
ar
X

iv
:2

30
3.

14
32

1v
1

 [
cs

.D
S]

 2
5

M
ar

 2
02

3

Exact Short Products From

Truncated Multipliers

Daniel Lemire

Data Science Research Center, Université du Québec (TELUQ), Montreal, Quebec, H2S 3L5,
Canada

Email: daniel@lemire.me

We sometimes need to compute the most significant digits of the product of small
integers with a multiplier requiring much storage: e.g., a large integer (e.g., 5100)
or an irrational number (π). We only need to access the most significant digits
of the multiplier—as long as the integers are sufficiently small. We provide an
efficient algorithm to compute the range of integers given a truncated multiplier

and a desired number of digits.

Keywords: Modular Arithmetic, Truncated Multiplication, Short Product

1. INTRODUCTION

In applications such as cryptography [1], digital signal
processing [2], number serialization [3, 4] or number
parsing [5], we need to efficiently compute the most
significant digits or bits (binary digits) of a product.
We call such a partial product a short product.
We consider the computation of the product between

small integers and a multiplier with many digits.
To illustrate the problem, suppose that we want to
compute the product of π with an integer and get 10-
digit accurate answer. With the 13 most significant
digits of π (3.141592653589), we get an accurate
product for all integers in [1, 1198) no matter the
missing digits of π. See Table 1.
We are given only the most significant digits of the

multiplier (i.e., a short multiplier) and we want to know
whether we can compute the most significant digits
of the product exactly, for some range of values of
w. We provide an efficient logarithmic-time algorithm
to compute the exact range of validity (§ 6.1). We
make available our algorithms as part of an open-source
Python library.1

2. RELATED WORK

Given only a short multiplier of z, we seek the exact
range of values w such that we can compute a given
number of most significant digits of the product w × z
using the short multiplier. One potential application
of our work is in number parsing: given the string
3e100, we may want to convert it to a 64-bit binary
floating-point number: 3×10100 ≈ 7721336384202043×

1https://github.com/lemire/exactshortlib

TABLE 1: Range of integers w such that the 10 most
significant digits of w× π are exact as a function of the
number of most significant digits of π used. The bound
is blind to the missing digits of π.

digits of π interval for 10-digit accuracy

10 [1, 2)
11 [1, 14)
12 [1, 209)
13 [1, 1198)
14 [1, 18149)
15 [1, 26255)
16 [1, 1454833)
17 [1, 14920539)
18 [1, 14920539)
19 [1, 1963319607)
20 [1, 17329613732)

2281 where 7721336384202043 is the 53-bit significand
chosen to best approximate 3 × 10100. We have that
3 × 10100 = 3 × 5100 × 2100. Ignoring the power of
two, the significand of the binary floating-point number
(7721336384202043) may be computed by multiplying
the decimal significand (3) by the power of five (5100)
and selecting the 53 most significant bits. For speed,
we may want to avoid computing 5100 and the full
product 3 × 5100. Instead, we want to just store the
most significant bits of 5100 [5]. However, we also need
to check the validity of the short multipliers to ensure
that the computation of the most significant digits is
exact.
To our knowledge, our problem, the exact compu-

tation of the range of validity of a short multiplier, is

http://arxiv.org/abs/2303.14321v1
https://github.com/lemire/exactshortlib

2 D. Lemire

novel. Adams [3, 4] considered a related problem in the
context of number serialization. They bound the max-
imum and minimum of ax% b over an interval starting
at zero. With these bounds, they show that powers of
five truncated to 128 bits are sufficient to convert 64-
bit binary floating-point numbers into equivalent deci-
mal numbers. Specifically, Lemma 3.6 from Adams [3]
computes a conservative approximation of the true min-

imum and maximum of ax% b for x ∈ [0,M]. In con-
trast, we present a logarithmic-time algorithm (in § 7)
that provides all of the minima and maxima. This exact
result allows us to compute an exact range of validity
for a short multiplier.

3. MATHEMATICAL PRELIMINARIES

We present our core mathematical notation and we
review some elementary results. See Table 2. For
simplicity, we avoid references to equivalence classes or
other extraneous concepts.
Let ⌊x⌋ be the largest integer smaller or equal to x.

For a number a and another number b 6= 0, we define
the integer division a ÷ b ≡ ⌊a/b⌋ and the remainder
a% b ≡ a− (a÷ b)× b.
We say that b 6= 0 divides a if a% b = 0. We write the

greatest common divisor of integers a and b as gcd(a, b).
We say that a and b are coprime if gcd(a, b) = 1.
The smallest integer a′ such that a ÷ b = a′ ÷ b

is a′ = (a ÷ b) × b = a − (a% b). We have that
(a+ b)%M = (a%M + b%M)%M .
Consider a positive integer divisor M . When

a%M = 0 then (−a)%M = 0. Otherwise, when
a%M 6= 0, then we have (−a)%M = M − (a%M).
The distance between two integers a, b is often defined

as the absolute value of their difference |a− b|. We use
a generalized measure:

distanceM (a, b) ≡ min((a− b)%M, (b− a)%M).

