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Abstract

While trying to infer laws of behavior, accounting for both within-subjects and
between-subjects variance is often overlooked. It has been advocated recently to
use multilevel modeling to analyze matching behavior. Using multilevel modeling
within behavior analysis has its own challenges though. Adequate sample sizes
are required (at both levels) for unbiased parameter estimates. The purpose of the
current study is to compare parameter recovery and hypothesis rejection rates of
maximum likelihood (ML) estimation and Bayesian estimation (BE) of multilevel
models for matching behavior studies. Four factors were investigated through
simulations: number of subjects, number of measurements by subject, sensitivity
(slope), and variance of the random effect. Results showed that both ML estima-
tion and BE with flat priors yielded acceptable statistical properties for intercept
and slope fixed effects. The ML estimation procedure generally had less bias,
lower RMSE, more power, and false-positive rates closer to the nominal rate.
Thus, we recommend ML estimation over BE with uninformative priors, consid-
ering our results. The BE procedure requires more informative priors to be used
in multilevel modeling of matching behavior, which will require further studies.

KEYWORDS
Bayesian estimation, matching behavior, matching law, maximum likelihood, multilevel model, pooled
data, statistical analysis

There is a long tradition within behavior analysis of
studying behavior in a concurrent schedule in which a
subject has to choose between two options. Each option
is associated with its own differential reinforcer rate,
generally a variable-interval or a random-interval schedule
of reinforcement. Over numerous sessions, the subject can
choose repeatedly between alternatives. In this procedure, a
behavioral pattern known as matching behavior emerges.
This is well described by the generalized matching law
(Baum, 1974) in log form:

b
log(b—;> :alog<:—;>+logc+e, (1)

where b refers to response rate and r to reinforcer rate;
the indices (1 and 2) specify the two options, and € repre-
sents the residual term. The parameter a refers to sensitivity

to reinforcement, or the degree to which an organism
adjusts its response ratio according to the reinforcer
ratio, and ¢ refers to the bias, or the behavioral prefer-
ence for one response (the numerator) over the other (the
denominator). Equation 1 is a simple regression analysis,

where x = log (f—‘), y= log<%), and « and logc are the
slope and intercept, respectively.

Matching behavior is a within subject-oriented model;
that is, parameters of the generalized matching law are spe-
cific to the subject (Herrnstein, 1970). While trying to infer
laws of behavior for the subjects’ species (e.g., rats, pigeons,
primates, humans), accounting for both the within-subjects
and the between-subjects variances is often overlooked
(Caron, 2019). Matching behavior is generally analyzed by
subjects independently (within-subjects variance only) or by
pooling subjects (between-subjects variance only). Both
types of analyses yield potentially biased and insufficiently
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detailed and informative conclusions, as the use of direct
aggregation of data across subjects or averaged parame-
ters do not consider both within- and between-subjects
variances.

It has been advocated recently to use multilevel model-
ing (MLM) to analyze matching behavior (Caron, 2019).
Multilevel analysis structures data into different levels
(Gelman & Hill, 2006)—for instance, behavior nested
within subjects. Multilevel modeling is preferred when
combining several subjects’ behavior because it accounts
simultaneously for the within-subjects and between-subjects
variance. The parameters of all subjects are considered
to infer group characteristics using both the behavioral
(within) and the subject (between) levels simultaneously.
For a repeated-measures design, the number of subjects is
the Level 2 sample size, whereas the number of data points
per subject is the Level 1 sample size. If a single model is
estimated from all points (complete pooling, Level 2 only),
the variation between subjects is unaccounted for. If each
model is estimated without pooling (Level 1 only), the
estimate is uninformed by the between-subject variations in
the parameter estimates. Multilevel modeling provides a
mathematically sound framework to recognize both levels.

