pext(mend,m3 ≪ 2) (44)

indicating which words inWout correspond to 3-byte sequences. We then use M3 to check if any 3-byte sequences

encode codepoints below U+800,

M<U+800 = M3 ∧ (Wout < 0x800) (45)

indicating violations of condition 4.

Then we check for surrogates: words in M3 must not encode surrogates, words in Mhi must encode high surro-

gates (condition 6).16 A word in Mhi produces a high surrogate if and only if the code point it encodes is in range

U+10000–U+10FFFF (conditions 1, 4, and 5). The masks

M3s = M3 ∧ (0xd800 ≤ Wout < 0xe000)

= M3 ∧ (Wout − 0xd800 < 0x0800) (46)

and

M4s = Mhi ∧ ¬(0xd800 ≤ Wout < 0xdc00)

= Mhi ∧ (Wout − 0xd800 ≥ 0x0400) (47)

indicate violations of these conditions.17 The check succeeds if no offending words are found:

valid if M<U+800 ∨M3s ∨M4s = 0. (48)

If an offending word is found, the first invalid byte is the start byte of the corresponding sequence. As the error

can never occur in a low surrogate, we can find its location by projecting its location back onto the locations of the

first and fourth bytes of every sequence:

ℓ = ctz
(
pdep(m+3 ∨m1234, M<U+800 ∨M3s ∨M4s)

)
. (49)

16by construction, words produced from 1- and 2-byte sequences never produce surrogates and Mlo always produces low surrogates; we do not need to

validate these.

17As all comparisons are unsigned (vpcmpltuw), one comparison for each range check suffices.

Robert Clausecker and Daniel Lemire 21

6.5 | Fast Paths

Three fast paths are provided, speeding up common cases. The first two are programmed such that they cannot be

triggered in the “final” iterations for the tail or in case of an encoding error, allowing us to omit the handling of b in

their length computations for a further performance increase.

ASCII only

If the first 32 bytes of input are all ASCII bytes, we process these by zero-extension (vpmovzxbw) of the first 32 bytes

to 16-bit words. The number of processed bytes is always 32, the number of words written out always 32, shortening

the dependency chain to the next iteration. No validation is needed in this case as ASCII bytes are always valid.

Only the first 32 bytes are considered before embarking on the fast path as the default path does not process

more than 32 characters in any case. Hence, while checking for all 64 bytes to be ASCII would allow for slightly

faster processing in the all-ASCII case, performance for documents with short runs of ASCII characters amidst other

characters (e. g. HTML documents) suffers significantly, outweighing the benefits of the other case.

1/2 byte only

In the absence of 3- and 4-byte sequences (m34 = 0), we employ a simplified variant of the algorithm. While following

the same operating principles as the main algorithm, we can take some shortcuts in the proven absence of 3- and 4-

byte sequences. First, the computation of some masks is greatly simplified, with most masks being entirely irrelevant

for this path:

m2 = m234, (50)

mend = ¬m2, and (51)

Mout = pdep
(
mend, (1 ≪ n/2) − 1

)
. (52)

We then employ a simplified scheme to computeWout: Instead of masking out tag bits, we subtract 0xc2 from

the lead byte of each two-byte sequence to cancel out the tag bits of both lead and continuation byte, giving

w−0xc2 = m1 ? 0 : win − 0xc2. (53)

Instead of first building a permutation vector P and then using it to permute the input bytes into place, we directly

compress the bytes into position (vpcompressb) and then zero extend to 16-bit words (vpmovzxbw), giving

Wend = compress(mend,win) and (54)

W−1 = compress(m1234,w−0xc2) . (55)

VectorsWend andW−1 must be merged by addition instead of bitwise or to correctly cancel out tag bits, giving

Wout = (W−1 ≪ 6) +Wend . (56)

22 Robert Clausecker and Daniel Lemire

The operation on 2-byte characters can be visualized as follows; 0xc2 is subtracted separately to illustrate the idea:

Wend 0000 0000 10FE DCBA

+ W−1 ≪ 6 0011 0LKJ HG00 0000

− 0xc2 ≪ 6 0011 0000 1000 0000

= Wout 0000 0LKJ HGFE DCBA

(57)

We want to increment the input pointer quickly—without a long chain of operations. We find it advantageous to

always process half a vector (32 bytes or 33 bytes to include a final continuation byte) of input data per iteration

like in the ASCII-only fast path. While this approach usually processes less data than first determining the maximum

number of input bytes we can process, being able to load the next data quicker is more important. We avoid accessing

the SIMD masks to determine whether we advance by 32 bytes or 33 bytes.

Thus we have

nin =




n/2 + 1 if 0x80 ≤ win [n/2] < 0xc0

n/2 otherwise,
(58)

processing 32 bytes per iteration unless a 2-byte sequence straddles the middle of the vector18, in which case we

process that extra byte, too.

The output buffer is advanced by the number of characters starting in the first 32 bytes, giving

nout = popcount
(
m1234 ∧ (1 ≪ n/2) − 1

)
. (59)

As for validation, the checks for “encodings out of range” are omitted. The check for “mismatched continuation

bytes” is simplified to

valid if m2 ≪ 1 = ¬m1234 (60)

as continuation bytes must always directly follow 2-byte sequence lead bytes. The combination of all these simplifi-

cations yields a code path of roughly half the latency of the standard code path.

1/2/3 byte only

In the absence of 4-byte sequences (m4 = 0), all characters are in the Basic Multilingual Plane. In this common case,

we can slightly simplify the main routine. We have that m+3 = m4 ≪ 3 is zero. Consequently, we can simplify the

definitions of mc and mend to

mc = m+1 ∨m+2 and (61)

mend = m1234 ≫ 1. (62)

18 i. e. unless the byte at position n/2 is a continuation byte

Robert Clausecker and Daniel Lemire 23

The computation of Wout and Mout is eliminated. As no surrogates are present, we can omit the surrogate post-

processing and don’t need to account for surrogate pairs straddling the end of the vector. Instead, we directly get

Wout =Wsum and (63)

Mout = ¬0. (64)

Finally, the validation check for out-of-range encoding is slightly simpler: as surrogates cannot occur, we can drop the

M4s term off Eq. 48.

