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ABSTRACT Feature selection is a challenging problem that occurs in the high-dimensional data analysis of
many major applications. It addresses the curse of dimensionality by determining a small set of features
to represent high-dimensional data without significant or noticeable loss of information. The purpose
of this study is to develop and investigate a new unsupervised feature selection method which uses the
k-influence space concept and subspace learning to map features onto a weighted graph and rank them by
importance according to the PageRank graph centrality measure. The graph design in this method promotes
feature relevance, downgrades redundancy, and is robust to outliers and cluster imbalances. In K-Means
classification experiments using the ASU feature selection testing datasets, the method produces better
accuracy and normalized mutual information results than state-of-the-art unsupervised feature selection
algorithms. In a further evaluation, using a dataset of over 14,000 tweets, conventional classification of
features selected by the method gave better sentiment analysis results than deep learning feature selection
and classification.

INDEX TERMS Feature selection, projected-clustering, influence-space, graph centrality.

I. INTRODUCTION
Progress in science and technology has allowed the devel-
opment of applications that use very large data sets of
high-dimensional data. These applications occur in various
domains, most notably natural language processing, pattern
recognition, and computer vision [1], [2]. High-dimensional
data analysis suffers from what Duda and Hart called the
curse of dimensionality [3], where methods that work well
with lower dimensional datamay breakdownwhen facedwith
high-dimensional data. The curse of dimensionality is likely
to overfit training data, and therefore to produce models that
do not generalize to new data which they will then fail to
interpret [1], [4], [5]. Recent studies have explicitly addressed
such issues in various ways [6]–[8], such as dimensionality
reduction [9] by feature selection and reduction, done before
data analysis, subspace learning to determine data layout and
properties to assist clustering [7], classification [10], as well
as representation by similarity and kernel functions [6].
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Feature selection can be quite useful to high-dimensional
data interpretation. The purpose of feature selection is to iden-
tify a small set of features in the original high-dimensional
data without affecting their intended interpretation in a
noticeable way. Feature selection reduces data dimensionality
by removing redundant and irrelevant components. It can
impact significantly on applications, for instance to speed up
machine learning algorithms, improve predictive accuracy,
and enhance result interpretation [11], [12].

Feature selection methods can be divided into three cat-
egories according to their label information availability:
(i) supervised methods, such as Relief [13]; (ii) semi-
supervised, such as Feature Selection Via Manifold Reg-
ularization (FS-Manifold) [14] and, (iii) unsupervised
methods, such as Unsupervised Graph-based Feature Selec-
tion (UGFS) andUnsupervised Discriminative Feature Selec-
tion (UDFS) [15], [16]. Unsupervised methods have attracted
wide attention due to the considerable cost and time required
to acquire labelled data. There are three selection strat-
egy models [4]: (i) Filter models, which identify rele-
vant features by statistical or information theoretic criteria;
(ii) wrapper models, which involve a learning method and
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evaluate features based on its performance; and (iii) embed-
ded models, such as C5.0 [17], which embed feature selec-
tion in the learning process and use an objective function
to define and select relevant features by minimization. Fea-
ture selection returns either a subset of features or the
weights of all features measuring their utility. Recently,
graph-based feature selection has attracted much research
interest and its use has proven valuable in several applica-
tions. Graph-based feature selection methods can be divided
into two categories: (1) methods based on data graphs; and
(2) methods based on feature graphs. The driving idea of
the former methods is to search for relevant features while
preserving intrinsic data structure, such as the manifold
structure or subspace [18]–[20]. These methods use graph
representations by mapping data points onto graph nodes
in order to characterize local data structure. Linear pro-
jection of the data onto new spaces and a minimization
of the fitting errors are then applied. Methods in the lat-
ter category use features, rather than data, as graph nodes.
For instance, the supervised Eigenvector Centrality Feature
Selection (ECFS) scheme [21] uses statistical measures (stan-
dard deviation and linear correlation) to link features and give
a graph structure of the feature space, and then ranks features
according to a centrality criterion. The main limitation of
this algorithm is that it only accounts for feature redundancy
in the graph design, using rather simple statistical consider-
ations. In contrast to the ECFS, UGFS is an unsupervised
graph-based method that represents the feature space by a
graph that is designed through jointing data neighbourhood
information and subspace learning [15].

The features that preserve local data structure are linked,
and then a centrality measure is used to rank features based
on the most pertinent links. The UGFS scheme has shown
a good performance, but it has two important limitations:
(i) feature relevance to cluster discrimination is considered
in the graph design, but not feature correlation, a redun-
dancy indicator; and (ii) the k-nearest neighbors’ set of each
point is considered as a cluster representation, which can
make this scheme sensitive to outliers and to the occur-
rence of clusters of unbalanced densities and shapes, which
can lead to incorrect data description. The purpose of this
study is to investigate a new unsupervised feature selec-
tion method, called Influence Space and Graph-based Fea-
ture Selection (ISGFS), which uses the k-influence space
concept [22]–[24] and subspace learning to describe feature
relationships and subsequently design a feature selection
graph. The particularity of ISGFS is its ability to retrieve
discriminative non-redundant features, applicable to data
classes of arbitrary shape, size, and density. In subspace
learning, the variance of a data cluster projection on a given
feature dimension provides a clue to the relevance of that
feature in characterizing the cluster [25], [26]. Accordingly,
ISGFS links features that preserve the local projected den-
sity in core data point neighborhoods. These neighborhoods,
and cluster boundaries as well, can be approximated effec-
tively via the k-influence space for arbitrary cluster layouts,

including complex cluster shapes, unbalanced clusters, and
clusters with significant overlap [22]–[24]. Moreover, graph
edges are weighted according to feature correlation to
account for feature redundancy in the selection process.
Finally, its feature ranking uses PageRank to include various
feature interaction characterizations in the selection, such as
the number of times features interact.