The extension of Equation 1 to a multilevel model
can be written as

b s s
log< 1") :aslogcl—") + loges +e, (2)

b2,s 2,5

where the indices s emphasize the subjects’ response and
reinforcer rates as well as that sensitivity (a,) and bias
(logces) are coefficients specific to individuals that are
sampled from the same population. Multilevel analysis
assumes that the sensitivity and bias parameters follow a
bivariate normal distribution. Their population means
are p, and py,,,., and their corresponding variances and

covariance are 65, Cloges and po,0iog. such that

2
( )NN Ha ) [ O PO} 3
IOng Hioge POuOloge  Ologe

where p is the correlation between sensitivity and bias
(e.g., higher value of sensitivity could be related to higher
value of bias) and o, and o). are the standard devia-
tions of sensitivity and bias. From Equation 3, slopes (a;)
and intercepts (loge,) are random coefficients that are
free to vary across subjects and differ according to their
given means and variance—covariance matrix.

Using MLM in behavior analysis has its own chal-
lenges though. Adequate sample sizes are required
(at both levels) to estimate multilevel models without
bias. Multilevel models are often estimated with
maximum likelihood (ML) or Bayesian methods; both
estimation approaches have their own advantages and
disadvantages.

Maximum likelihood estimation is asymptotically
unbiased but is known to behave less desirably with
smaller sample sizes, particularly with a low number of
clusters (Cousineau & Laurencelle, 2016). The recom-
mendation from the methodological literature on
smaller cluster sizes is to use the Kenward-Roger (2009)
adjustment, a correction to the degrees of freedom
and covariance matrix adjustment that reduces the
underestimation of fixed-effect standard errors when the
number of clusters is small (McNeish, 2017; McNeish &
Stapleton, 2016). Even with the correction, sample size
matters. Even though there is no gold standard, there
have been a few guidelines suggesting 30 clusters
(Level 2) with a cluster size of 30 (Level 1; Kreft, 1996),
a minimum of 20 clusters (Snijders & Bosker, 2012),
or 50 clusters with a cluster size of 20 for cross-level
interactions (Hox, 2010). These sizes appear reasonable
for fields that typically collect large samples, such as
education and economics, where 30 clusters (classes,
companies) measured quarterly is reasonable. However,
these recommendations are not directly applicable to
single-case studies where few subjects are measured
daily (or more) for long periods (Kazdin, 2021). There
have been no thorough investigations of statistical
properties of relevant parameters in multilevel models
with fewer than 20 clusters, which is considered a small
number (Arend & Shéfer, 2019; Austin & Leckie, 2018;
Maas & Hozx, 2005).

Bayesian methods relieve the researcher from relying
on maximum likelihood asymptotics, at the cost of using
priors and relying on Markov chain Monte Carlo
(MCMC) sampling. Parameter estimates in MLM are
known to be biased and have less precise variance
estimates when the number of subjects (Level 2) is small.
Studies on multilevel modeling of single-case data, specif-
ically AB phase designs for each subject, showed that
five and seven subjects yielded relative bias close to 5%
and yielded more precise estimates relative to analyses
with three subjects (Moeyaert et al., 2017). Using more
informative priors with Bayesian techniques led to more
precise estimates for the fixed effects and random effects,
even for three subjects. However, matching behavior
studies are different in two respects: (a) they do not use
AB designs and (b) the variance in the average response
rate ratio explained by the linear model is typically very
high, higher than 80% in most studies in experimental
settings (Davison & McCarthy, 1988). Those specific
aspects were not thoroughly investigated in prior research.
Thus, multilevel models for matching behavior are
expected to yield high precision and power for parameters
of interest, even with uninformative priors.

Even though models with small sample sizes may con-
verge toward a solution and produce estimates, they may
be biased and may mislead research (McNeish, 2017;
McNeish & Stapleton, 2016). It is of interest for behavior
analysts to better understand the statistical properties of
parameters in multilevel models under conditions typically
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encountered in behavior-matching research. Before going
further, the next section will briefly introduce ML estima-
tion and Bayesian estimation (BE).