7 | TRANSCODING FROM UTF-16 TO UTF-8

As explained in § 2.1, UTF-16 encodes characters in the Basic Multilingual Plane (U+0000–U+FFFF) in one 16-bit word

and all others in two words as surrogate pairs. To encode a code point as a surrogate pair, 0x10000 is subtracted from

the character code to obtain a 20-bit binary number. The most significant 10 bits are added to 0xD800 to form a high

surrogate, which is followed by the less significant 10 bits added to 0xDC00, producing the corresponding low surrogate.

UTF-8 encodes Unicode characters in the range U+0000–U+007F in one byte, characters in the range U+0080–

U+07FF in two bytes, characters in the range U+0800–U+FFFF in three bytes and the other characters in four bytes.

Characters encoded in oneUTF-16word thus correspond to characters encoded in 1–3 bytes of UTF-8 and characters

encoded in two UTF-16 words correspond to characters encoded in 4 bytes of UTF-8. This suggests the following

plan of attack for transcoding UTF-16 to UTF-8:

1. Read a vector of 16-bit words.

2. Classify the input words into ASCII (0x0000–0x007F), 2-byte (0x0080–0x07FF), high surrogate (0xD800–0xDBFF),

low surrogate (0xDC00–0xDFFF), and 3-byte (0x0800–0xFFFF).

3. Zero extend each 16-bit word to a 32-bit word and join low and high surrogates.

4. Shuffle the bits within each 32-bit word into the right positions and apply tag bits according to the type of char-

acter, producing UTF-8 sequences padded with null bytes.

5. Compress this vector, squeezing out the padding bytes.

6. Write the byte string to the output buffer and proceed to the next iteration.

Apart from this general plan, we also have fast code paths for the three cases of (a) ASCII characters only, (b) all in

U+0000–U+07FF, and (c) no surrogates, complementing the default code path (d) surrogates present. Which code path

to take is decided based on the characters in the current 62-byte chunk of input. We expect that most text inputs

would consistently rely on the same code paths. Thus branches corresponding to the various fast paths are easy to

predict, and we expect that they may provide a significant performance boost.

We would now like to explain the steps in the plan of attack in detail. The steps are interlinked with information

produced in each step being reused for the subsequent steps. Additionally, the classification masks are reused for

input validation.

First, 32 words (i. e. 64 bytes) of input are loaded from memory intoWin . Of these words, 31 words are encoded

in the iteration with the last word serving as a look ahead for surrogate processing (§ 7.2). The mask

L = 1 ≪ n/2 − 1 (65)

indicates the position of the lookahead word inWin .

24 Robert Clausecker and Daniel Lemire

7.1 | Classification and Fast Paths

We first need to find out what UTF-8 cases the characters in our input correspond to. Comparing the 16-bit words

in the input vector with 0x0080 and 0x0800, we produce the masks

M234 = (0x0080 ≤ Win) ∧ ¬L and (66)

M12 = (0x0800 >Win) (67)

telling us if non-ASCII (i. e. 2-, 3-, or 4-byte) characters and ASCII or 2-byte characters are present. ASCII characters in

the lookahead are ignored to simplify some later bits of the algorithm. Based on this information, we can then embark

on a code path suitable for this chunk of input.

ASCII only

If all input words represent ASCII characters (M234 = 0), we handle the input in an ASCII-only fast path: the vector

is truncated to bytes (vpmovwb) and deposited into the output buffer, advancing it by 31 bytes. Though we could

advance by 32 bytes, we want the the algorithm to proceed with a constant stride through memory irrespective of

the content.

Default path

If some 3- or 4-byte characters are present (M12∨L , ¬0), we check for surrogates. We do this by masking the words

with 0xfc00 and then checking if the result is equal to 0xd800 (high surrogate, Mhi) or 0xdc00 (low surrogate, M lo),

giving

Mhi = (0xd800 ≤ Win < 0xdc00) ∧ ¬L

= (Win ∧ 0xfc00 = 0xd800) ∧ ¬L and (68)

M lo = (0xdc00 ≤ Win < 0xe000)

= (Win ∧ 0xfc00 = 0xdc00) . (69)

If surrogates are found to be present (Mhi ∨M lo , 0), we proceed to § 7.2 to handle them.19 Otherwise we skip that

step, setWjoined =Win zero-extended from 16-bit to 32-bit (vpmovzxwd), and directly go to § 7.3.

1/2 byte only

In the third and final case, we know that the input is a mix of ASCII and 2-byte characters. We process this case by

shuffling the bits of two-byte characters into position.20 The most significant two bits of each byte are cleared and

tag bits are applied. Through this whole process, ASCII characters are left unchanged, giving us

Wout = M234 ? (Win ≪ 8 ∨Win ≫ 6) ∧ 0x3f3f ∨ 0x80c0 :Win . (70)

19Low surrogates in the lookahead are registered to permit detection of sequencing errors.

20As we are on a little-endian architecture, the lead byte is the less-significant of the two.

Robert Clausecker and Daniel Lemire 25

We illustrate this equation in the 2-byte case:

Win 0000 0LKJ HGFE DCBA

Win ≪ 8 ∨Win ≫ 6 HGFE DCBA 000L KJHG

Wout 10FE DCBA 110L KJHG

(71)

The words ofWout before the lookahead are then bytewise compared with 0x080021 producing a mask

mkeep =Wout ≥byte (L ? 0xffff : 0x0800) (72)

holding binary 01 for ASCII characters, 11 for 2-byte characters, and 00 for the lookahead. With this mask, we finally

compressWout into a UTF-8 stream

wout = compress(mkeep,Wout) (73)

and write it to the output.

The output buffer pointer is advanced by the number of bytes of output produced, which is one byte for each

word of input (sans lookahead) and another byte for each 2-byte character.

nout = popcount(M234) + n/2 − 1. (74)

7.2 | Surrogates

When surrogates are present in the input, the bits of low surrogate have to be merged into those of the corresponding

high surrogate, yielding the code point of the character to be encoded.

