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ABSTRACT
When assessing a patient with knee osteoarthritis (OA), a number of factors are considered to
guide treatment plan, namely, demographic, radiographic, clinical, musculoskeletal, and bio-
mechanical factors. The aim of this study is to identify which of these factors are the most
related to each other to potentially better prioritize the modifiable factors to be addressed as
they may influence treatment outcomes. We investigated a multimodal canonical correlation
analysis to evaluate associations between these factors. The analysis was performed on 415 OA
patients who were not candidates for knee arthroplasty, to identify factors that are associated
to the patients’ clinical conditions.
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1. Introduction

To define proper therapeutic options for knee osteo-
arthritis (OA) patients, clinicians need to take into
account multiple factors from their clinical assessment
(subjective questions and musculoskeletal examin-
ation), radiographic results and mechanical evalu-
ation. These assessment factors may share a set of
underlying dysfunctions, which can be relevant to
customize the treatment approach. Knee OA is first
assessed with a clinical evaluation and an X-Ray. A
musculoskeletal assessment provides information on
muscular weakness, stiffness, or balance issues.
Biomechanical factors give additional information on
mechanical dysfunctions and risk factors related to
the disease progression and patient symptoms. The
relationship between radiographic OA, musculoskel-
etal and biomechanical factors is not well understood.
Indeed, the information provided by each assessment
can be complementary, and/or closely interrelated
between them. The decision process for physicians to
define the proper treatment plan while taking into
account all information from various assessments is
not an easy task. Whereas the functional evaluations
(kinematic exams) complement the conventional
ones, aggregated information from all assessments is
expected to better explain the nature of the most rele-
vant factors which should share comprehensive

information on disease status and patient symptoms.
Thus, the investigation of multimodal relationship
between the different assessments is necessary.
Multimodal data analysis has the potential for linking
multiple sets of factors, paving the way for the selec-
tion of relevant factors and decision targets in treat-
ment strategies.

Recently, the combination of heterogeneous and
multiple sources of data (medical images with clinical
or biomechanical data) has formed the basis for more
powerful and efficient models (Kokkotis et al. 2020).
The literature related to knee OA was limited first to
bivariate correlation approaches (Astephen et al. 2008;
Wilson et al. 2011; Bensalma et al. 2018) and then to
multivariate methods developed by our researcher’s
team (Bensalma et al. 2019; Bensalma et al., 2020;
Bensalma et al., 2020) to investigate the relationship
between clinical parameters and biomechanical data.
In the biomedical domain, various conventional and
advanced Canonical Correlation Analysis (CCA)-
related techniques were exploited and highly applied
to genomics data, in neuroimaging, genetics and
molecular biology (Witten and Tibshirani 2009;
Tenenhaus et al. 2014; Stout et al. 2018; Garali
et al. 2018).

The aim of this study is to evaluate the associations
between factors from different types of knee OA
assessments, namely (1) clinical factors including both
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demographic (age, BMI (body mass index)) and
radiographic OA severity measured with Kellgren-
Lawrence grading scale (KL), (2) musculoskeletal tests
performed by a therapist, (3) biomechanical factors
assessed with the KneeKGTM system (EMOVI.
Canada) and extracted from of the 3D kinematics
captured during gait (namely in flexion/extension,
adduction/abduction, internal/external tibial rotation)
and (4) the knee’ clinical condition evaluated by
patient-reported outcomes using the Knee Injury and
Osteoarthritis Outcome Score (KOOS) questionnaire
(Roos and Lohmander 2003) which consists of five
subscales: knee-related pain, symptoms, activities in
daily living, sport and recreation and quality of life.
The multivariate associations were conducted on cross
section of OA patients and, performed using a multi-
modal canonical correlation analysis (MCCA)
(Tenenhaus and Tenenhaus 2011; Tenenhaus et al.
2017). This statistical method aims for determining
the relationship between multiple assessment sets of
factors measured on the same patients. Since bio-
mechanical markers can differ between sexes
(Toliopoulos et al. 2016), the analysis has been per-
formed for men and women separately.