Because (a + b)%M = (a%M + b%M)%M , we
have the following elementary results:

• a%M+b%M < M if and only if a%M+b%M =
(a+ b)%M ,

• a%M+b%M ≥M if and only if a%M+b%M =
M + (a+ b)%M .

Similarly, we have:

• a%M + b%M < M if and only if (a + b)%M ≥
max(a%M, b%M),

• a%M + b%M ≥ M if and only if (a + b)%M <
min(a%M, b%M).

Further if a%M > 0 and b%M > 0 then
a%M + b%M < M if and only if (a + b)%M >
max(a%M, b%M). Given two integers a, b and an
integer divisor M , we either have (a − b)%M =
a%M − b%M when a%M ≥ b%M , or (a− b)%M =
M + a%M − b%M otherwise.

symbol meaning

⌊x⌋ largest integer no larger than x
gcd(a, b) greatest common divisor of a and b
a÷ b integer division of a by b: ⌊a/b⌋
a% b remainder of the division of a by b
z a multiplier (e.g., large integer)
w integer to be multiplied by z
α integer corresponding to a minimum
β integer corresponding to a maximum
M integer divisor

distanceM (a, b) min((a− b)%M, (b− a)%M)

TABLE 2: Notational conventions.

4. PLAN

Our derivation is organized as follow.

1. We formalize the concept of most significant
digits of a product in § 5. Unsurprisingly, the
computation of the most significant digits depends
on the size of the product. Effectively, we get
the most significant digits by dividing by some
power of the base (e.g., 103), and by discarding
the remainder.

2. In § 6, we show that a short multiplier always
provides an exact short product if and only if the
discarded remainder is not too large (Lemma 6.1).
These remainders take the form (w × z) ÷ M
where w is an integer variable while z and M are
integer constants. By combining the result from
the previous section (§ 5), we describe how checking
for exact most-significant digits requires to bound
various remainders over ranges. We conclude this
section with a technical lemma (Lemma 6.2) which
suggests that identifying the maxima of remainders
is sufficient. Treating w → (w × z) ÷ M as a
function, we need to identify the values of w that
provide a new maximum for the expression (w ×
z)÷M as w is incremented (e.g., w = 1, 2, 3, . . .).

3. In § 7, we present Lemma 7.1 which says that if we
know the location of the last maximum (w = β)
and the last minimum (w = α), then the next
extremum is at the sum of the two (w = α + β).
This leads us to an efficient (logarithmic-time)
algorithm to locate all extrema. The result is an
algorithm that we present in Python (Fig. 2): it
computes the gaps between the extrema of (w ×
z)%M for w = 1, 2, . . . In § 7.1, we show that these
gaps are sufficient to locate efficiently the extrema
of (w× z)%M over a range (w = A,A+1, . . . , B)
that does not begin at 1 (w = 1). Finally,
we provide a function find max min (Fig. 3) to
enumerate all extrema of (w × z)%M for w =
A, . . . , B.

4. In § 8, we combine the function find max min

with the results from § 6 to arrive at our main
function (find range) presented in Fig. 3. Given

Exact Short Products 3

a short multiplier, and a desired number of digits,
it computes the range of validity.

5. MOST SIGNIFICANT DIGITS

We often represent integers with digits. E.g., the integer
1234 has four decimal digits. The integer 7 requires
three binary digits. The number of digits of the integer
x in base b is the smallest integer d such that x÷bd = 0.
By convention, the integer 0 has no digit (zero digit)
and we do not consider negative integers. We may
compute the number of digits in base b of a positive
integer x using the formula ⌈logb(x + 1)⌉. In base 10,
the integers with three digits go from 100 to 999, or from
102 to 103 − 1, inclusively. More generally, an integer
has d digits in base b if it is between bd−1 and bd − 1,
inclusively.
The product between an integer having d1 digits

and integer having d2 digits is between bd1+d2−2 and
bd1+d2 − bd1 − bd2 + 1. (inclusively). Thus the product
has either d1+d2−1 digits or d1+d2 digits. To illustrate,
let us consider the product between two integers having
three digits. In base 10, the smallest product is 100
times 100 or 10 000, so it requires 5 digits. The largest
product is 999 times 999 or 998 001 (6 digits).
Suppose that we want d ≥ 1 digits of accuracy (in

base b) for the integer product w×z given a fixed integer
z. As much as possible, we want to compute the d most
significant digits:

• If bd−1 ≤ (w × z) ≤ bd − 1, then we output w × z.
• If bd ≤ (w×z) ≤ bd+1−1, then we output (w×z)÷b.
• . . .
• Generally, if bd+k−1 ≤ (w×z) ≤ bd+k−1 for k ≥ 0,

then we output (w × z)÷ bk.