ESTIMATION METHODS IN TWO-LEVEL
MODELING OF MATCHING BEHAVIOR

Maximum likelihood estimation

When a model is specified, there are multiple possible
values the parameter of interest can take. In estimation, it
is the goal of the researcher to find the “best” candidate to
characterize the observed data. To find a best candidate
for the parameter, what is “good” must be defined first.

One general definition of “good” applicable to many
models relies on the likelihood function (see Myung, 2003,
for a tutorial on ML estimation). Precisely, the likelihood
of a candidate value of the parameter is the probability it
assigns to the data." When a candidate value makes the
observed data likely, the candidate has high likelihood. By
this criterion, the “best” candidate, called the ML estimate,
is the one that yields the highest probability for the observed
data. For instance, under the conventional assumptions in
linear regression, the ML estimate for the regression slopes
coincides with the ordinary least squares estimate.

As is often the case in MLM studies, when the sample
size is small, traditional ML estimation is compromised in
two aspects (McNeish, 2017; McNeish & Stapleton, 2016).
First, the variances of random effects are underestimated.
Second, the fixed-effect standard errors and the degrees of
freedom used for hypothesis testing are incorrect, thus
inflating the Type I error rate. As McNeish (2017)
explained, the MLM literature recommends small-sample
methods that help ML estimation avoid these conse-
quences: restricted maximum likelihood (REML) is used
to properly estimate random effects, and the Kenward-
Roger correction (Kenward & Roger, 1997) is used to give
more accurate standard errors and degrees of freedom
to t-test statistics. When the sample is large, REML and
traditional ML yield similar results.

Under ML estimation, the parameter itself, though
unknown, is nonrandom. There is no provision to find a
distribution over the candidate values of the parameter
without the Bayesian perspective.

Bayesian estimation and inference

In the Bayesian framework, probability is viewed as a
degree of belief, which does not rest on the frequentist
assumption of repeating an event many times. It is possi-
ble to express one’s belief without observing any data,

! Although it may appear confusing to use the term probability in the definition of
the likelihood function, we are simply following conventions from textbooks on
Bayesian statistics (Gelman & Hill, 2006, p. 388).

which is why the Bayesian view of probability is sometimes
labeled as subjective. Consequently, parameters have
distributions: The prior distribution of a parameter encodes
the best guess and uncertainty regarding the parameter
value prior to observing the data, and the posterior distribu-
tion is obtained by updating the prior distribution with the
observed data using Bayes’ theorem.

Bayesian estimation starts with the specification of a
prior distribution for all freely estimated parameters. The
single predictor regression model in Equation 1 consists
of the intercept ¢ and the slope logc. The specification of
prior distributions requires selecting a distributional form
(e.g., normal, gamma) and hyperparameters that govern
its shape. For intercepts and slopes in regression models
it is typical to select normal prior distributions such as

aNN(pOaDG%a) (4)

and
IOgCNN(P'O logc’cg logc)’ (5)

where the mean hyperparameters of the normal priors,
Hog and pgjoq.» €ncode the best guess for the value of the
parameter and the variances of the normal priors, o7,
and G(z)logc’ encode the level of confidence surrounding the
best guess. Larger variance hyperparameters correspond
to less informative (more diffuse) prior distributions. The
prior distributions are then updated with observed data
to obtain the posterior distribution.

When model parameters vary by subject, Bayesian
methods offer an intuitive way to specify the hierarchical
nature of the model. The parameters in Equation 3 and
the Level 1 residual variance are unknown parameters
that are assigned prior distributions.

Although the result of a Bayesian analysis is a poste-
rior distribution, making inferences requires summarizing
the posterior in terms of the familiar quantities such as
point estimates, interval estimates, and hypothesis tests
from frequentist analysis. We consider the following
appropriate Bayesian analogues. For point estimates, one
possible Bayesian analogue is the mean of the posterior
distribution, called the posterior mean. For interval esti-
mates, the Bayesian analogue is the interval covering the
middle 95% of the posterior distribution, called the 95%
equal-tail credible interval. Unlike the frequentist confi-
dence interval, the credible interval can be interpreted
probabilistically: There is a 95% probability that the true
value lies within the interval. For hypothesis testing, the
Bayesian analogue rejects a hypothesis that the parame-
ter is equal to a given value if and only if this parameter
value is not included in the 95% credible interval.