2. Materials and methods

2.1. Participants and ethical approval

Four-hundred and fifteen patients were enrolled in
this cross-sectional study. The cohort include 251
females and 164 males’ participants who were not on
a waiting list for knee arthroplasty, with predomin-
antly mild to severe disease corresponding to Kellgren
Lawrence (KL) grade � 2 and knee pain � 4=10 on a
numeric rating scale in the past 7 days. The
mean ± SD of age and body mass index (BMI) were
63.3 ± 9.2 years and 30.3 ± 5.6 kg=m2 respectively.
Ethical approval was obtained for the data collection
by the institutional ethics committees of the
University of Montreal Hospital Research Center
(Reference numbers: CE 10.001-BSP and BD 07.001-
BSP), and of the �Ecole de technologie sup�erieure
(Reference numbers: H20100301 and H20170901). All
patients provided an informed consent before partici-
pation. The sex, age and BMI were included in this
study as demographic factors.

2.2. Knee OA assessment factors (features
extraction and preprocessing)

2.2.1. Biomechanical assessment
All participants underwent a an in-clinic functional
evaluation to assess OA related biomechanical

markers using the KneeKG system (Lustig et al.
2012). Kinematic data in the form of a 3D curves
were collected during gait cycle (i.e. the time interval
from heel contact of one foot to the next heel contact
of the same foot) using recording equipment and soft-
ware (de Guise et al. 2011). These curves describe the
joint angles between the tibia and femur correspond-
ing to flexion-extension in the sagittal plane,
abduction- adduction in the frontal plane and
internal-external rotation in the transverse plane. A
normalized gait cycle per participant of the kinematic
curves was then used to extract a set of 70 biomech-
anical markers used in this study (Figure 1). These
biomechanical markers are reported using a local
method of feature extraction and selection on some
specific points from the biomechanical waveform and
outcomes based on summary statistics (e.g. mean,
variance, max, min, and range) (Abid et al. 2019).
Only 38 non redundant biomechanical (with correl-
ation less than 0.9) factors were considered in
this study.

2.2.2. Musculoskeletal assessment
The study included a musculoskeletal assessment con-
sisting of some reliable tests (Cibere et al. 2004). In
total, 20 musculoskeletal tests were performed by a
therapist, including: (1) Passive flexion & extension
range of motion, (2) 10 strength assessment of the
hip, knee, and ankle joints (rated as mild to severe on
a 5 point scale by the therapist), (3) 4 flexibility tests,
for hamstring, quadriceps-psoas, iliotibial band and
gluteal-piriformis (rated as mild to severe on a 5
point scale), (4) circumference difference between
knees (mm), (5) swelling test, (6) standing balance
control test, and functional 30-second chair stand
tests (30 s_CST). Missing values of musculoskeletal
data were handled by imputation with principal com-
ponent method (PCA).

2.2.3. Clinical assessment
The knee clinical condition was evaluated by patient-
reported outcome measures using the Knee Injury
and Osteoarthritis Outcome Score (KOOS) question-
naire which assesses five subscales: pain, symptoms,
activities in daily living (adl), function in sport
and recreation (sport) and knee-related quality of
life (qol). Through this questionnaire, the patient
provides a valid and reliable assessment of his/her
health status relative to the pathology (Astephen and
Deluzio 2009).

Table 1 summarizes some statistics (mean (SD)) of
the data used in this study according to grade, sex and
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the 5 KOOS subscales. The scores of these 5 subscales
range from 0 to 100, (100 indicating no problems
(good KOOS) and 0 indicating extreme problems).

2.3. Multimodal canonical correlation
analysis (MCCA)

As a multiset component-based method for the inte-
grative exploration of multimodal and high-dimen-
sional data sets, multimodal canonical correlation
analysis (MCCA) is a general framework of multi-
modal analysis that covers and unify several existing
multivariate analysis methods (Tenenhaus et al. 2017;
Garali et al. 2018; Tenenhaus et al. 2017).
Considering j ¼ 1, . . . , J sets as data matrices Xj. Each

set of pj variables (assessment factors) measured on
the same n individuals (patients); Xjðn� pjÞ ¼
½X1p1 , . . . ,Xjpj �: The objective of multiset component
methods is to find set components, defined as a
weighted sum of the corresponding variables Yj ¼
X1wj, j ¼ 1, . . . , J (where wj is a vector of pj elements)
summarizing the relevant information between and
within the sets (Tenenhaus et al. 2017). This method
is defined as the following optimization problem:

maximise
w1,w2, ...,wJ

XJ

j, k¼1

cjkgðcovðXjwj,XkwkÞÞ

s:t: ð1�sjÞvarðXjwjÞ þ sjjjwjjj2 ¼ 1, j ¼ 1, . . . , J,

where the J� J matrix C ¼ ðcjkÞ denotes the network

Table 1. Statistics (mean (SD)) of the data by grade, sex and the 5 KOOS subscales.
KL Sex n Age BMI Pain adl Symptoms qol Sport