As in studies [18], [27], [28], ISGFS is informed by nearest
neighbor guided subspace learning. However, it improves on
these by the novel use of influence space, which makes it
robust when dealing with noisy and sparse data. In addition
to that, the proposed method exploited subspace learning to
establish relevant features relationships. These improvements
show in the several validation experiments we describe in
Section V. The method does not reduce to a mere processing
pipeline of existing tools; instead, it addresses the crucial
issue of feature relationship analysis to determine relevant
features. Features are ranked by graph centrality analysis
using potent criteria related to class separation, ensuring the
convergence of PageRank processing.

The remainder of this paper is organized as follows.
Section II reviews related graph-based state-of-the-art meth-
ods. Section III presents the mathematical framework on
which these methods are based. Section IV details the
proposed method and Section V describes an experimen-
tal demonstration of its performance. Finally, Section VI
presents our conclusion and avenues for promising future
work.

II. RELATED WORK
This section gives an overview of the prevailing feature
selection methods, which can be categorized as filter-
driven, embedded cluster analysis-driven, regression-based,
and graph mapping-based methods.

A. FEATURE SELECTION
Unsupervised feature selection has attracted increasing atten-
tion and various algorithms have been suggested and cat-
egorized according to their selection model. Filter-driven
methods give each feature a score estimated via a metric.
They are univariate and differ by filter type, such as variance
in MaxVar [29] and Laplacian in [30]. Filter-based methods
suffer mainly from feature interaction omission.

Embedded cluster analysis methods can be quite com-
plex, as they study clustering attributes in the data in
order to select features after learning a model (classifi-
cation or regression), as in Multi Class Feature selec-
tion (MCFS) [31], Similarity Preserving Feature Selection
(SPFS) [27], and Minimum Redundancy Spectral Feature
Selection (MRSF) [32]. These methods’ use of clustering
makes their algorithms slow and (generally) unscalable.
Related methods, such as UDFS [16] and Non-negative Dis-
criminative Feature Selection (NDFS) [33], capture the man-
ifold structure of data by performing a learning step to give
scores to the most discriminative features. However, these
methods introduce constraints that are too restrictive and
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they can be quite affected by data noise and outliers. The
sparsity of data in high-dimensional spaces has motivated
the use of the `2,1-norm, which gives a high performance
even in the presence of noise. This norm was adopted by
the Robust Unsupervised Feature Selection (RUFS) scheme
in [34]. RUFS is an embedded method which activates clus-
tering and feature selection simultaneously. The minimiza-
tion aspect of the `2,1-norm was utilized in the Regularized
Self-Representation (RSR) study of [35]. Some of the more
recent feature selection methods are regression-based, where
the main feature is to minimize the error between the
projected data and the target matrix (as in the RSR) by
exploiting orthogonality to decompose the target matrix
(Simultaneous Orthogonal basis Clustering Feature Selec-
tion(SOFCS) [36]), as well as integrating feature selection,
matrix factorization and manifold regularization into a uni-
fied framework [19].

The graph-based investigation of [21] computes feature
relationships to realize a mapping of features onto a graph
and subsequently rank them according to their importance
given by a graph centrality measure. Their study proposed
the ECFS algorithm, which ranks features based on three
characteristics: (1) mutual information between features and
labels, (2) a Fisher criterion to investigate the extent to which
features discriminate classes, and (3) the standard devia-
tion, to capture the amount of variation or dispersion of
features from the average. By adding the standard deviation
matrix and the product of the Fisher and mutual informa-
tion matrices, the adjacency matrix can be used to construct
the graph. Finally, the eigenvector centrality [37] is used
to rank features. It is worth noting that the proposed graph
design is based on characteristic vector multiplication which
only describes pairwise feature relationships and neglects the
potential benefits of multi-feature combinations [21]. Several
variants of the Eigenvector centrality [38] have been investi-
gated and have exhibited more efficiency in scoring nodes,
as with PageRank [39] and HITT [40].

The drawbacks of the ECFS algorithm have motivated
the development of the UGFS method [15], where features
are graph nodes linked according to subspace preference
clusters [6], i.e., features that correspond to significant clus-
ter discrimination are linked. According to subspace learn-
ing [28], [41], the variance of the k-nearest neighbors of each
data point indicate the most relevant features. These latter are
extracted and located on a graph, then the pageRank centrality
measure is used to rank features mapped onto this graph.
TheUGFS performed significantly better than other methods,
although three drawbacks have been noted: (i) the elements in
a k-nearest neighbors set may belong to different clusters, and
therefore, the search for cluster discriminating features may
be unduly affected; (ii)considering all data points for feature
combination may unduly change the results, especially if the
data set contains outliers; and (iii) the correlation between
features is not exploited as a means to disfavor the redundant
features [15].