Such Bayesian analogues require the calculation of
means and percentiles from the resulting posterior distri-
butions. However, not all posterior distributions have an
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analytic derivation (Hoff, 2009). In this case, the poste-
rior distribution (and consequently, its summary statis-
tics) is approximated using MCMC sampling instead,
and MCMC sampling takes draws that in the limit could
be considered draws from the posterior distribution
(Hoff, 2009). The initial iterations in MCMC sampling
are likely not sampling from the posterior distribution,
and the analyst needs to diagnose at which point the
chains converged to the target (posterior) distribution and
discard all draws prior to convergence. There are numerous
convergence diagnostics (Cowles & Carlin, 1996). In the
social sciences literature, the most commonly encountered
convergence diagnostics are those offered by the majority of
software packages, which are the potential scale reduction
factor (Gelman & Rubin, 1992), Geweke’s diagnostic
(1992), and trace plots of draws plotted against the iteration
number for each parameter (Brooks, 1998). In the current
study, we use the potential scale reduction factor (referred
to as R-hat) and the effective sample size (percentage of
independent draws from the posterior; Stan Development
Team, 2020).

The purpose of the current study is to compare
parameter recovery and hypothesis rejection rates of ML
estimation and BE in contexts of matching-behavior
studies using a simulation study.

SIMULATION STUDY

All the simulations” were carried out in R (R Core
Team, 2022), using the package MASS (Ripley, 2016) to
generate the data; /me4 (Bates et al., 2015), pbkrtest
(Halekoh & Hejsgaard, 2014), and lmerTest (Kuznetsova
et al., 2017) for ML estimation of multilevel models; and
Rstan (Stan Development Team, 2020) for BE.?

Generating data

Four factors were investigated: number of subjects (77),
number of measurements by subject (1), sensitivity
(expected slope), and variance of both random effects.
The numbers of subjects were set to four, six, and eight,
and the numbers of measurement were 20, 40, and 60.
Other parameters were taken from studies on matching
behavior. We used the data sets from Davison and
Hogsden (1984; henceforth DH), an experimental setting
(Part 4 is similar to usual matching studies), and Rivard
et al. (2014; henceforth RFKB), an applied setting to set
expected slope, expected intercept and their variances,
and the error (Level 1) standard deviation. In both cases,

2The files can be found online, https://osf.io/xdu3y/?view_only=
acc9f244¢2dd45389207721b5bf69365.

3For users that are more familiar with /mer, but wish to fit the model in the
Bayesian framework, see these two tutorials for rstanarm (https://mc-stan.org/
users/documentation/case-studies/tutorial_rstanarm.html) and brms (https://
ourcodingclub.github.io/tutorials/brms/).

the bias (intercept) was set to 0 throughout the simulation
(as it is found to be close to 0 in most studies). Expected
slope values were set to .875 (taken from the DH data
set) and 1 (taken from the RFKB data sets). The variance
was the same for slope and intercept, and their covari-
ance was set to 0. Variances were set to either .03 (taken
from the DH data set) for both parameters or .17 (taken
from the RFKB data sets) for both parameters. The
residuals were independent draws from a normal distribu-
tion with 0.3 standard deviation, which corresponds to
the percentage of variance accounted for (equivalent to
R>=836) by the generalized matching law and was
approximately equal in both data sets. These chosen
parameters closely match seminal results in Baum (1979)
and Wearden and Burgess (1982)—that is, a slope of
.867, an intercept of .010 and an explained variance of
.899. Log reinforcer ratios, which were the predictor in
the linear regression, were also randomly generated from
a standard normal distribution for each subject in the
sample. Each of the 3 x 3 x 2 x 2 =36 scenarios was repli-
cated 1,000 times.

Fitting models

In line with Moeyaert et al. (2017), the covariance
between the random intercept and the random slope was
fixed to be zero for both ML and BE.