First, Win is zero extended to 32 bits per element.22 A vector Wlo , holding for each high surrogate in Win its

corresponding low surrogate, is produced by rotatingWin to the right by one element.

Then, the surrogates are joined by subtracting the tag bits (0xd800 for the high surrogate, 0xdc00 for the low

surrogate), undoing the surrogate plane shift for the high surrogate, shifting the bits of the high surrogate into place

and then adding the two together. By pulling out the constants representing the tag bits and the plane shift, these

additions and subtractions can be combined into one using 32-bit unsigned arithmetic. This gives us

Wjoined = Mhi ?
(
(Win − 0xd800 + 0x0040) ≪ 10

)
+ (Wlo − 0xdc00) :Win

= Mhi ?
(
(Win ≪ 10) − 0x35f000

)
+ (Wlo − 0xdc00) :Win

= Mhi ? (Win ≪ 10) +Wlo + 0xfca02400 :Win . (75)

With the surrogate pairs decoded, we can then proceed to § 7.3 to encode into UTF-8. The vector elements

corresponding to low surrogates are ignored for the rest of the algorithm.

21a constant we have already loaded into a register; any other constant with high-byte in range 0x01–0x7f and low byte 0 works.

22From here on, each vector holds 2n bytes of data. These can be implemented as pairs of n-byte vectors.

26 Robert Clausecker and Daniel Lemire

7.3 | Encoding into UTF-8

When we reach this step, we have transformedWin into a vectorWjoined of 32-bit integers, holding the code points

of the characters in the input.23 We would now like to encode these code points into UTF-8, producing 1–4 bytes of

output per code point.

Consider Fig. 1a: for the 2-, 3- and 4-byte case, the bits A–Wmaking up the code point always appear in the same

position. This suggests using the same encoding procedure for the 2-, 3-, and 4-byte case with merely different tag

bits applied at the end. ASCII characters are handled with a shift into position.

The encoding procedure is based on the vpmultishiftqb instruction introduced with the VBMI instruction set

extension. Given a vector of 64-bit words and for each such word a vector of eight bytes, the instruction uses the

byte vectors as indices to pick eight 8-bit chunks of data (8 consecutive bits) from the corresponding source words.

By choosing these indices such that they do not cross a 32-bit boundary, we can effectively use the instruction to

select four 8-bit chunks out of each 32-bit word.

Applying the index vector (18, 12, 6, 0) to each 32-bit word24 ofWjoined , we obtainWshifted with each bit shifted

into the right position with some bits left over:

Wjoined 0000 0000 000w vuts RQPN MLKJ HGFE DCBA

index 18 00 000w vu

index 12 vuts RQPN

index 6 PN MLKJ HG

index 0 HGFE DCBA

Wshifted HGFE DCBA PNML KJHG vuts RQPN 0000 0wvu

(76)

To fix up the left-over bits, we mask with 0x3f3f3f3f, reusing the mask from the 2-byte fast path. Then, appropriate

tag bitsWtag are applied:

case Wshifted masked with 0x3f3f3f3f tag bits

2-byte 00FE DCBA 000L KJHG 0000 0000 0000 0000 0x80c00000

3-byte 00FE DCBA 00ML KJHG 0000 RQPN 0000 0000 0x8080e000

4-byte 00FE DCBA 00ML KJHG 00ts RQPN 0000 0wvu 0x808080f0

(77)

Finally, the ASCII case is handled by just shifting the ASCII words into position and merging these shifted charac-

ters into the output of the other cases, giving us

Wout = M234 ?Wshifted ∧ 0x3f3f3f3f ∨Wtag :Win ≪ 24. (78)

We end up with UTF-8 encoded characters in Wout. Each character occupies a 32-bit word and is padded

with 0x00 bytes to 4 bytes. Input words corresponding to low surrogates have been passed through, being decoded

into junk content. We get rid of the padding and the low surrogate junk by preparing a mask of bytes we want to keep

and compressing out the unwanted bytes using the vpcompressb instruction.

In the mask, we want to keep the most significant byte of each 32-bit word and all non-zero bytes—except for

23 In the presence of surrogates, some of these elements are ignored.

24 i. e. the index vector (18, 12, 6, 0, 50, 44, 38, 32) applied to each 64-bit word

Robert Clausecker and Daniel Lemire 27

processed low surrogates. These seemingly complex requirements can be negotiated in two steps by first building

a comparison mask and then taking all bytes that are not lower than the mask. For low surrogate bytes and the

lookahead, the mask is 0xff which cannot occur inwout.
25 For the most significant byte of all other words, it is 0x00

which admits every byte. For other bytes, it is 0x01, admitting only nonzero bytes. Thus we have

Wkeep = M lo ∨ L ? 0xffffffff : 0x00010101, building (79)

mkeep = (Wout ≥byte Wkeep) . (80)

With this mask, we compressWout into

wout = compress(mkeep,Wout), (81)

write it to the output buffer and advance the output by

nout = popcount(mkeep) (82)

bytes. Due to the little-endian orientation of the x64 architecture, the bytes of each UTF-8 sequence end up in the

right order: within each 32-bit word, they are written from the least significant byte to the most significant byte.

7.4 | Validation

In contrast to the UTF-8 to UTF-16 procedure, validation of UTF-16 input is less involved. We merely have to check

for the correct sequencing of surrogates: every high surrogate must be followed by a low surrogate and vice versa.

As this validation only pertains surrogates, it is skipped in their absence, i. e. in all fast paths; input strings without

surrogates are always valid.

To aid in this process, we only process 31 words of input in each iteration, permitting a “look ahead” into the first

word of the next iteration. We also keep track of a surrogate carry c indicating if the first word inWin was preceded by

a high surrogate. This carry allows us to decide if a low surrogate inW [0] is to be ignored (c = 1) or is a sequencing

error (c = 0).26

Correct sequencing is checked for by concatenatingMhi with c and shifting it to the position of the corresponding

low surrogatesM lo. The input is valid if each high surrogate corresponds to a low surrogate:

valid if (Mhi ≪ 1 ∨ c) = M lo. (83)

The carry for the next iteration is computed as the presence of a high surrogate in the vector element right before

the lookahead, giving

cout = Mhi ≫ (n/2 − 2) ∧ 1. (84)

In the absence of surrogates, i. e. in the fast paths, the carry is cleared (cout = 0).