6. SHORT MULTIPLIERS

Suppose that we want to compute the most significant
digits of wπ for small integers w. Materializing all
digits of π is impossible, so we use a truncated version:
3.1416×w. Thus we may compute the most-significant
digits of 3.1416 × w. For simplicity, we can omit the
decimal point. How large could the integer w be if we
want two digits of accuracy assuming we do not use the
missing digits of π? The answer is that w should not
exceed 2068. It is an instance of the general question
we want to be able to answer.
When 103 ≤ 31416 × w ≤ 104 − 1, (31416 ×

w) ÷ 10 provides the two-most significant digits of the
product. We want to determine when (31416×w)÷ 10
matches the value we would get when computing the
full product: (31416 × w) ÷ 10 = (10000π × w) ÷ 10
irrespective of the truncated portion of π (10000π −
31416). The following lemma provides a necessary and
sufficient condition.

Lemma 6.1. Let z be a truncated integer multiplier

and z′ = z + ǫ be the exact multiplier with ǫ ∈ [0, 1).

For integers w and M , we have that (w×z)÷M = (w×
z′)÷M for all ǫ if and only if (w×z)%M < M−w+1.

Proof. Let z be the truncated integer multiplier and
z′ = z + ǫ be the exact multiplier with ǫ ∈ [0, 1). Since
z ≤ z′ < z+1, we have that w×z ≤ w×z′ < w×z+w.
Hence we have that w×z ≤ w×z′ ≤ w×z+w−1. Thus
we have (w×z)÷M ≤ (w×z′)÷M ≤ (w×z+w−1)÷M .
Therefore, we have that (w×z)÷M = (w×z′)÷M for
all z′ if and only if (w× z)÷M = (w× z+w− 1)÷M .
Write (w× z+w− 1)÷M = ((w× z)÷M ×M +(w×
z)%M + w − 1)÷M . With a little arithmetic, we see
from this last equality that (w × z)%M + w − 1 < M
if and only if (w × z +w− 1)÷M = (w × z)÷M . We
have proven the lemma.

We can apply this condition to the computation of
digits. Consider w × z and suppose you desire to have
d ≥ 1 digits of accuracy in base b.

• If (w × z) ≤ bd−1 − 1, then we cannot produce
d digits by truncation. Thus we may require as
a pre-condition that (w × z) ≥ bd−1 or w ≥
(bd−1 + z − 1)÷ z.

• If bd−1 ≤ (w × z) ≤ bd − 1, then we output w × z
after checking that w < 2.

• If bd ≤ (w×z) ≤ bd+1−1, then we output (w×z)÷b
after checking that (w × z)% b < b− w + 1.

• . . .
• Generally, if bd+k−1 ≤ (w×z) ≤ bd+k−1 for k ≥ 0,

then we output (w × z) ÷ bk after checking that
(w × z)% bk < bk − w + 1.

We would like to check (w × z)% bk < bk − w + 1
efficiently over the range bd+k−1−1 < (w×z) ≤ bd+k−1
to verify whether we can compute digits exactly.

6.1. Finding the Valid Range

Suppose that (β × z)%M is the maximum of (w ×
z)%M for w = 0, 1, . . . , β, then it follows that if
(β × z)%M ≤ M − β + 1 is satisfied, it must be
that (w × z)%M < M − w + 1 is satisfied for w =
0, 1, . . . , β−1, since M−w+1 is strictly decreasing and
(w×z)%M < (β×z)%M . Conversely, the next lemma
shows that the first time that (w×z)%M < M −w+1
is falsified, (w × z)%M is a new maximum.

Lemma 6.2. Let w′ be the smallest integer value w′ ≥
0 such that (w′×z)%M ≥M−w′+1, then we have that

(w′ × z)%M > (w × z)%M for w = 0, 1, . . . , w′ − 1.

Proof. Let w2 be the smallest value w such that (w ×
z)%M < M −w+1 is falsified. Let w1 be the location
of the maximum of (w × z)%M up to w2 exclusively:
0 ≤ w1 < w2. Then we have w1 ≤ w2 such that
(w1×z)%M ≥ (w2×z)%M , (w1×z)%M < M−w1+1
and (w2 × z)%M ≥ M − w2 + 1. Thus we have
that (w1 × z)%M − (w2 × z)%M < w2 − w1 or
(w2 × z)%M − (w1 × z)%M > w1 −w2 or M + (w2 ×
z)%M − (w1 × z)%M > M +w1 −w2. Thus we have

4 D. Lemire

w (w × 3)%8 classification

1 3 maximum/minimum
2 6 maximum
3 1 minimum
4 4
5 7 maximum
6 2
7 5
8 0 minimum

TABLE 3: Example of remainders with M = 8 and
z = 3.

that ((w2 − w1) × z)%M > M − (w2 − w1). This
indicates that w2−w1 falsifies (w×z)%M < M−w+1,
which is only possible if w1 = 0 by our assumption,
but that is not possible since it would imply that the
maximum is 0. We have shown the lemma.