B. SUBSPACE LEARNING
A noteworthy property of multidimensional spaces is that
the clusters may exist in different subspaces and not in the
full-dimensional space [25], [26], [42]. This property has
motivated the emergence of studies in subspace and projected
clustering learning, which cope with the curse of dimension-
ality issue by searching for the pair (C; S) where C is a set of
points composing a cluster and S is a set of the most charac-
terizing features of the considered cluster. The application of
this concept has had considerable success, especially in the
unsupervised context where Yip et al. [43] have illustrated
the existence of projected clusters in real-life datasets. The
principal of projected clustering has been widely utilized
to account for the effect of large spaces (multidimensional
spaces) [28], [41].

The grid-based algorithm CLIQUE [44], which developed
subspace clustering, recursively investigates the set of pos-
sible subspaces based on an a priori-like method and then
retains grid cells with a density greater than a given thresh-
old. Yiu. et al proposed a Monte Carlo algorithm called
DOC (Density-based Optimal projective Clustering), that
uses the density of points in subspaces iteratively to effec-
tively discover projected clusters [45]. Projected clustering
based on K-means (PCKA), proposed by Bouguessa and
Wang [25], improves on the K-means algorithm by involving
the search for projected clusters. The projected clusters are
found by estimating the dense regions in each dimension.
Another clustering algorithm based on subspace learning,
proposed by Wang et al. [46] and called Fast Adaptative
K-means (FAKM), integrates feature selection into clustering
to identify without eigenvalue decomposition the most rep-
resentative features subspace. The FAKM objective function
accounts also for outliers and noisy data.

Common dissimilarity measures, such as the Euclidean
distance, are full-space functions, which makes them highly
effective in low-dimensional spaces but significantly less
accurate in high-dimensional spaces due to the data sparsity.
The notion of subspace analysis has been used to define
improved dissimilarity measures, as in [6], where a weighted
Euclidean distance was proposed based on subspace learning
and the well-founded notion of density connected clusters
(more details are given in Section III-C).

C. CENTRALITY MEASURES AND PageRank
Currently, and in light of the ongoing growth of social
networks, the characterization of important (central) nodes
within graphs is a problem being widely addressed from dif-
ferent perspectives. This characterization is generally related
to the calculation of degree centrality measures, i.e., numer-
ical score values that allow the relevant nodes to be ranked
according to specific criteria.

While some measures focus on the inherent structure of
the network, e.g., the well-known degree and betweenness
centrality measures, others bring additional information into
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the calculation. The four categories of centrality measures
are [38]: ’Degree Centrality’, the simplest measure, which
is equal to the number of edges connected directly to the
considered node; ’Closeness Centrality’, based on the dis-
tance between nodes and follows the assumption that shorter
distances improve information dissemination on a graph;
Betweenness Centrality’, in which high-scoring nodes are
those able to communicate with other nodes, while requir-
ing few intermediaries; and ’Eigenvector centrality’, which
favors nodes connected to members that are strongly con-
nected to other graph actors. These methods can operate on
directed or undirected graphs, and can also take into account
graph weights to highlight node relationships.

Google developed an Eigenvector centrality variant called
PageRank [47] to locate recognizable and relevant web
pages. It is simple, fast, entirely general, and applicable
to any type of graph. PageRank has been used in biol-
ogy and bioinformatics to find and rank genes (GeneR-
ank [48]) and proteins (ProteinRank, AptRank [49], as well
as to match protein-protein interactions (IsoRank). It is also
used in neuroscience, complex engineering systems (Monior-
Rank), in Linux kernel, bibliometrics (CiteRank, Timed-
PageRank, AuthorRank), social networks (BuddyRank and
TwitterRank), and several other applications [47].

III. PRELIMINARY CONCEPTS
This section briefly describes some of the fundamental
notions of graph analysis theory influence space and subspace
learning techniques and their notation conventions.

A. NOTATIONS
Let DB be a dataset of d−dimensional points, where the set
of features/dimensions is denoted by F = {F1, . . . ,Fd }.
Let X denotes the set of n data point X = {x1, . . . , xn},
X ⊂ Rd . Each point xi ∈ X is a vector of d dimen-
sions xi = (x1i , . . . x

j
i , . . . , x

d
i ), where x

j
i (i = 1 . . . n; j =

1 . . . d) is the value of data point xi on the dimension F j.
Let dist(p, q) be the Euclidean distance between two data
points p, q ∈ X .

The problem is to map the features onto a weighted graph.
Let G =< F,E > be a graph, where the vertices (nodes) F
are the set of features F = {F1, . . . ,Fd }, and E indicates
the edges linking the vertices. A is the adjacency matrix
corresponding to graph G, where each element ai,j represents
a pairwise relationship between features F i and F j. Coeffi-
cients ai,j are defined via a potential function φ:

ai,j = φ(F i,F j) (1)

Table 1 summarizes the most important notations used in
this article.

B. INFLUENCE SPACE
In recent outlier analysis research, local outliers have been
mined by computing the density distribution of their neigh-
bors. Cassisi et al. proposed the k-influence space (Isk )
concept which improves the separation of clusters with

TABLE 1. Main notations in the paper.

heterogeneous densities [22]–[24]. This concept has been
used as a new dimension, with the clustering process carried
out in the new residual space. Lv et al. have used Isk to reduce
the amount of DBSCAN input parameters [23]. Isk has also
been used to determine the core-points, which supported the
is-clustering algorithm in dense regions [24].