25The byte value 0xff is not possible in valid UTF-8 (cf. Table 1). It could be generated through invalid sequencing of surrogates, but we catch such an error

when validating the content.

26WhenW [0] is not a low surrogate, c is guaranteed to be clear.

28 Robert Clausecker and Daniel Lemire

If validation fails, we find the location of the first mismatched surrogate to transcode the words preceding the

encoding error and then terminate. This is done by setting the number of remaining input words ℓ to the number of

words preceding the encoding error and then jumping to the tail handling code § 7.5.

Computing the location requires more work than Eq. 83; for a high surrogate not followed by a low surrogate, that

equation indicates the missing low surrogate as the first erroneous word when it should really be the unmatched high

surrogate. So we proceed more carefully and first compute the sets of high surrogates not followed by low surrogates

Mhi−lo = Mhi ∧ ¬(M lo ≫ 1) (85)

and the set of low surrogates not preceded by high surrogates

M lo−hi = M lo ∧ ¬(Mhi ≪ 1 ∨ c) . (86)

The number of valid bytes is then the longest prefix not found in either of these masks:

ℓ = ctz(M lo−hi ∨Mhi−lo) . (87)

7.5 | Decoding Failure and Tail Handling

At the end of the input, there might be some UTF-16 words left to process, but not enough to load a whole 64-byte

vector. We deal with this remaining input in a manner similar to the UTF-8 to UTF-16 case, cf. § 6.3.

When ℓ < n/2 words of input remain to be processed, we compute a mask

B = (1 ≪ ℓ) − 1 (88)

of input words left to be processed. We then load the remaining input zero-masked with B ,27 giving us the input tail

padded with U+0000. This remaining input is then processed in a final iteration of the main loop. As each null byte

translates into a single byte of output, this leads to an output that is precisely n/2 − 1 − ℓ bytes longer than the true

output length. We compensate for this by adjusting the output length reported to the caller accordingly.

In contrast to the other direction, this approach may write past the end of the output buffer if it is just long

enough to hold the decoded string. We avoid this problem by performing masked stores instead of potentially storing

null bytes past the end of the output.

8 | EXPERIMENTS

Our initial implementation of the algorithms was written in Intel 64 assembly for systems following the System V

ABI [16]. Hand-tuned assembly can slightly surpass optimizing compilers due to better instruction scheduling and

register allocation. For the measurements and comparison with competitive libraries, we have translated the code to

C++ using intrinsic functions [10] to access AVX-512 instructions and integrated it into our simdutf library28 as the

AVX-512 kernel. This library is freely available. Despite a slight loss of performance in comparison to the assembly

27Or in case of an encoding error, mask the already loaded vector.

28https://github.com/simdutf/simdutf

https://github.com/simdutf/simdutf

Robert Clausecker and Daniel Lemire 29

implementation, we believe that this approach facilitates better portability and integration into existing software.

Our library is organized in different kernels that are automatically selected at runtime based on the features of

the CPU, a process sometimes called runtime dispatching. During benchmarking, we can manually select the different

kernels. As the names suggest, the AVX2 kernel relies on AVX2 instructions (32-byte vector length) while the AVX-

512 kernel using our new functions relies on AVX-512 instructions with a 64-byte vector length. Our new functions

are part of the AVX-512 kernel, and the AVX2 kernel represents results presented by Lemire and Muła [2].

For benchmarking, we use Ubuntu 22.04 on a non-virtual (metal) server from AmazonWeb Services (c6i.metal).

These servers have 32-core Intel Xeon 8375C (Ice Lake) processors with 41MiB of L3 memory, with 48 kB of L1 data

cache memory and 1.25MiB of L2 cache memory per core. The base clock frequency is 2.9GHz, with a maximal

frequency of 3.5GHz. They have 256GiB of main memory (DDR4, 3200MHz). The benchmarks are single-threaded

and we exclude disk and network accesses from our tests. The software is written in C++ and compiled with the

Clang 14 C++ compiler from the LLVM project using the default cmake setting for a release build: -O3 -DNDEBUG.

We could use several threads. For example, we could split the input into segments, and compute the expected

transcoded size of the segments, before transcoding each segment in its own thread. However, merely joining a

thread under Linux can require tens of microseconds of waiting from the main thread. With the high speed of our

functions, this penalty is equivalent to the time required to process hundreds of kilobytes of data. We could use faster

synchronization techniques (e.g., spin locks and thread pools), but at the expense of complexity and power efficiency.

We expect that multicore parallelism is only warranted for large inputs, in the megabytes or gigabytes range. Future

work might consider such cases.

8.1 | Setup

We benchmark the transcoding of data files between UTF-8 and UTF-16 in memory. We repeat the task 10 000 times,

measuring the timeof each conversion: theC++ library reports a precision of 1ns for the std::chrono::steady_clock

measures on our test system [17]. The distribution of timings has a long tail akin to a log-normal distribution: most

values are close to the minimum. We verify automatically that the difference between the minimum and the average

timing is small (less than 1%).

AVX-512 capable Intel processors prior to the Ice Lake and Rocket Lake families would systematically reduce their

frequency when using 512-bit instructions, a process that Intel referred to as licensing. Such 512-bit licensing is no

longer present in the more recent processors [18]. However, the processor frequency may fluctuate based on power

consumption and heat production as is generally the case with Intel processors. We expect 512-bit instructions to use

more power, and thus to run at a slightly lower frequency. Irrespective of power usage, Intel processors execute 512-

bit instructions at a reduced speed initially (e.g., 4× slower)—for a few microseconds. We assume that our functions

with 512-bit instructions are part of a binary executable compiled with optimizations for 512-bit capable processors

so that this temporary effect is uncommon, maybe occurring only once.