This lemma is helpful because it indicates that we
only need to check the condition (w × z)%M ≥ M −
w + 1 when (w × z)%M is a new maximum.
Given a short multiplier z and a desired number of

digits d in base b, we may seek the upper range of the
variable w such that the dmost significant digits of w×z
are exact. We iterate over k = 0, 1, . . . and for values of
w such that bd+k−1 − 1 < (w × z) ≤ bd+k − 1, we seek
the smallest value w such that (w×z)% bk ≥ bk−w+1.
When such a value exists, the algorithm terminates with
a value w indicating the upper bound. The lower bound
is given by w ≥ (bd−1+z−1)÷z. The lower and upper
bounds define the range of validity: given any integer
w in this range, the d most significant digits of w × z
are exact.

7. ENUMERATING THE EXTREMA OF

REMAINDERS

As we compute (w × z)%M for w = 1, 2, 3, . . . ,M − 1,
we encounter new minima and new maxima. We seek
to efficiently locate all such extrema.
Consider M = 8 and z = 3. Given the first two

values, (1×3)%8 = 3 and (2×3)%8 = 6, we have that
the former is a minimum while the later is a maximum.
See Table 3. The next value at w = 3 is 1, a new
minimum. The next extrema is at w = 5, a maximum.
Observe that prior to w = 5, we had a maximum at
w = 2 and a minima at w = 3 and that 3 + 2 = 5.
As we shall show, all extrema follow this rule: they
appear at a location that is the sum of the location of
last minimum with the last maximum.
When z and M are coprime, then the sequence of

values (w × z)%M for w = 1, 2, 3, . . . ,M − 1 are a
permutation of the integers from 1 to M − 1. When z
and M have a non-trivial common divisor, the values
repeat. Indeed, whenever (w× z)%M = (w′× z)%M ,
we have that ((w − w′) × z)%M = 0. Assume
without loss of generality that w > w′, then we have

that (w − w′) × z is a positive integer divisible by
M . Thus we have that the sequence (w × z)%M
for w ∈ [0,M/ gcd(M, z)) is made of distinct values.
This sequence of values repeats over the next interval
[M/ gcd(M, z), 2M/ gcd(M, z)) and so forth, gcd(M, z)
times until w = M .
The next lemma shows how we can always determine

the location of the next extrema from the last minimum
and the last maximum. If the last minimum is at w = α
and the last maximum is at w = β, then the next
extrema is at w = α+ β. See Fig. 1.

Lemma 7.1. Suppose that, over a range w =
1, 2, . . . ,max(β, α) for max(β, α) < M/ gcd(M, z), we

have that (β × z)%M is the maximal value of (w ×
z)%M , while (α×z)%M is the minimal value, then if

we extend the sequence to w = 1, 2, . . . , α+ β, we have

that

• When ((α + β) × z)%M > (β × z)%M , ((α +
β)×z)%M is the new maximum while (α×z)%M
remains the minimum,

• otherwise we have that ((α + β) × z)%M <
(β × z)%M , and ((α + β) × z)%M is the new

minimum while (β×z)%M remains the maximum.

Proof. For brevity, assume that α < β: the counterpart
(α > β) follows by symmetrical arguments.
We want to show that ((α+ β)× z) is either smaller

than (α× z)%M or larger than (β × z)%M :

• Suppose that ((α+β)×z)%M ≥ (α×z)%M then
((α+ β)× z)%M = (α× z)%M +(β × z)%M >
(β × z)%M .
• Suppose that ((α+β)×z)%M ≤ (β×z)%M then
((α+ β)× z)%M = (α× z)%M + (β × z)%M −
M < (α× z).

First suppose that ((α+ β)× z)%M > (β× z)%M .
We want to show that ((α + β) × z)%M is the new
maximum over the extended range while (α × z)%M
remains the minimum. Suppose that it is not the case,
then at least one of the following two cases hold:

• If ((α + β) × z)%M is not the new maximum,
there must be a new, even larger maximum. Thus
there must be a value ω satisfying 0 < ω < α such
that ((ω + β) × z)%M > ((α + β) × z)%M >
(β × z)%M . It implies that ((ω + β) × z)%M =
((ω−α)×z)%M+((α+β)×z)%M = ((ω−α)×
z)%M+(α×z)%M+(β×z)%M = ((ω+β−α)×
z)%M+(α×z)%M . Hence we have that ((ω+β−
α)× z)%M = ((ω+ β)× z)%M − (α× z)%M >
((α + β) × z)%M − (α × z)%M = (β × z)%M .
Hence we have that ((ω + β − α) × z)%M >
(β×z)%M which contradicts that β is a maximum
for the range up to β since ω + β − α < β. Thus
this case is not possible.
• If (α×z)%M did not remain the minimum, then
there must be a new, even smaller minimum: there