Consider observations x, p, q ∈ X .
Definition 1: The kdist of x, denoted as kdist (x), is the

distance dist(x, p) between x and p in Rd , such that: (i) for at
least k objects, it holds that dist(x, q) ≤ dist(x, p) and (ii) for
at most k − 1 objects, dist(x, q) < dist(x, p).
Definition 2: The k-nearest neighborhood of an observa-

tion x ∈ X , NNk (x) is the set of observations p such that
dist(x, p) 6 kdist (x), which means:

NNk (x) := {p ∈ X \ {x} | dist(x, p) 6 kdist (x) }.

Definition 3: The reverse k-nearest neighborhood of an
element x is defined as:

RNNk (x) := {p ∈ D | x ∈ NNk (p)}.

Definition 4: The k-influence space of the observation x is
defined as:

Isk (x) := NNk (x) ∩ RNNk (x).

The density of neighbouring data around an observation
x ∈ X can be estimated through the k-influence space
(Isk (x)) [22]–[24]. The k-nearest neighbours set NNk (x) is
never empty, whereas the size of RNNk (x) depends on how
many times x is classified as k-nearest neighbor of an
object x. In cluster analysis, the size of k−influence space
of a data point indicates the importance of the corresponding
data point: for p ∈ X , if |Isk (p)| > 2

3k , p is a core point, and
if |Isk (p)| = 0, p is a noise point (see figure 1), where 2

3k is a
threshold used in the literature [22]–[24].

In this paper, we use the k-influence space to define the
neighbourhood of data points independently of the geometri-
cal distances, and to eliminate noisy data, which have empty
k−influence space sets and can negatively influence the fea-
ture selection results.
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FIGURE 1. The distribution of core (blue points) and noise (red points)
data classified via the Isk cardinality.

FIGURE 2. Variation of projected densities along dimensions.

C. PROJECTED CLUSTER DENSITY
Projected clustering is a class of subspace learning, which
highlights and exploits the existing correlation of different
clusters along different subsets of dimensions. The clusters
are defined as a subset of data points C which are densely
clustered together a subspace S of features [25], [26].
Let x ji a 1-dimension point representing the projected value

of the point xi on the dimension F j. A projected cluster Cs,
s = 1, . . . ,K , is a pair (Cs, Ss), where K is the number of
clusters, Cs is a subset of data points composing the cluster
and Ss is a set of pertinent features that characterize the con-
sidered cluster. The variance of the projection of a data cluster
on a given feature can indicate its relevance in the detection
of the latter cluster. The subset of dimensions {Ss}{s=1,...,K },
are not disjointed and may have different cardinalities. This
assumption has motivated subspace learning in feature selec-
tion [15]. For instance, as illustrated in Figure 2, feature d1 is
able to discriminate cluster2 by means of the projected data
variances better than feature d2 can discriminate cluster2.
Figure 3 illustrates an artificial data set composed

of 2,000 data points represented by 12 dimensions. Data
points are clustered into 5 clusters; rows represent clusters
boundaries. Each cluster has a subset of relevant dimensions
that exhibit its structure; for example, cluster 1 exists in
dimensions F1, F3, F6, F8, F1 and F11. Note that some
irrelevant dimensions can be identified visually (marked in
red color), such as F2, F5 and F12, where data points are

FIGURE 3. Illustration of an artificial dataset with projected clusters.

uniformly distributed and where no cluster structure has been
identified.

In an unsupervised context, the neighborhood of data
points is considered to be the points that belong to its cluster.
Bohom et al. [6] have proposed a weighted Euclidean dis-
tance based on subspace concepts and the notion of density
connected clusters. Their study proposed the notion of a
subspace preference cluster based on the variance of the data
neighborhood along features, and then used these variances
to weight the distances.

D. PageRank FOR GRAPH CENTRALITY
PageRank, Google’s web page ranking system proposed by
Brin and Page [50], is a common ranking system. It uses
a variant of the eigenvector centrality measure, which itera-
tively computes the normalized and propagated value for each
node in a graph, where each graph node rank depends on the
rank of nodes pointing to it. The iterative process to compute
the PageRank (pr) was initially defined by a simple sum as
follows:

priter+1(Ei) =
∑
Ej∈BEi

priter (Pj)
|Ej|

, (2)

where priter+1 is the PageRank of graph node Ei at iteration
iter + 1, and BEi is the set of nodes pointing to Ei. The
process is initialized with pr0(Ei) = 1

n̂ , for all Ei, where n̂
is the number of nodes in the graph, and is repeated with the
expectation that the scores will converge to stable values.

Eq. 2 computes the PageRank one node at a time. The fol-
lowing matrix representation computes the PageRank vector
of all nodes:

π (iter+1)T
= π (iter)TH, (3)

where π is the PageRank vector,H is a n̂×n̂ binary adjacency
matrix of the graph, Hi,j = 1/|Ei| if there is a link from node
i to j, and is 0 otherwise.

The convergence of the iterative process to a stable PageR-
ank value has been verified by the Markov properties. In fact,
Eq.3 is a simple ‘‘linear stationary process’’, it is equivalent
to a power method applied to H. The later matrix H is
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like a stochastic transition probability matrix for a Markov
chain. According to the Markov properties, if the Markov
matrix is stochastic, irreducible and aperiodic, the process
will converge to a unique positive vector (stationary vector).