The ML estimation procedure was carried out via
REML, as implemented in the R package ImerTest
(Kuznetsova et al., 2017). The Kenward-Roger correc-
tion, as implemented in the R package pbkrtest
(Halekoh & Hegjsgaard, 2014) was used to calculate the
degrees of freedom and standard error of the fixed-effects
tests. The corresponding hypothesis tests used the same
packages.

For BE, we used the R package Rstan (Stan Develop-
ment Team, 2020) for MCMC sampling. For the inter-
cept and slope fixed effects, we used the default flat
priors unbounded, but for the variance parameters, the
priors were flat but bounded below by zero. Four
MCMC chains were used.

Analyzing data

In each scenario, we conducted estimation and hypothe-
sis testing on MLM under both ML estimation and
BE. The outcome measures were rejection rates, bias and
efficiency, and nonconvergence rates. Each outcome
measure was averaged over only the replicates where the
estimation converged. For ML estimation, the software
explicitly indicated whether convergence was met. In BE,
the sampler was considered converged if the potential
scale reduction factor (Gelman & Rubin, 1992) value was
below 1.05 and the effective sample size was at least 10%
of the 10,000 MCMC iterations for every parameter.
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FIGURE 1 Rejection rates. Panels in the top row are for maximum likelihood estimation (ML) estimation, and panels in the bottom row are for
Bayesian estimation (BE). The left column represents the intercept fixed effect, and the right column represents slope fixed effect: e0 = fixed effect

intercept, el = fixed effect slope, and v = random effect variances.

For testing hypotheses, the BE analogues to ML
estimation, as described in the previous section, were
applied. Rejection rates were evaluated for two hypothe-
sis tests of interest: the intercept fixed effect (is the
expected intercept zero?) and slope fixed effect (is the
expected slope zero?). We evaluated the bias, defined as

the average deviation from the estimand, £ (/6\—9); rela-

£(0-0)

tive bias, the bias divided by the estimand, —4—*; and

N 2
the root mean square error (RMSE), {/ E (9 — 9) , which

is equivalent to square of the bias plus the variance, of
the intercept, slope, and variance parameters. Between
bias and relative bias, we used bias for the expected inter-
cept, as its true value was zero, but we used relative bias
for the rest of the parameters.

The chosen values of the intercept and slope deter-
mined whether a rejection rate was a Type I error rate or

power. For the expected intercept, the true parameter
was always zero, so the rejection rate always represented
the Type I error. For the expected slope, the true param-
eter was always nonzero, so rejection rate always
represented power. Type I error rate was considered
acceptable if it was within Bradley’s (Bradley, 1978) lib-
eral robustness criterion, which was within the range of
2.5% to 7.5%. For power, acceptable values were at
least 80% (Cohen, 1992).

RESULTS

The simulation results reported below are organized first
by outcome measure: rejection rate, (relative) bias, and
RMSE. Then within each outcome measure, they are
organized by parameter of interest: intercept fixed effect,
slope fixed effect, and random effects. Both ML estima-
tion and BE results are reported.
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FIGURE 2 Bias and relative bias. See note to Table 1 for abbreviations.

All figures are structured similarly. The panels in
the top row are for ML estimation, and panels in the
bottom row are for BE. From left to right, columns rep-
resent the intercept fixed effect, slope fixed effect, and
variance of slope random effect (except for Figure 1,
see fn4). Each panel is made up of four boxes, demar-
cated by horizontal lines. Each box corresponds to a
combination of true slope (either .875 or 1) and true
random-effect variances (either .03 or 0.17). Within
each box, the height of a point has no meaning: The
points are drawn at different heights merely for visual
clarity. As shown in the legend, colors and characters
denote different combinations of sample sizes n; (which
may be 20, 40, or 60) and n, (which may be 4, 6, or 8).
Dashed vertical lines mark the 2.5% and 7.5% boundaries
for acceptable Type I error rates (where the nominal rate
is 5%) and the minimum acceptable 80% rejection rate
for power. Also, a dashed vertical line marks zero bias
and zero relative bias.

