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Preliminaries

Determining the number of factors to retain in an exploratory
factor analysis is one of the methodological problems still open.

A plethora of stopping rules exist to answer this question. New
ones are published every year.

One promising technique is the Next Eigenvalue Sufficiency Test
(NEST; Achim (2017)), which shows excellent performance
Brandenburg & Papenberg (in press).

However, it has not been systematically compared with its
competitors.
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Preliminaries
Purpose : get the most of the data, with the fewest factors.
Image taken from Caron (In preparation)
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Objectives

To compare the performance of various recommended techniques
(Auerswald & Moshagen, 2019) in addition to NEST.

Next Eigenvalue Sufficiency Test (NEST) (Achim, 2017)

Parallel Analysis (PA) (Horn, 1965)

Sequential χ2 model tests (SMT) (Lawley, 1940)

Hull method (HULL) (Lorenzo-Seva et al., 2011)

Empirical Kaiser Criterion (EKC) (Braeken & Assen, 2017)
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Stopping rules
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Parallel analysis (PA)

Resample the eigenvalues of a dataset with no factor (Identidy
matrix) with the same characteristics as the target dataset (same
number of variables and subjects).

The first empirical eigenvalues greater than those simulated are
retained.
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Next Eigenvalue Sufficiency Test (NEST)

Takes into account sampling error, like parallel analysis, but also
the sequence of factor.

The test uses a correlation matrix containing the first k
dimensions determined previously.

When k = 0, the test is equivalent to parallel analysis.

The kth dimension is retained if the eigenvalue is greater than
those simulated.
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Empirical Kaiser criterion (EKC)

The distribution of eigenvalues asymptotically follows a
Marchenko-Pastur distribution.

λ0 = (1 +
√

p/n)2

for the 1st and then corrected for next ones

λj = max
(

p
∑j

i=0 λ

p−j−1

(
1 +

√
p/n

)2
, 1

)
The value of 1 is the minimum (like the Kaiser criterion).

The first kth empirical eigenvalues above the criteria are retained.
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Hull method (HULL)

Similar to Cattell’s non-graphical variants, Hull’s method
attempts to find a kink in the eigenvalues.

Instead of using eigenvalues relative to the number of factors,
Hull’s method relies on goodness-of-fit indices (GFIs) relative to
the degrees of freedom of the proposed model.

The last CFI is retained without improvement.
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Sequential χ2 model tests (SMT)

A sequential test of maximum likelihood (ML) estimation in
which the covariance matrix of the model is equal to the sample
covariance matrix.

We retain the first structure whose χ2 is non-significant.
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Simulations

Simulations with synthetic factorial structures (Caron, 2016,
2019) in R (R Core Team, 2023).

The structures are

24 variables;

1 to 8 factors (nf);

loadings ranging from .40 to .80 (loadings);

inter-factor correlations from .00 to .30 (Corr. Fact.);

sample sizes, 120, 240 and 480 (n);

In total, 360 scenarios are repeated 1000 times.
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Performance

Performance is evaluated in terms of

accuracy (correct identification of dimensionality);

bias (tendency to over- or under-estimate dimensionality).
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Very easy cases
Corr. fact. = 0 Corr. fact. = 0.1 Corr. fact. = 0.2 Corr. fact. = 0.3
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SMT and HULL are not the most efficient.
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Easy and intermediate cases
Corr. fact. = 0 Corr. fact. = 0.1 Corr. fact. = 0.2 Corr. fact. = 0.3
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MAP is not effective for small loadings.

In more difficult cases, NEST and PA stand out.
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Difficult and very difficult cases (power)
Corr. fact. = 0 Corr. fact. = 0.1 Corr. fact. = 0.2 Corr. fact. = 0.3
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NEST and PA are the techniques that stand out the most
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Difficult and very difficult cases (bias)
Corr. fact. = 0 Corr. fact. = 0.1 Corr. fact. = 0.2 Corr. fact. = 0.3
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In all cases, the techniques underestimated.

SMT is the least biased technique on average.

NEST is slightly more biased in very difficult cases.
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Limits

Limits of the simulations

Factor structures with the same loadings.

Equal eigenvalues for all factors.

Limits of NEST (and all techniques based on eigenvalues, such as
PA and EKC)

Suffers from the paralogism of the consequent assertion.
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Conclusions

While most techniques do well in easy scenarios, NEST
particularly stands out in difficult ones.

Test techniques with more realistic and varied factor structures.

Stay alert!
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R Packages

Rnest (in development)
remotes::install_github(repo = "quantmeth/Rnest" )
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Thanks to

Fonds d’aide à la recherche
(FAR)
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