The Google Matrix, G, is defined as:

G = αH+
1− α
n

eeT , (4)

where e is a vector with all entries equal to 1, and α is
an input parameter α ∈ (0, 1), called the ‘‘teleportation
parameter’’, used to control the ‘‘diffusion’’ of random walks
combinations. The proposed matrix is a Markov matrix: (1) a
convex combination of two stochastic matrices H and 1

n̂ee
T ;

(2) irreducible, each node directly connected to every other
node; (3) aperiodic, due to the self-loops Gii>0, for all i
and; (4) sparse. For a discussion of the convergence process,
please refer to [39], [51]. Coefficient α is typically fixed to
0.85. Convergence is typically obtained quickly for this value.
However, convergence generally requires more time when α
is larger, and instability can arise when α is close to 1 [52].

IV. INFLUENCE SPACE GRAPH-BASED FEATURE
SELECTION (ISGFS)
The main idea driving ISGFS is to map features onto a
weighted graph and then use PageRank to score them accord-
ing to their importance in that graph. In essence, the greater
the number of links pointing to a feature (node) and the larger
these links’ weights, the higher that feature’s rank.

By exploiting feature selection constraints, these graphs
are designed to maximize features’ relevance and minimize
their redundancy, without being influenced by the existence
of outlying data and unbalanced clusters. This is accom-
plished by analyzing the projected clusters and ranking fea-
tures according to their ability to preserve the neighborhood
densities and shape of informative data points by linking
features with smaller variance in the projected neighborhood
data of core data points. These neighborhoods are estimated
using the influence space concept [22]–[24]. This process is
carried out in four basic steps:

First, ISGFS searches the neighborhood of each data
point p, which is its k-influence space Isk (p), where data
points are assumed to belong to the same cluster. Isk (p) is
composed of data belonging to both NNk (p) (the k-nearest
neighbors of p) and RNNk (p) (the reverse k-nearest neighbors
of p) (see section III-B and [22]–[24]).

Second, ISGFS computes the variances along features as
follows:

Var i(Isk (p)) =

∑
q∈Isk (p)(dist(x

i
p, x

i
q))

2

|Isk (p)|
, (5)

where p ∈ X , k ∈ N , Var i(Isk (p)) is the variance of Isk (p)
along a feature i, x ip is the value that takes the point p on the
feature F i (projected value).

Third, it searches for each non-noisy point p (|Isk (p)| >
2
3k), the subspace preference dimensionality Sp. This is the set
of features with variances lower than a user input threshold δ.

Fourth and last, ISGFS maps the features onto the graph
and applies PageRank centrality to rank them. The graph
edges relating features F i and F j are weighted by the negative
of their pairwise correlations, thereby downgrading feature
redundancy. Thus, the potential function is given by:

φ(F i,F j) =

{
1/corr(F i,F j), if F i,F j ∈ Sp
0, otherwise,

(6)

where Sp is the core point p subspace preference dimension-
ality, Var i(Isk (p)) ≤ δ,Var j(Isk (p)) ≤ δ and δ is the variance
threshold.

The adjacency matrix A, with elements ai,j = φ(F i,F j),
associated to the designed graph, is stochastic, sparse, and
reducible. Matrix A is used as the transition probability
matrix of a Markov process to compute the features PageR-
ank.

More details are provided in Algorithm 1.1 Note that i, j, l,
and m are indexes, ñ is the number of core-points, and
VarBinarized is a binary matrix in which rows and columns
correspond to core points and features, respectively. Also,
VarBinarized (i, j) = 1 if feature F j is relevant to core point xi.

V. EXPERIMENTS
This section focuses on the evaluation of the feature selection
performance of ISGFS, in both supervised and unsupervised
tasks, i.e., clustering and classification, on several public
datasets. In the experiments, ISGFS is evaluated in two ways:
(i) It is compared to state-of-the-art unsupervised feature
selection algorithms; and (ii) The classification of ISGFS
features by conventional algorithms is compared to deep
learning feature extraction and classification.

A. EVALUATION METRIC
Classification performance, in either supervised or unsuper-
vised mode, on the selected features datasets, is the crite-
rion to evaluate the feature selection effectiveness of given
algorithms.

For all methods compared, the classifiers are applied on
the selected features and four evaluation metrics are used
to assess the classification performance (1) the classification
accuracy (ACC), (2) precision, (3) recall and, (4) normalized
mutual information (NMI ) defined by:

Classification performance in the selected feature datasets,
in either supervised or unsupervised mode, is the criterion
for evaluating the feature selection effectiveness of a given
algorithm. The classifiers are applied on the selected features
of the sixmethods compared here, and four evaluationmetrics
are used to assess the classification performance: (1) the
classification accuracy (ACC), (2) precision, (3) recall, and
(4) the normalized mutual information (NMI), defined by:

ACC =
TP+ TN

TP+ TN + FP+ FN
(7)

1The source code will be posted online to provide the needed material for
the use of ISGFS.
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Algorithm 1 : ISGFS Algorithm
Input: Observed data: X = {x1, . . . , xn}, k , δ.
Output: RankedFeatures: a vector of ranked features.