We are interested in the steady-stateperformance of our functions: we therefore always benchmark our functions

twice: once to intuitively warm the processor so that 512-bit instructions always execute at full speed and so that

the processor has had a chance to decode the instructions. Furthermore, we may sometimes benchmark a function

relying on 512-bit instructions, followed by a conventional function: to ensure that the latter is not penalized by the

power usage of the first function, we pause for a millisecond when switching the benchmarked function.

We report performance results in characters per second. A given string has the same number of characters

irrespective of the format (UTF-8, UTF-16). We also report speeds in gigabytes per second by taking the size of

the input and dividing by the time elapsed. We focus on little-endian UTF-16, but our software supports big-endian

30 Robert Clausecker and Daniel Lemire

ICU
AVX2

AVX-512

0

2

4

6

8

G
B
/s

Arabic

Chinese

Emoji

(a) UTF-8 to UTF-16 transcoding

ICU
AVX2

AVX-512

0

5

10

15

20

G
B
/s

Arabic

Chinese

Emoji

(b) UTF-16 to UTF-8 transcoding

FIGURE 3 Transcoding speeds in gigabytes of input data per second for various test files. We compare against the

ICU library. The simdutf library provides both AVX2 and AVX-512 functions.

UTF-16, at little cost.

We compare our work with the following competitors:

• We use the u8u16 library [7] (last released in 2007).

• We use the utf8lut library [9] (last modified April 19, 2020). We require full validation of input (cmValidate).

• We use the C++ component from International Components for Unicode (ICU) [19].

• We use the transcoding functions of the LLVM project, they were originally produced by the Unicode Consortium.

• We use the iconv library, which is part of the C library (GNU C Library 2.35).

We use automatically generated (lipsum) text in Arabic, Chinese, Hebrew, Hindi, Japanese, Korean, Latin and

Russian, as well as a list of emojis (henceforth Emoji).29 When formatted as UTF-16, they range in size between

11KiB and 170KiB. The Chinese, Hindi, Japanese and Korean files have a high fraction of 3-byte UTF-8 characters.

The Arabic, Hebrew and Russian files have a high fraction of 2-byte UTF-8 characters. Except for the Emoji file, none

of the file contain 4-byte UTF-8 characters. We make our files freely available.30

8.2 | Results

Wepresent speed results in gigacharacters per second regarding the validatingUTF-8 toUTF-16 transcoding functions

on the lipsum files in Table 4. The AVX2 and AVX-512 columns correspond to our own code, in the simdutf library

(version 2.0.9, git tag v2.0.9). As the AVX2 kernels are implemented with a 32-byte vector length compared to the

64-byte vector length of the AVX-512 kernels, we expect a 33% higher throughput just from using longer vectors

(see § 5.2).

29https://github.com/rusticstuff/simdutf8

30https://github.com/lemire/unicode_lipsum

https://github.com/rusticstuff/simdutf8
https://github.com/lemire/unicode_lipsum

Robert Clausecker and Daniel Lemire 31

(a) UTF-8 to UTF-16

llvm iconv ICU u8u16 utf8lut AVX2 AVX-512

Arabic 0.17 0.39 0.80 0.87 0.92 1.3 4.3

Chinese 0.22 0.26 0.50 0.45 0.63 1.2 1.8

Emoji 0.18 0.19 0.22 0.31 0.18 0.40 1.0

Hebrew 0.17 0.39 0.80 0.87 0.92 1.3 4.3

Hindi 0.16 0.21 0.43 0.49 0.72 0.84 1.7

Japanese 0.21 0.26 0.51 0.46 0.64 1.2 1.7

Korean 0.13 0.30 0.62 0.54 0.72 0.89 1.8

Latin 0.35 0.56 1.5 13. 1.0 22. 20.

Russian 0.17 0.29 0.46 0.86 0.92 1.3 4.2

harm. mean 0.18 0.29 0.50 0.60 0.57 1.0 2.3

(b) UTF-16 to UTF-8

llvm iconv ICU utf8lut AVX2 AVX-512

Arabic 0.38 0.30 0.67 2.4 4.8 11.

Chinese 0.38 0.28 0.36 2.4 2.6 3.9

Emoji 0.29 0.20 0.27 0.37 0.38 1.6

Hebrew 0.48 0.32 0.68 2.3 4.8 11.

Hindi 0.31 0.21 0.21 2.4 2.6 3.8

Japanese 0.38 0.26 0.37 2.3 2.7 3.8

Korean 0.43 0.30 0.37 2.3 2.7 3.8

Latin 0.58 0.56 0.91 2.3 18. 20.

Russian 0.28 0.23 0.23 2.4 4.8 11.

harm. mean 0.37 0.27 0.36 1.5 1.9 4.5

TABLE 4 Validating transcoding speeds (gigacharacters per second) over the lipsum datasets, last row is the

harmonic mean of the column. The last column (AVX-512) presents the results from our new algorithms.

On the Latin file, the new AVX-512 kernel fails to improve on the earlier AVX2 kernel: the Latin dataset is made

almost entirely of ASCII inputs which the AVX-512 kernel processes 32 bytes at a time, just like the AVX2 kernel. On

the Emoji file, the new AVX-512 kernel achieves one gigacharacter per second when transcoding from UTF-8, which

is more than twice as fast as any competitor. When transcoding from UTF-16, the new kernel transcode the Emoji

file at 1.6 gigacharacters per second, which is more than four times as fast as any competitor. Whether transcoding

from UTF-8 or UTF-16, the new kernel does well when transcoding inputs dominated by 2-byte UTF-8 sequences

(Arabic, Hebrew and Russian): it is twice as fast as any competitor. For inputs dominated by 3-byte UTF-8 sequences

(Chinese, Hindi, Japanese and Korean), the gain compared to the earlier AVX2 kernel is of the order of 50%.