Rejection rates

Figure 1 shows the results for the rejection rates.* The left
column of Figure 1 depicts the intercept fixed effect.
Rejection rate is Type I error rate. For ML estimation
(top row), all Type I error rates were within the accept-
able range. For BE (bottom row), the test was conserva-
tive, going below the nominal rate for fewer subjects.

For the slope fixed effect shown in the right column
of Figure 1, rejection rate is power. For scenarios where
n, =4 and the variance of the random effects were larger,
power was noticeably smaller. However, for ML estima-
tion (top row), these scenarios were still mostly within the
acceptable range, whereas they were underpowered for
BE (bottom row). For the rest of the scenarios, both ML
estimation and BE had power well above 80%.

“Rejection rates for random effects were also investigated for ML. Results are in
the supplementary material.
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FIGURE 3 Root mean square error. Panels in the top row are for ML, and panels in the bottom row are for BE. From left to right, columns
represent the intercept fixed effect, slope fixed effect, and slope random effects: RMSE = root mean squared error, 0 = fixed effect intercept, el =
fixed effect slope, v = random effect variances, and vl = slope random effect variances.

Bias and relative bias

Figure 2 shows plots for the bias or relative bias. The for-
mat is similar to that for Figure 1, with bias or relative
bias on the horizontal axis. Bias is shown for the intercept
fixed effect (left column), whereas relative bias is shown
for the slope fixed effect (middle column) and the slope
random-effect variance (right column). The random
effect is shown for only the slope, as the results bear a
similar pattern for the intercept random effect.

For the fixed-effect intercept estimate in the left col-
umn of Figure 2, bias did not exceed 0.03 in absolute
value for all scenarios in both ML estimation (top row)
and BE (bottom row) analyses.

For the fixed-effect slope estimate shown in middle col-
umn of Figure 2, the relative bias values were close to zero.

In the right column of Figure 2, there is a stark
contrast between the ML estimation (top row) and BE
(bottom row) results for the slope random-effect estimate.
Due to Bayesian analysis having much higher relative

bias, the plots could not be placed in the same range.
Relative bias for ML estimation was no worse than 4%
in absolute value, whereas it was greater than 100% in
many BE scenarios.

Root mean square error

Figure 3 shows plots for RMSE. The format is similar to
that for the previous figures, with RMSE taking the hori-
zontal axis. Only the random-effect variances for the
slope are shown, as the results are similar for the inter-
cept. Overall, RMSE was higher for scenarios with larger
random effects and with fewer subjects (i.e., smaller ny).
For the fixed-effect intercept estimate (left column of
Figure 3), RMSE was similar between ML estimation
(top row) and BE (bottom row). For the fixed-effect slope
estimate in middle column of Figure 3, RMSE was simi-
lar for ML estimation (top row) and BE (bottom row).
For the slope random-effect estimate in right column of
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FIGURE 4 Nonconvergence. Panels in the top row are for ML, and panels in the bottom row are for BE.

Figure 3, there is a stark contrast between the ML esti-
mation (top row) and BE (bottom row) results. Due to
BE having much larger RMSE, the plots could not be
placed in the same range.

Nonconvergence

Figure 4 shows the plots for nonconvergence. Similar to
the previous figures, the top plot corresponds to ML esti-
mation, and the bottom plot corresponds to BE. However,
nonconvergence is not associated with any parameter of
the MLM, so there is only one column. The horizontal
axis is the proportion of replicates that did not meet the
convergence criteria. There is a stark contrast between the
ML estimation and the BE results. Nonconvergence did
not exceed 1% in ML estimation, but in BE nonconver-
gence occurred at a much higher rate, reaching over 60%
for scenarios with fewer subjects (i.e., smaller 7,).