1: Compute Isk (xi), with i = 1, . . . , n.
2: Compute Var j(Isk (xi)), with i = 1, . . . , n and j =

1, . . . , d (see Equation 3).
3: ñ = 0, A(i, j) = 0, i = 1, . . . , d and j = 1, . . . , d .
4: for i = 1 : n & |Isk (xi)| ≥ 2/3k do
5: for j = 1 : d do
6: if Var j(Isk (xi)) ≤ δ then
7: VarBinarized (ñ, j) = 1
8: else
9: VarBinarized (ñ, j) = 0

10: end if
11: end for
12: ñ = ñ+ 1
13: end for
14: for i = 1 : ñ do
15: Sp = {}
16: for j = 1 : d do
17: if VarBinarized (i, j) == 1 then
18: Sp = Sp ∪ {F j}
19: end if
20: end for
21: for l = 1 : size(Sp) do
22: for m = 1 : size(Sp) do
23: A(l,m) = 1/corr(FSp(l),FSp(m))
24: end for
25: end for
26: end for
27: G = ({F1, . . . ,Fd },A)
28: RankedFeatures = pageRank(G, 0.85)

precision =
TP

TP+ FP
(8)

recall =
TP+ TN
TP+ FN

, (9)

where TP,TN ,FP and FN denote the number of true pos-
itives, true negatives, false positives and false negatives,
respectively. The NMI is defined as:

NMI =
MI (C,G)

max(H (C),H (G))
, (10)

where C and G are classification labels and ground truth
labels,MI (C;G) is the mutual information betweenC andG,
and H (C) and H (G) denote the entropy of C and G, respec-
tively. The standard unsupervised classifier K-means algo-
rithm is used in these experiments. Each experiment was
repeated 20 times and the average results are reported. Super-
vised classifiers (Logistic regression model and Random
forests) are assessed by 20-fold cross validation. As random
sampling is used for both K-means initialization and the
splitting of data into learning and test subsets, when dealing
with the supervised classifiers, all experiments were repeated
20 times and the means of ACC, NMI, precision, and recall

TABLE 2. Dataset descriptions.

are reported to ensure that the results were not influenced by
sampling.

B. DATASETS
Several experiments were conducted to show the effective-
ness of ISGFS in selecting relevant features. Two types
of experiments were utilized to achieve a more accurate
appraisal.
• Experiment 1: Comparison of ISGFS with state-of-
the-art feature selectionmethods. Here, ISGFS and other
feature selection algorithms are applied on 7 publicly
available datasets 2 that are generally used to evalu-
ate feature selection techniques. The p first features in
the rankings provided by these methods are then used
to classify data by k-means, and the classification is
evaluated according to the ACC and NMI values (see
section V-F.1).

• Experiment 2: Comparison of ISGFS with deep learning
feature extraction methods. Here, a public text dataset
used in sentiment analysis, composed of 14640tweets,
is the input to compare the sentiments classification
given by: (1) Conventional methods using ISGFS fea-
tures in which the tweets are preprocessed and ISGFS
selects features and reduces the dataset, then uses com-
mon text mining classifiers, namely logistic regression
and random forests, to analyze the sentiments in the
tweets; and (2) Deep learning feature extraction and
classification in which two models are used to extract
relevant features and then classify the tweets.

The description of these datasets is summarized in Table. 2.
In order to assess the robustness of ISGFS compared to that

of UGFS when dealing with noisy data (outlier data points
and redundant features), we added two other experiments:
(i) modifying the USPS dataset by adding a set of noisy
instances (200), called ‘‘USPS + NI’’; and (ii) adding a
set of redundant features (20 features) to the USPS, called
‘‘USPS + NF’’.

C. FEATURE SELECTION ILLUSTRATION
The Yale dataset, composed of 165 gray-scale images of 15
individuals, was used here [53]. This facial feature dataset
was created by capturing 11 images of each subject, with
different facial expressions and configurations: center-light,
w/glasses, happy, left-light, w/no glasses, normal, right-light,

2http://featureselection.asu.edu/
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FIGURE 4. Feature selection illustration on the Yale dataset. Each row refers to a number of selected features p ∈ {50, 100, 200, 300}
and each column corresponds to the selected human face image in 11different configurations.

sad, sleepy, surprised, and wink. In order to visually illustrate
the behavior of ISGFS, a subject is randomly selected from
the Yale dataset, and the selected features (i.e., pixels) are
highlighted in white. For each sample; the number of selected
features p has been chosen as p ∈ {50, 100, 200, 300}.

Figure 4 shows the features selected by ISGFS. It demon-
strates that ISGFS is able to capture the most discriminative
parts of human faces such as the eyes, nose, and mouth.

D. EXPERIMENTAL SETUP
As noted in the previous sub-section, the evaluation of ISGFS
was done using two types of experiments. The different exper-
imental setups are described below.

1) EXPERIMENT 1- COMPARISON OF ISGFS WITH OTHER
FEATURE SELECTION METHODS
The proposed ISGFS algorithm is compared with the follow-
ing feature selection algorithms:

• Baseline: All of the original features are adopted, i.e., no
selection;

• Laplacian Score (LS): The Laplacian score is used to
choose features that preserve the similarity of the origi-
nal data [30];

• Multi-cluster feature selection (MCFS): Selects features
by spectral information regression based on `1-norm
regularization [31];

• Regularized self-representation feature selection (RSR):
Selects features from sparse spaces through the
`2,1-norm regularization [35];

• Multi-Task Feature Learning Via Efficient `2,1-norm
Minimization (LL`2,1): Considers the `2,1-norm

regularized regression model for joint feature selection
from multiple tasks [54];

• Eigenvector Centrality for Feature Selection (ECFS):
Ranks features by measuring the eigenvector centrality
of the pairwise features graph [21]; and

• Unsupervised Graph-based Feature Selection (UGFS):
Ranks features by applying PageRank centrality on
the feature graph designed via subspace preference
clusters [15].