Fig. 3 and Table 5 present the speed results in gigabytes of inputs per second. Whereas the speeds of the AVX-

32 Robert Clausecker and Daniel Lemire

(a) UTF-8 to UTF-16

llvm iconv ICU u8u16 utf8lut AVX2 AVX-512

Arabic 0.31 0.70 1.4 1.5 1.6 2.3 7.6

Chinese 0.66 0.77 1.5 1.3 1.9 3.7 5.4

Emoji 0.72 0.78 0.87 1.2 0.70 1.6 4.2

Hebrew 0.31 0.70 1.4 1.6 1.6 2.3 7.7

Hindi 0.43 0.56 1.2 1.3 1.9 2.3 4.6

Japanese 0.60 0.74 1.5 1.3 1.9 3.5 5.0

Korean 0.32 0.73 1.5 1.3 1.8 2.2 4.5

Latin 0.35 0.56 1.5 13. 1.0 22. 20.

Russian 0.31 0.52 0.83 1.6 1.7 2.4 7.7

harm. mean 0.40 0.66 1.2 1.5 1.4 2.6 6.0

(b) UTF-16 to UTF-8

llvm iconv ICU utf8lut AVX2 AVX-512

Arabic 0.76 0.61 1.3 4.7 9.6 21.

Chinese 0.76 0.57 0.73 4.7 5.3 7.7

Emoji 1.2 0.82 1.1 1.5 1.5 6.5

Hebrew 0.96 0.63 1.3 4.7 9.6 21.

Hindi 0.63 0.42 0.41 4.7 5.3 7.7

Japanese 0.77 0.52 0.74 4.7 5.3 7.6

Korean 0.86 0.60 0.73 4.7 5.4 7.6

Latin 1.2 1.1 1.8 4.7 37. 40.

Russian 0.56 0.45 0.46 4.7 9.6 21.

harm. mean 0.80 0.59 0.77 3.8 5.1 11.

TABLE 5 Validating transcoding speeds in gigabytes of input per second over the lipsum datasets, last row is the

harmonic mean of the column. The last column (AVX-512) presents the results from our new algorithms.

512 function in gigacharacters per second vary by multiples (from 4.3 with Arabic to 1.0 with Emoji), the gaps are

much less significant in gigabytes per second (from 7.6 with Arabic to 4.2 with Emoji).

Table 6 presents the number of instructions retired per character, measured using the hardware performance

counters provided by Intel.31 In the worst case (for the Emoji files), the new AVX-512 kernel still requires fewer than

6 instructionsper character to transcode in either direction. Except for the Latin files, the newAVX-512 kernel requires

far fewer than half the number of instructions than the AVX2 kernel when transcoding from UTF-8. For example, we

reduce the number of instructions by a factor of three for the Arabic file. Table 7 provides the number of instructions

31Under Linux, the performance counters are made available by the operating system. A C program can query them using the functions defined in the

linux/perf_event.h header.

Robert Clausecker and Daniel Lemire 33

per cycle. We find that the AVX-512 kernel is associated with a lower number of instructions retired per cycle—

especially so when transcoding from UTF-8. Correspondingly, we expect a lower number of 64-byte instructions

being retired per cycle compared to 32-byte instructions due to the microarchitectures of the Intel CPUs (§ 5.2).

The utf8lut library, when transcoding from UTF-8, requires fewer instructions than our AVX-2 kernel, but it is

associated with few instructions per cycle. Hence, the utf8lut library is generally slower than our AVX-2 kernel de-

spite relying on the same instruction set. The utf8lut library relies on a 2MiB table for UTF-8 to UTF-16 transcoding

as opposed to a small table (11KiB) for our AVX-2 kernel, and no table at all for our AVX-512 kernel. A large table

may cause the CPU to wait for loads to complete and increases overall cache pressure.

(a) UTF-8 to UTF-16

llvm iconv ICU u8u16 utf8lut AVX2 AVX-512

Arabic 65. 52. 27. 15. 5.3 7.4 2.3

Chinese 82. 78. 38. 31. 8.4 11. 3.2

Emoji 100 100 93. 45. 95. 29. 5.4

Hebrew 65. 51. 27. 15. 5.3 7.4 2.3

Hindi 80. 71. 34. 28. 7.3 12. 3.0

Japanese 81. 76. 37. 30. 8.2 11. 3.2

Korean 75. 66. 31. 25. 6.9 12. 2.7

Latin 56. 35. 11. 0.65 5.3 0.35 0.24

Russian 66. 52. 27. 16. 5.3 7.2 2.3

(b) UTF-16 to UTF-8

llvm iconv ICU utf8lut AVX2 AVX-512

Arabic 37. 53. 27. 6.3 2.6 1.1

Chinese 48. 67. 41. 6.3 4.5 2.2

Emoji 62. 90. 67. 51. 48. 5.4

Hebrew 37. 53. 27. 6.3 2.6 1.1

Hindi 45. 62. 38. 6.3 4.5 2.2

Japanese 47. 65. 40. 6.3 4.5 2.2

Korean 43. 58. 35. 6.3 4.5 2.2

Latin 31. 34. 19. 6.3 0.69 0.55

Russian 37. 53. 27. 6.3 2.6 1.1

TABLE 6 CPU instructions retired per character when transcoding with validation. The last column (AVX-512)

presents the results from our new algorithms.

In Fig. 4, we present the measured transcoding speed for various small prefixes of the Arabic files. We find that

as long as the input has hundreds of characters, we can reach and exceed a billion characters decoded per second.