DISCUSSION

The purpose of the current study was to compare parame-
ter recovery and hypothesis rejection rates of ML

estimation and BE in contexts of matching-behavior data.
Simulations were carried out with 36 scenarios from which
the parameters were derived from real studies. In each sce-
nario, estimation and hypothesis testing on the MLM
bivariate normal parameters under both ML and BE were
conducted. The outcome measures were rejection rates
(fixed effect, slope fixed effect, and the random effects),
bias, relative bias, RMSE, and nonconvergence rates.

The current simulations show that the rejection rates
intercept of ML estimation was adequate, whereas BE
was conservative. Power to test the slope was good in
both ML estimation and BE. However, ML estimation
was better with small sample sizes compared with BE
because it reaches 80% of statistical power in all scenar-
i0s, whereas it was lower (around 40% to 60%) when the
number of subjects was four cases for BE.

Regarding bias and relative bias, there was no system-
atic bias for the intercept in ML estimation and
BE. However, BE overestimates of the random slope effect
were so important, especially in the v=.17 scenarios, that
a differential had to be used to compared ML estimation
and BE. The referential scales in Figure 2, third column
range from —.01 to .03 for ML estimation, whereas for
BE it ranges from 0 to 13. Overall, BE tended to overesti-
mate the variance of the slope random effect.
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The current results showed no particular trends in
RMSE. As expected, RMSE was higher for conditions
with higher error variance. The similarity in RMSEs indi-
cates that the differences in bias between ML estimation
and BE were not substantial for the fixed effects. The
only noticeable difference between ML estimation and
BE occurred for the RMSE of the random slope effect,
where, like previously, panels necessitated different
scales: ML estimation had the smaller scale ranging from
0 to .20, whereas BE scale ranged from 0 to 4.

Finally, ML estimation had no convergence issues,
whereas BE had some convergence issues, especially with
low cluster sizes like ny =4. Upon closer inspection, it
appeared that the convergence issues were due to diffi-
culty in estimating the random effects.

A limitation of the current study was the range of
parameters being investigated. The data were derived
from only two data sets that are examples of a wider
range of data sets that researchers might use for matching
analyses. Another limitation was that only uninformative
default priors were investigated for BE. Given the num-
bers of replication, conditions, and the time for the chains
to convergence, we had to prioritize completing the simu-
lations in a reasonable time. The next step would be to
investigate a wider range of prior specifications and
parameter values, especially for the residual variances.
Alternative computational modeling approaches to simu-
late matching behavior could be used in future studies.

Conclusions

For scientific results to be trustworthy, statistical methods
must be appropriate for the data structure and the method
ought to have good performance under representative
conditions. Traditional methods in the matching-behavior
literature fall short of accounting for within- and between-
subjects levels of variation. As Caron (2019) argued, at least
conceptually, MLMs were more suited to do so. However,
good performance cannot be taken for granted, as simula-
tion studies with MLMs (e.g., McNeish & Stapleton, 2016)
were based on larger sample sizes. The current study pro-
vides evidence that MLMs can indeed perform acceptably
to perfectly well for matching-behavior data.

Overall, the results were promising. In most scenarios,
for intercept and slope fixed effects, both ML estimation
and BE with flat priors yielded acceptable statistical
properties. However, ML estimation generally had less
bias, lower RMSE, more power, and rejection rates
closer to the nominal rate. Thus, we recommend ML esti-
mation over BE considering our results.

Nonetheless, BE can be improved to be used to ana-
lyze matching-behavior data. Our simulation study was
limited to using flat priors, which did especially poorly
for estimating random effects. This is consistent with
findings from a systematic review of studies comparing
Bayesian and frequentist methods at small sample sizes

(Smid et al., 2020); specifically, ML with small sample
corrections can outperform Bayesian methods with diffuse
priors, especially in the estimation of variance parameters.
Statistical properties can be improved by informative accu-
rate priors, and the wider literature on MLM offers guid-
ance on informative priors (e.g., Moeyaert et al., 2017).
Further studies are needed to better understand the influ-
ence of informative priors on MLM for the analysis of
matching behavior and to develop thorough guidelines for
researchers.
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