ISGFS and the other algorithms compared here use input
parameters, which need to be properly adjusted. The param-
eter that needs to be adjusted for all algorithms is the
number, p, of the selected features. In these experiments,
the top p features are selected for all algorithms, where
p ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%}: for each
specific value of p and for each dataset, the parameters
are tuned by the ‘‘grid search’’ strategy to achieve the best
results among all possible combinations. For the algorithms
that use the KNN graph in their search strategy, such as
ISGF, LS, etc, the number of the nearest neighbors is fixed
at 5. The parameter λ of RSR takes its value in the set
λ ∈ {10−3, 10−2, 10−1, 1, 10, 100}. For both the ACC and
the NMI , 20 clustering experiments are performed, each with
random initialization, and the corresponding mean and stan-
dard deviation are computed.

2) EXPERIMENT 2: COMPARISON OF ISGFS
AND DEEP LEARNING:
This experiment focuses on sentiment analysis in a US
Twitter Airline dataset by exploring conventional classifi-
cation techniques combined with ISGFS and deep learning.
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We compare the performance of the logistic regression model
and random forest classification, with and without features
selected by ISGFS, as well as the performance of the Long
Short-TermMemory (LSTM) network and the Convolutional
neural network (CNN).

Logistic regression provides a simple classification algo-
rithm commonly used in data mining. It is simple and does
not require tuning, but for text classification it is less accurate
than other models due to its sensitivity to feature correla-
tion [55]. The random forest classifier is an ensemble learning
method that has given the best accuracy in textual data classi-
fication. We have used these two classifiers to illustrate that
the features selected by ISGFS improve the performance of
classifiers whatever their ability to classify textual data [55].

To assess the quality of sentiment analysis by conventional
classification techniques, the US Twitter Airline dataset was
processed using some text mining techniques for sentiment
analysis. First, the text was cleaned by removing mentions,
hashtag signs, punctuation including question and exclama-
tion marks, URLs, digits and stop words, as well as emojis.
The emojis were converted into one word and all words were
normalized to lower case. Next, we applied a stemming algo-
rithm to keep the words’ stems. After this step, the text is con-
sidered to be cleaned and prepared for feature extraction and
classification. Two feature extractor methods, widely used
in text mining, were used: term frequency–inverse document
frequency (TF-IDF Vectorizer) and Word2Vec.

TF-IDF Vectorizer is a statistical method used by the most
popular recommender systems, which are information filter-
ing systems based on text mining to customize users’ infor-
mation according to their interests and recommend pertinent
items. TF-IDFVectorizer evaluates word importance in a doc-
ument/corpus and provides a weighted vector of those words.
The word importance is evaluated based on how frequently
they appear across multiple documents.

Word2vec is a word-embedding method that computes
high-dimensional vectors representing word semantics.
Words with similar semantics will have similar vectors. The
method trains a two-layer neural network to reconstruct the
linguistic contexts of words. Words sharing a common con-
text in a given corpus are neighbors in the semantic vector
space.

For both vectorization methods, TF-IDF and Word2vec,
we retain 3000 of the 14640 original features. Numerical
matrices are used by the logistic regression model and the
random forest classifiers, with and without using ISGFS to
reduce the high-dimensional space. Classification is assessed
by 20-fold cross-validation, and results are compared using
theACC , precision, and recall. values. To apply deep learning
for sentiment classification, two popular network architec-
tures were used on the tokenized dataset in order to compare
the classifiers and to assess the ISGFS effectiveness: the
Long Short-Term Memory network (LSTM) [56] and the
Convolutional neural network (CNN) [57].

The LSTM network is a recurrent neural network charac-
terized by its memory information for long periods of time,

TABLE 3. Computational complexity of ISGFS against the background of
other methods: d is the dimension of data, n the number of data points,
ñ the number of core points, t the number of algorithmic iterations, and
K is the number of clusters.

TABLE 4. Comparison of feature selection and classification runtimes.

which explains its successful application on sequential data,
particularly in text and sentiment analysis. The LSTM net-
work adds or removes information using structures called
gates: input, forget, and output. The LSTM model is created
with a sigmoid activation function, which has shown better
results than Softmax.

The CNN was initially proposed for image classification
and has become a versatile model used for a wide range of
tasks. It recognizes pertinent local features in a multidimen-
sional space by utilizing convolutional layers composed of
filters. CNNs were used in text mining by Kim [57] to exploit
the fact that text is structured and organized.

E. TIME COMPLEXITY
Here following is a computational complexity analysis of the
ISGFS algorithm. The time complexity for calculating the
influence space set is approximately O(d log n + n) because
ISGFS computes in O(d log n) time the k−nearest neighbors
by the kD-tree method, and the reverse k−nearest neighbor-
hood in O(n) time.
Feature graph generation, which follows the k-nearest

neighbors and reverse k-nearest neighbors analyses, is run
in O(ñd2) time for ñ core points, which is at most O(nd2).
Finally, PageRank requires O( 1

α
. log(ñ)) time. Therefore,

the computational complexity of ISGFS feature selection is
O(d log(n)+ n)+O(nd2)+O(log(n)) = O(d log(n)+ nd2).