Exact Short Products 5

w

(α× z)%M

(β × z)%M

((α+ β) × z)%M

M

0 α β β + α

(a) (α× z)%M + (β × z)%M < M

w

(α× z)%M

(β × z)%M

((α+ β)× z)%M

M

0 α β β + α

(b) (α × z)%M + (β × z)%M ≥ M

FIGURE 1: Illustration of how the next extrema is computed from the last minimum and the last maximum

must be a value ω satisfying 0 < ω < α such that
((ω + β) × z)%M < (α × z)%M < (β × z)%M .
It implies that (ω × z)%M + (β × z)%M −M <
(α × z)%M or (α × z)%M − (ω × z)%M >
(β × z)%M −M . Because 0 < ω < α, we must
have that (ω × z)%M > (α × z)%M . Thus we
have that ((α−ω)× z)%M is M +(α× z)%M −
(ω×z)%M > (β×z)%M which again contradicts
the fact that β is a maximum for the range up to
β since α− ω < α < β.

Hence the result holds.
Second suppose that ((α+β)×z)%M < (β×z)%M .

We want to show that ((α + β) × z)%M is the new
minimum while (β × z)%M remains the maximum.
Suppose that it is not the case, then at least one of
the following two cases hold:

• If ((α+β)×z)%M is not the new minimum, then
there must be a new even smaller minimum. Thus
there must be a value ω satisfying 0 < ω < α such
that ((ω+β)×z)%M < ((α+β)×z)%M . But this
inequality implies that (ω× z)%M < (α× z)%M
which would contradict the fact that (α × z)%M
was the minimum.
• If (β × z)%M is no longer the maximum, then
there must be a new larger maximum. Thus there
must be a value ω satisfying 0 < ω < α such
that ((ω + β) × z)%M > (β × z)%M . Hence
((ω + β) × z)%M = (ω × z)%M + (β × z)%M .
Because (α × z)%M is the minimum up to β,
we must have that (ω × z)%M > (α × z)%M .
Therefore we have that ((ω + β) × z)%M = (ω ×
z)%M+(β×z)%M > (α×z)%M+(β×z)%M .
However, since ((α + β) × z)%M < (β × z)%M ,
we must have that (α×z)%M+(β×z)%M ≥M
and so ((ω + β)× z)%M ≥M , a contradiction.

Hence the result holds.

Lemma 7.1 implies that you can visit all of the
extrema of (w× z)%M for w = 1, 2, . . . by first finding
the first two extrema (a maximum at β and a minimum
at α), and then locate a new maximum or a new

minimum at α+ β, and so forth. Through an iterative
process, you are guaranteed to only ever visit running
extrema.
Unfortunately, such a process could be slow.

Consider the case when z = 1. We have that the
sequence (w × z)%M for w = 1, 2, . . . is 1, 2, . . .
It implies that every single possible value of w is,
when it is encountered, a new maximum. When
applying Lemma 7.1 to this case, we find that α = 1
(throughout), with β taking the values 2, 3, . . . Such
an algorithm would encounter M extrema and would
run in time Ω(M). Thankfully, we can characterize the
location of the extrema in logarithmic time, as we show
next.
We have that z%M = (2z)%M if an only if M

divides z. Assume that M does not divide z. As long
as w < M/ gcd(z,M), we have that (w × z)%M 6= 0.
Thus, after two elements in the series (w×z)%M for

w = 1, 2, . . ., we have a minimum and a maximum value.
We write the maximum value b, and its corresponding
w is β. We write the minimum value a, and its
corresponding w is α. We have that b > a > 0. As we
keep progressing over w ∈ [3,M/ gcd(M, z)), we may
encounter a new maximum or a new minimum.
Assume that the first value was a minimum (i.e.,

a = z%M and α = 1) followed by a maximum (i.e.,
b = 2z%M and β = 2). If 3a < M , then we have a
new maximum immediately after at β = 3. Similarly if
4a < M and so forth. We have exactly (M − 1− a)÷ a
consecutive maxima: b = 2a at β = 2, 3a at β = 3,. . . ,
a+ ((M − 1− a)÷ a)× a at β = 1 + (M − 1− a)÷ a.
An analogous scenario unfolds when we assume that

the first value was a maximum (b = z%M and β = 1)
followed by a minimum (a = 2z%M and α = 2). If
a+b ≥M , then we have (a+b)%M = a+b−M < a+b,
and thus we have a new minimum (smaller by M − b).
We have b÷ (M − b) consecutive minima: b+ b−M at
α = 2, b+2(M−b) at α = 3,. . . , b+(b÷(M−b))×(b−M)
at β = 1+b÷ (M−b). We have that the last maximum
is greater than M/2.
Using Lemma 7.1 and the first two extrema, we can

efficiently iterate through all other extrema:

6 D. Lemire

• Suppose that we found our last minimum at α. We
find a new maximum at β (α < β). By Lemma 7.1,
this maximum is followed by up to (M − b− 1)÷ a
even greater maxima: b + a at w = β + α, . . . ,
b+((M−b−1)÷a)×aat w = β+((M−b−1)÷a)×α.
The maxima are each time incremented by a, and
they appear at locations incremented by α. If
we were to continue one more step (increment
by a once more), we would exceed M − 1. If
we redefine b ← b + ((M − b − 1) ÷ a) × a and
β ← β + ((M − b− 1)÷ a)× α, then we have that
the value at α+ β is (a+ b)%M = a+ b−M < a,
thus a new minimum.

• Suppose that we found our last maximum at β.
We find a new minimum at α (β < α). By
Lemma 7.1, this minima is followed by a÷ (M − b)
even smaller minima: a+ b−M at w = α+β, . . . ,
a+(a÷(M−b))×(b−M) atw = α+(a÷(M−b))×β.
They happen at locations separated by β and
decremented by b−M . If we were to continue one
more step, we would increment by b (as opposed to
b −M), and we would not have a new minimum.
If we redefine a← a+(a÷ (M − b))× (b−M) and
α← α+ (a÷ (M − b))× β, then we have that the
value at α + β is (a + b)%M = a + b > b, thus a
new maximum.

Thus we have that (w × z)%M for w =
1, 2, . . . ,M/ gcd(z,M) − 1 alternates between new
equispaced sequences of maxima and new equispaced
sequences of minima. We do not need to compute
gcd(z,M) explicitly: we know that when w =
M/ gcd(z,M), we have that (w × z)%M = 0. Thus
it suffices to check for a minimum value of 0. The
algorithm given in Fig. 2 outputs the sequence of gaps
(successive α and β) which determine the locations
of the extrema. Each gap value can generate several
equispaced extrema.
We can check that with every iteration, going through

a sequence of maxima, a sequence of minima and
then back to a sequence of maxima, the gap β has
more than doubled. And similarly for α. Thus we
have that the algorithm given in Fig. 2 runs in time
O(log(M/ gcd(z,M))) when assuming that arithmetic
operations run in constant time.
Consider the algorithm of Fig. 2 with an example:

M = 8 and z = 3. At first we have a = b = (1×3)%8 =
3 and w = α = β = 1. The list lbda is initially empty.

1. We consider v = (a + b)%M = (3 + 3)%8 = 6.
It is a new maximum (v > b). We compute
t = (M − b − 1) ÷ a = (8 − 3 − 1) ÷ 3 which is
one. We append w = 1 to lbda. We move to
w = 1 + 1 = 2 and set β = 2. We have b = 6 and
a = 3.

2. We consider v = (a+ b)%M = (3 + 6)%8 = 1. It
is a new minimum (v < a). We append w = 2 to
λ. We compute a÷ (M − b) = 3÷ 2 = 1. We move
to w = 2+1 = 3 and we set α = 3. We have a = 1.

def gaps (z , M) :
w = 1
lbda = []
a = z % M
alpha = 1
b = z % M
beta = 1
while True :

v = (a + b) % M
i f v < a :

lbda . append(w)
i f a % (M − b) == 0 : break
t = a // (M − b)
w = w + alpha + (t − 1) ∗ beta
alpha = w
a = (a + t ∗ b) % M

else :
t = (M − b − 1) // a
lbda . append(w)
w = w + beta + (t − 1) ∗ alpha
beta = w
b = (b + t ∗a) % M

return lbda

FIGURE 2: Python code to compute all of the
gaps between the extrema of (w × z)%M for w =
1, 2, . . . , M

gcd(z,M) − 1. M and z should be positive

integers, and z should not be a multiple of M .

3. We consider v = (a+b)%M = (1+6)%8 = 7. We
have a new maximum. We append w = 3 to lbda.
We compute (M −b−1)÷a = (8−6−1)÷1 which
is one, again. We move to w = w + β = 3 + 2 = 5.
We set β = 5 and b = 7.

4. We consider (a+ b)%M = (1 + 7)%8 = 0. It is a
new minimum, we append β = 5 to lbda and we
exit the main loop, returning lbda = {1, 2, 3, 5}.

If we compute distance8(0, (w ∗ 3)%8) for w =
1, 2, 3, 5 we get 3,2,1,1. That is, the distance of the
various extrema to zero diminishes. It is clear that it
must be so for successive (smaller) minima and also
for successive (larger) maxima: the distance with zero
must be strictly decreasing. Indeed a maximum is a
value close to M , the closer to M , the larger it is.
When we reach M − 1, the largest value, we have that
distanceM (0,M − 1) = 1, the minimal distance. But
it is also true of a minimum followed by a maximum,
or a maximum by a minimum: the distance with zero
must remain the same or decrease. E.g., it follows by
inspection: if we have a minimum value a, then it is not
possible for the largest maximum of the next sequence
of maxima to be more than a away from M .