34 Robert Clausecker and Daniel Lemire

(a) UTF-8 to UTF-16

llvm iconv ICU u8u16 utf8lut AVX2 AVX-512

Arabic 3.3 5.8 6.1 3.8 1.4 2.7 2.9

Chinese 5.2 5.7 5.3 4.0 1.5 3.9 1.7

Emoji 5.1 5.8 5.8 3.9 4.8 3.3 1.6

Hebrew 3.2 5.8 6.1 3.8 1.4 2.7 2.9

Hindi 3.7 4.3 4.2 3.9 1.5 2.9 1.5

Japanese 4.8 5.5 5.4 3.9 1.5 3.9 1.6

Korean 2.8 5.6 5.4 3.9 1.4 3.1 1.5

Latin 5.6 5.6 4.6 2.4 1.6 2.2 1.4

Russian 3.2 4.3 3.6 3.9 1.4 2.7 2.9

harm. mean 3.9 5.3 5.0 3.6 1.6 3.0 1.8

(b) UTF-16 to UTF-8

llvm iconv ICU utf8lut AVX2 AVX-512

Arabic 4.0 4.6 5.2 4.2 3.5 3.3

Chinese 5.2 5.4 4.8 4.2 3.4 2.5

Emoji 5.2 5.3 5.2 5.3 5.1 2.6

Hebrew 5.1 4.8 5.2 4.2 3.5 3.3

Hindi 4.1 3.7 2.6 4.2 3.4 2.5

Japanese 5.2 4.9 4.7 4.2 3.4 2.5

Korean 5.3 5.0 4.5 4.2 3.4 2.5

Latin 5.2 5.5 5.0 4.2 3.6 3.2

Russian 3.0 3.4 2.1 4.2 3.5 3.3

harm. mean 4.5 4.6 3.9 4.3 3.6 2.8

TABLE 7 CPU instructions retired per cycle when transcoding with validation. The last column (AVX-512) presents

the results from our new algorithms.

Historically, some processors could only read and write data when the memory address was a multiple of the

data size. Older Intel processors could read and write at any address, but with a severe penalty for unaligned memory

addresses. On recent processors (e.g., Intel’s Sandy Bridge microarchitecture launched in 2011), there is reportedly

no measurable performance penalty for reading or writing misaligned memory operands [14]. However, there might

be indirect penalties (e.g., accessing more cache lines). In the hope of achieving better performance, we could require

that our memory buffers start at an address divisible by 512 bits. However, we expect that the performance of the

transcoding functions is generally unaffected by memory alignment on our test system. Thus our benchmarking code

does not align the memory in any particular manner, relying instead on the default behavior of the memory allocator.

To test the effect of the memory alignment of the input, we transcoded the same data, but shifted by 0 to 512 bytes

Robert Clausecker and Daniel Lemire 35

500 1,000 1,500 2,000 2,500 3,000

2

4

6

8

10

number of characters (prefix)

b
il
li
o
n
s
o
f
c
h
a
ra
c
te
rs
p
e
r
se
co
n
d

UTF-16 to UTF-8

UTF-8 to UTF-16

FIGURE 4 Validating transcoding speed in billions of characters per second for prefixes of various lengths of the

Arabic files using our techniques.

inside a buffer. Using one of our UTF-8 file (Arabic), we measured a difference of 2% between the fastest and slowest

alignment when using our fast (AVX-512) transcoder. We get a similar result if we transcode from a fixed input to

offsetted locations inside a destination buffer. Our results suggest that memory alignment is likely not a significant

factor.

9 | CONCLUSION

It is not a priori obvious that character transcoding is amenable to SIMD processing. Earlier work achieved high speeds

but it required kilobytes of lookup tables [2]. Our work indicates that the AVX-512 instruction-set extensions enables

high speed for tasks such as character transcoding—without lookup tables and using few instructions. It suggests

that some features of the AVX-512 instruction-set extensions might serve as a reference for future instruction-set

extensions. In particular, we find masked SIMD instructions (move, load, store, compress) with byte-level granularity

useful.

Both Intel and AMD support AVX-512 instructions. They also both offer specialized compilers, tuned for their

processors. Future work could compare the performance of our routines on more varied Intel and AMD processors

(e.g., Intel Rocket Lake and Sapphire Rapids, AMD Zen 4), using specialized compilers (e.g., from Intel and AMD) and

hand-tuned assembly. We could extend our benchmarks to cover a wider range of string.

Acknowledgements

We thank W. Muła who produced an early UTF-8 to UTF-16 transcoder using AVX-512 instructions. The version

presented in this manuscript follows a different design but Muła’s work provided a crucial motivation. We thank

N. Boyer for his technical work on our software library, benchmarks, and tests.

36 Robert Clausecker and Daniel Lemire

references

[1] Keiser J, Lemire D. Validating UTF-8 in less than one instruction per byte. Software: Practice and Experience 2021;51(5).

doi:10.1002/spe.2920.

[2] Lemire D, Muła W. Transcoding billions of Unicode characters per second with SIMD instructions. Software: Practice

and Experience 2022;52(2):555–575. doi:10.1002/spe.3036.

[3] z/Architecture Principles of Operation. International Business Machines Corporation, fourteenth ed.; 2022, document

SA22-7832-13.

[4] Muła W, Lemire D. Base64 encoding and decoding at almost the speed of a memory copy. Software: Practice and

Experience 2020;50(2):89–97. doi:10.1002/spe.3036.

[5] Hoffman P, Yergeau F, UTF-16, an encoding of ISO 10646; 2000. Internet Engineering Task Force, Request for Com-

ments: 3629. https://tools.ietf.org/html/rfc2781 [last checked July 2021].

[6] Yergeau F, UTF-8, a transformation format of ISO 10646; 2003. Internet Engineering Task Force, Request for Comments:

3629. https://tools.ietf.org/html/rfc3629 [last checked July 2021].

[7] Cameron RD. A case study in SIMD text processing with parallel bit streams: UTF-8 to UTF-16 transcoding. In: Proceed-

ings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming ACM; 2008. p. 91–98.

doi:10.1145/1345206.1345222.

[8] Inoue H, Komatsu H, Nakatani T. Accelerating UTF-8 Decoding Using SIMD Instructions (in Japanese). Information

Processing Society of Japan Transactions on Programming 2008;1(2):1–8.

[9] Gatilov S, utf8lut: Vectorized UTF-8 converter; 2012. https://bit.ly/3qI7BVQ [last checked October 2022].

[10] Intel Intrinsics Guide; 2023. https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html [last

checked June 2023].

[11] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2. Intel Corporation; 2022, order number

325383-077US.

[12] Fog A. Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD

and VIA CPUs. In: Optimization Manuals, vol. 4 published online at https://agner.org/optimize; 2022.

[13] Abel A, Reineke J. uops.info: Characterizing Latency, Throughput, and Port Usage of Instructions on Intel Microarchi-

tectures. In: ASPLOS ASPLOS ’19, New York, NY, USA: ACM; 2019. p. 673–686. doi:10.1145/3297858.3304062.