Table 3 shows the time complexity of the ISGFS method
against the background of others. Note that ISGFS and UGFS
have the same theoretical time complexity, but UGFS is gen-
erally slower in practice due to the influence of noise in data.
ISGFS has higher complexity than filter feature selection
methods (LS, LL`2,1, ECFS), but lower than other embedded
algorithms such as MCFS.

ISGFS is implemented in Python, under theWindows oper-
ating system. Experimental evaluation is done on a laptop
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TABLE 5. ACC±std clustering results of different feature selection algorithms on different datasets. The best results are highlighted in bold and
the second best results are underlined.

TABLE 6. NMI±std clustering results of different feature selection algorithms on different datasets. The best results are highlighted in bold and
the second best results are underlined.

i7 Intel dual processor 2.4 GHz/CPU and 16 GB DRAM.
We generated an artificial big dataset of 10000 objects (20%
noisy data point) and 5000 features, and compared the run
times of k-means when it uses the optimal selection of fea-
tures by ISGFS and others. The optimal selection, a for any
given method, is the one that gives the best clustering by
k-means for the method of selection, i.e., the selection is
optimized individually for each selection method. Table 4
shows the results. Features selected by ISGFS enabled the
fastest clustering runtime. Note that, in general, faster feature
selection does not necessarily translate into better clustering
runtime.

F. FEATURE SELECTION EVALUATION AND DISCUSSION
1) EXPERIMENT 1
To show the effectiveness of feature selection on classifica-
tion, features are selected as described in Section V-D.1, and
then their classification is evaluated according to theACC and
NMI . The experimental results are summarized in Table 5 and
Table 6.
For each dataset, the best results are highlighted in bold.

The comparison of ACC and NMI values shows that the
proposed ISGFS method outperforms most of the state-of-
the-art methods. Experiments where outlier data are added
(see section V-B), illustrated the ability of ISGFS to select
relevant features without being influenced by outliers, which
is not the case for most of the other methods.

ISGFS with UGFS show competitive results for most of
the datasets, however, the ISGFS gave better results when
dealing with datasets with additive noisy data (outlier data
points and correlated features). These results confirm the

effectiveness of using Isk , which made the algorithm robust
against outliers. In addition, the negative of the pairwise
correlation to the weighting feature’ links in the graph was
effective in eliminating correlated features.

Finally, the comparisons of ISGFS and UFGS to the super-
vised ECFS show that the use of the subspace cluster pref-
erence in designing graph features improves performance.
Figures 5 and 6 illustrate the ACC and NMI values according
to different numbers of selected features, p. In most cases,
the obtained results reveal that the proposed ISGFS gives the
best results.

Note that, in most cases, ISGFS obtained higher cluster-
ing accuracy than the baseline method when fewer features
were retained, which confirms its ability to improve clus-
tering accuracy and selection time. The ISGFS outperforms
RSR in all experiments, supporting its ability to preserve
local geometrical structure. The ISGFS also outperformed the
L`2,1-norm, a robust algorithm with sparse datasets. In sum-
mary, the experimental results support the conclusion that
ISGFS can be used advantageously to improve both runtime
and accuracy of classification.

2) EXPERIMENT 2
Table 7 summarizes the comparative results of several sen-
timent analysis techniques. As noted in Section V-D.2,
we compare conventional classification methods with deep
learning based methods, while using or not using the ISGFS
algorithm and also by using two feature extraction methods.

Some conclusions can be drawn from Table 7: (1) The
logistic regression model provides improved classification
results with both vectorization methods, with and without
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FIGURE 5. ACC (%) of different feature selection algorithms, over a varied number of features.

using ISGFS; (2) The Word2Vec vectorization method
supports classifiers to achieve better classification results;
(3) ISGFS improves the classification results in all cases;
(4) The LSTM network has shown the best classification

accuracy, better than CNN and conventional methods; and
(5) The LSTM and the logistic regression model show com-
petitive results when combined with Word2Vec and ISGFS
feature selection algorithms.
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FIGURE 6. NMI (%) of different feature selection algorithms, over a varied number of features.

In summary: Although it can be slower than a few other
methods, feature selection by ISGFS is better able to identify
relevant class separation features in the presence of adverse

conditions common in practice, such as feature redundancy,
unbalanced class data amounts and densities, and noisy
data.
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TABLE 7. Comparison of different classifiers (conventional and deep) for sentiment analysis of US Twitter Airline dataset.

VI. CONCLUSION
The purpose of this study was to develop and investigate
an unsupervised feature selection method based on subspace
learning and graph analysis. The proposed method identifies
feature relationships through cluster density properties and
subspace learning. Feature relationships are used to design
a feature selection graph weighed by feature correlations.
PageRank centrality ranks features by their ability to sep-
arate clusters, and feature correlations eliminate redundant
features. The richer analysis of data in this method, especially
data with structure and noise, as is common in the datasets
of major current applications, explains in part the better
results it yields. Several examples have been given, in which
the proposed algorithm outperformed state-of-art methods in
both classification and clustering. As future work, we plan to
investigate density threshold selection and a learning method
to extract feature relationships, as well as graph direction
impact. We also plan to extend the proposed method to inves-
tigate gene-gene/drug-target interactions. The source code
will be posted online to provide all of the material needed
to reproduce our experiments.
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