7.1. Bounding Remainders with an Offset

The algorithm of Fig. 2 provides an efficient algorithm
to enumerate all the extrema of remainders (w×z)%M
for w = 1, 2, . . . We might want to enumerate the

Exact Short Products 7

extrema starting from an arbitrary point: (w× z)%M
for w = A,A+1, . . . , B in which case we can rewrite the
problem as (A×z+w×z)%M for w = 0, 1, . . . , B−A.
Setting b = A×z, we find that it is equivalent to finding
the extrema of (b+w×z)%M (for w = 0, 1, . . .). Thus
we want to extend our previous results to remainder of
a product with an offset (b).
We cannot rely directly on the earlier result for

(w × z)%M (Lemma 7.1) which indicates that the
next extrema is effectively the sum of the previous
minima and the previous maxima. Indeed, consider
(7 +w× 3)%8: we have the value 2 at w = 1, followed
by value 5 (a new maximum) at w = 2, value 0 (a
new minimum) at w = 3, value 6 (a new maximum) at
w = 5, value 7 (a new maximum) at w = 8. However,
we can still make good use of Lemma 7.1.
Suppose that (b + β × z)%M is the maximum so

far over (b + w × z)%M for w = 1, 2, . . . , β. Suppose
that the next extrema is at (b + (β + k) × z)%M .
Then we must have that (k × z)%M is a minimum
of (w × z)%M over w = 1, 2, . . . , k otherwise we
would have a new intermediate extrema. And similarly
when we start from a minima. It follows that we can
access the extrema of (b + w × z)%M by considering
offsets by the gap values generated by the algorithm of
Fig. 2. Because the gaps are monotonic, and because
our maxima are only larger, and our minima only
smaller, there is no need to consider previous gaps once
they can no longer increase a maximum or decrease a
minimum.
Even with a non-zero offset, the values still repeat:

(b + w × z)%M = (b + (w +M/ gcd(z,M))× z)%M .
It is not necessary to compute gcd(z,M), we could
instead stop when w > M since no new extrema can
be found after w reaches M/ gcd(z,M) given that the
values repeat.
Thus the distance between the extrema of (w ×

z)%M for w = A,A + 1, . . . , B must be within the
values produced by the gaps function of Fig. 2, and
that the gaps only grow larger. As an application,
the find min max function from Fig. 3 computes the
locations of all of the maxima and minima of (w ×
z)% bk from w = A to w = B (inclusively). It
encodes sequences of equispaced minima (or equispaced
maxima) as a triple with the location of the last
extrema, their number and the size of the gaps between
the extrema. It runs in time O(log(M/ gcd(z,M))),
assuming that arithmetic operations run in constant
time.

8. COMPUTING THE RANGE

Our main function (find range) is provided Fig. 4:
given a multiplier z and a desired number digits in a
given base, it computes a range of values [lb, ub) such
that if w ∈ [lb, ub), then w × z has its most significant
digits exact even when z is a truncated multiplier—
irrespective of the unknown digits. When the interval

def find min max (z , M, A, B) :
mnma = [(A, 0 , 0)]
mxma = [(A, 0 , 0)]
f a c t s = gaps (z , M)
mi = (z ∗ A) % M
ma = (z ∗ A) % M
fac t i nd ex = 0
b = A ∗ z
w = 0
while True :

o f f i n d ex = f a c t s [f a c t i nd ex]
v = (z ∗ (w + o f f i nd ex) + b) % M
i f w + of f i nd ex > B−A: break
i f v < mi :
w += o f f i nd ex
mi = v
bas i s = (z ∗ w + b) % M
o f f = (z ∗ o f f i n d ex) % M
times = bas i s // (M − o f f)
i f A + w + times ∗ o f f i n d ex > B:

times = (B − A − w) // o f f i n d ex
w += o f f i nd ex ∗ t imes
mi = (z ∗ w + b) % M
mnma. append ((w+A, times , o f f i n d ex))

e l i f v > ma:
w += o f f i nd ex
ma = v
bas i s = (z ∗ w + b) % M
o f f = (z ∗ o f f i n d ex) % M
times = (M − 1 − ba s i s) // o f f
i f A + w + times ∗ o f f i n d ex > B:

times = (B − A − w) // o f f i n d ex
w += o f f i nd ex ∗ t imes
ma = (z ∗ w + b) % M
mxma. append ((w + A, times , o f f i n d ex))

else :
f a c t i nd ex += 1
i f f a c t i nd ex == len (f a c t s) : break

return (mnma, mxma)