[14] Fog A. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for assembly programmers and

compiler makers. In: Optimization Manuals, vol. 3 published online at https://agner.org/optimize; 2022.

[15] Abel A, Reineke J. uiCA: Accurate Throughput Prediction of Basic Blocks on Recent Intel Microarchitectures. In: Rauch-

werger L, Cameron K, Nikolopoulos DS, Pnevmatikatos D, editors. ICS ’22: 2022 International Conference on Super-

computing, Virtual Event, USA, June 27-30, 2022 ICS ’22, ACM; 2022. p. 1–12. doi:10.1145/3524059.3532396.

[16] MatzM, Hubička J, Jaeger A, Mitchell M, System V Application Binary Interface AMD64 Architecture Processor Supple-

ment; 2012. Draft Version 0.99.6.

[17] Najafi A, Tai A, Wei M. Systems Research is Running out of Time. In: Proceedings of the Workshop on Hot Top-

ics in Operating Systems HotOS ’21, New York, NY, USA: Association for Computing Machinery; 2021. p. 65–71.

https://doi.org/10.1145/3458336.3465293, doi:10.1145/3458336.3465293.

[18] DownsT, Ice LakeAVX-512Downclocking; 2020. https://travisdowns.github.io/blog/2020/08/19/icl-avx512-freq.html

[last checked July 2022].

[19] International Components for Unicode (ICU); 2010. http://site.icu-project.org [last checked July 2021].

https://tools.ietf.org/html/rfc2781
https://tools.ietf.org/html/rfc3629
https://bit.ly/3qI7BVQ
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://agner.org/optimize
https://agner.org/optimize
https://doi.org/10.1145/3458336.3465293
https://travisdowns.github.io/blog/2020/08/19/icl-avx512-freq.html
http://site.icu-project.org

Robert Clausecker and Daniel Lemire 37

A | UTF-8 TO UTF-16: SUMMARY OF VARIABLES

symbol type description Eq.

win byte vector input vector —

m1 byte mask 1-byte sequence lead bytes inwin (6)

m234 byte mask 2/3/4-byte sequence lead bytes inwin (7)

m2 byte mask 2-byte sequence lead bytes inwin —

m34 byte mask 3/4-byte sequence lead bytes inwin (8)

m3 byte mask 3-byte sequence lead bytes inwin (43)

m4 byte mask 4-byte sequence lead bytes inwin (9)

m1234 byte mask lead bytes inwin (10)

m+1 byte mask second byte of each sequence inwin (37)

m+2 byte mask third byte of each sequence inwin (38)

m+3 byte mask fourth byte of each sequence inwin (11)

mend byte mask last byte of each sequence inwin (12)

M3 word mask 3-byte characters inWout (44)

Mhi word mask high surrogates inWout (24)

M lo word mask low surrogates inWout (23)

wstripped byte vector win with tag bits stripped off (14)

P word vector indices of last-in-sequence bytes inwin (15)

m−1 byte mask mask to admit only 2
nd-last bytes ofwin (17)

m−2 byte mask mask to admit only 3
rd-last bytes ofwin (18)

Wend word vector last byte of each sequence inwin (16)

W−1 word vector second-last byte of each sequence inwin (19)

W−2 word vector third-last byte of each sequence inwin (20)

Wsum word vector Wend,W−1, andW−2 bits assembled (21)

Wout word vector Wend with surrogates fixed up (25)

Mout word mask valid words inWout (27)

mprocessed byte mask last byte of each sequence in Mout (28)

nin integer number ofwin bytes processed (29)

nout integer number of words written out (30)

ℓ integer number of input bytes left to process —

b byte mask input bytes left to process (34)

mc byte mask where continuation bytes should be inwin (39)

mpre byte mask win bytes preceding first mismatch (41)

M<U+800 word mask overlong 3-byte characters inWout (45)

M3s word mask 3-byte characters encoding surr. inWout (46)

M4s word mask surrogates not encoding surr. inWout (47)

Variables pertaining to the fast paths are not listed.

38 Robert Clausecker and Daniel Lemire

B | UTF-16 TO UTF-8: SUMMARY OF VARIABLES

symbol type description Eq.

Win word vector input vector —

L word mask position of lookahead word (65)

M234 word mask words that are 2–4-byte characters (66)

M12 word mask words that are 1- and 2-byte characters (67)

Mhi word mask words that are high surrogates (68)

M lo word mask words that are low surrogates (69)

Wlo dword vector Win shifted to the right by one element —

Wjoined dword vector Win with high and low surrogates joined (75)

Wshifted dword vector Wjoined bits shifted with vpmultishiftqb (76)

Wtag dword vector UTF-8 tag bits forWout (77)

Wout dword vector Win transcoded to UTF-8 with padding (78)

Wkeep dword vector magic constant for which bytes to keep (79)

mkeep byte mask mask ofWout bytes we want to keep (80)

wout byte vector output string without padding (81)

nout integer length of wout (82)

c integer surrogate carry (in) —

cout integer surrogate carry out (84)

Mhi−lo word mask high surrogates not followed by low surr. (85)

M lo−hi word mask low surrogates not preceded by high surr. (86)

ℓ integer number of input words left to process (87)

B word mask input words left to process (88)

	Introduction
	Unicode and its Encodings
	UTF-16
	UTF-8

	Related Work
	Notational Conventions
	Mask Operations
	Vector Operations
	Special Functions

	AVX-512
	Masking
	Microarchitectural Details

	Transcoding from UTF-8 to UTF-16
	Classification and Masks
	Assembling Characters
	Processing the Tail
	Input Validation
	Fast Paths

	Transcoding from UTF-16 to UTF-8
	Classification and Fast Paths
	Surrogates
	Encoding into UTF-8
	Validation
	Decoding Failure and Tail Handling

	Experiments
	Setup
	Results

	Conclusion
	UTF-8 to UTF-16: Summary of Variables
	UTF-16 to UTF-8: Summary of Variables