FIGURE 3: Python code to enumerate all extrema of
(w × z)%M for w = A, . . . , B. M and z should be
positive integers, and z should not be a multiple of M .

is empty, the None value is returned.
Following § 6, the function checks (w × z)% bk <

bk−w+1 over the range bd+k−1 ≤ (w×z) ≤ bd+k−1 to
verify whether we can compute digits exactly: starting
with k = 0, we increment k until a value w satisfying
(w × z)% bk ≥ bk − w + 1 is found. To do so,
the find range function relies on the find min max

function from Fig. 3. We handle separately the case
when z is a multiple of bk, in which case (w×z)% bk = 0
and (w×z)% bk < bk−w+1 becomes w < bk+1: thus
we must stop if B ≥ bk + 1.
We can generate Table 1 with a Python script:

for mypi in [
3141592653 ,
31415926535 ,

8 D. Lemire

def f i n d r ange (z , d i g i t s , base) :
lb = (base ∗∗ (d i g i t s − 1) + z − 1) // z
k = 0
while True :
A = (base ∗∗ (d i g i t s + k − 1) + z − 1)// z
B = base ∗∗ (d i g i t s + k) // z
i f B ∗ z == base ∗∗ (d i g i t s + k) :
B −= 1
i f B < A:
k = k + 1
continue

M = base ∗∗ k
i f z % M == 0 : # sp e c i a l case

i f B >= M+1:
return (lb , M+1)

(mnma, mxma) = find min max (z , M, A, B)
for (beta , times , gap) in mxma:
i f beta ∗ z % M >= M − beta + 1 :
ub = beta
i f t imes > 0 :
top = beta ∗ z % M − (M − beta + 1)
bottom = gap + gap ∗ z % M
mt = top // bottom
ub = beta − top // bottom ∗ gap
i f ub <= lb :
return None

return (lb , ub)
k = k + 1

FIGURE 4: Python code to compute the range of values
of w for which the most significant digits of w × z are
exact even if z is truncated. The function allows the
user to specify the number of exact most-significant
digits desired (digits) as well as the basis (base).

314159265358 ,
3141592653589 ,
31415926535897 ,
314159265358979 ,
3141592653589793 ,
31415926535897932 ,
314159265358979323 ,
3141592653589793238 ,
31415926535897932384 ,
] :
print (f i n d r ange (mypi , 10 , 10))

9. CONCLUSION AND FUTURE WORK

It is intuitive that we are able to compute the most
significant digits of a product using only the most
significant digits of one of the multipliers (i.e., a short
multiplier). Thankfully, we can check for the exact
range of validity of a short multiplier using efficient
logarithmic-time algorithms.
We have identified some future work:

• We construct short multipliers by truncating
existing multipliers. However it may be possible
to round the multiplier instead of truncating it.

Similarly, we compute the most significant digits
of a product by truncation: we may round instead.
There are many rounding rules that should be
considered when the result is ambiguous: round
up, round down, round to even [6], round to odd.

• From a short multiplier and a desired number of
most-significant digits, we have derived a range of
validity. We can also start by a desired number of
most-significant digits and a range of validity, and
derive the smallest short multiplier: it suffices to
construct ever more precise short multipliers. A
direct algorithm to efficiently derive the best short
multipliers might be useful.

10. FUNDING

This research was funded by the Natural Sciences
and Engineering Research Council of Canada, Grant
Number: RGPIN-2017-03910.

11. DATA AVAILABILITY

No new data were generated or analysed in support of
this research.

REFERENCES

[1] Hars, L. (2006) Applications of fast truncated
multiplication in cryptography. EURASIP Journal on
Embedded Systems, 2007, 061721.

[2] Schulte, M. J. and Swartzlander, E. E. (1993)
Truncated multiplication with correction constant [for
DSP]. Proceedings of IEEE Workshop on VLSI Signal
Processing, pp. 388–396. IEEE.

[3] Adams, U. (2018) Ryu: Fast float-to-string conversion.
Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
New York, NY, USA PLDI 2018 270–282. Association
for Computing Machinery.

[4] Adams, U. (2019) Ryu revisited: Printf floating point
conversion. Proc. ACM Program. Lang., 3.

[5] Lemire, D. (2021) Number parsing at a gigabyte per
second. Software: Practice and Experience, 51, 1700–
1727.

[6] Reiser, J. F. and Knuth, D. E. (1975) Evading the
drift in floating-point addition. Information Processing
Letters, 3, 84–87.

	1 Introduction
	2 Related Work
	3 Mathematical Preliminaries
	4 Plan
	5 Most Significant Digits
	6 Short Multipliers
	6.1 Finding the Valid Range

	7 Enumerating the Extrema of Remainders
	7.1 Bounding Remainders with an Offset

	8 Computing the Range
	9 Conclusion and Future Work
	10 Funding
	11 Data Availability