2 F 82 60.8 (8.9) 30.6 (6.2) 59.7 (19.3) 65.6 (21.3) 63.6 (15.8) 51.4 (25.1) 40.4 (26.5)
2 M 55 59.1 (10.1) 30.2 (5.6) 64.1 (19.8) 70.0 (19.1) 68.6 (18.9) 52.9 (24.8) 41.7 (27.4)
3 F 96 63.9 (8.6) 30.6 (6.2) 58.7 (17.9) 64.8 (21.0) 62.6 (18.2) 49.2 (25.5) 36.5 (27.8)
3 M 53 63.6 (9.8) 28.4 (4.0) 59.9 (17.1) 66.5 (18.2) 61.9 (16.7) 49.2 (22.6) 34.2 (22.2)
4 F 73 66.2 (9.2) 30.7 (5.5) 55.5 (14.9) 63.0 (16.9) 58.3 (16.1) 50.1 (20.1) 29.4 (21.7)
4 M 56 66.1 (7.1) 30.9 (4.6) 57.1 (15.9) 63.9 (17.9) 59.9 (17.1) 43.3 (22.8) 32.3 (23.9)

Figure 1. Knee kinematics curves averaged (mean of all patients) and resampled on 100 points, in a single curve of gait cycle of
each knee joint function: flexion-extension, abduction-adduction and internal-external rotation, with some extracted biomechanical
markers corresponding to the points: P20 (end of loading phase), P54 (end of terminal stance) and P69 (end of push-off).
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of connections between sets: cjk ¼ 1 if sets j and k are
connected and cjk ¼ 0 otherwise. The shrinkage
parameters sj ranging from 0 to 1 is set to 0 for all
the sets to capture the correlation-based criteria (this
criterion is better for explaining the correlated struc-
ture across data sets but can yield unstable solutions
in case of multi-collinearity). 0<j<1 is a good com-
promise between variance and correlation. This criter-
ion setting can be used in case of multi-collinearity
and when the data set is rank deficient. The shrinkage
parameter can be determined based on V-fold cross-
validation or by using the analytical formula proposed
by (Sch€afer and Strimmer 2005) (Tenenhaus et al.
2017; Vignette from cran.r-project.org 2021).

MCCA was carried out with full between-sets con-
nections. The data set was organized into four set of
assessment factors, namely demographic and radio-
graphic factors (X1), Biomechanical factors (X2),
Musculoskeletal factors (X3) and clinical KOOS fac-
tors (X4). Figure 2 presents the path diagram of data
sets from the MCCA point of view with the between-
set connections design. MCCA aims to identify fac-
tors that explain well their own set and that influence
the relationships between the associated sets.

3. Results

Figure 3 visualize the connected factors via a network
graph. The severity grade and BMI seem to influence

at least one factor of each data set (biomechanical,
musculoskeletal, and clinical factors) for both sexes,
while the age of patients influences only the biomech-
anical factors for men. There are more musculoskel-
etal and biomechanical factors for men than for
women that contributed to the full between-sets rela-
tionship. The number of biomechanical factors is
twice higher for men (Figure 3(b)) than for women
(Figure 3(a)). For the musculoskeletal factors, we
noticed passive flexion range of motion (ROM), bal-
ance and functional 30-second chair-stand test, as the
most relevant for both sexes, in addition of passive
extension ROM and strength of external rotation of
hip for men.

Interestingly, all KOOS subscales are related to
most factors in the other different sets. All the assess-
ment factors illustrated in Figure 3 are described in
the Table 2. Figures 3(a2, b2) represent the connec-
tions showed in Figures 3(a1, b1), respectively, when
excluding the clinical KOOS factors, that have an
exhaustive relationship with the entire assessment fac-
tors. These figures show more clearly the links
between different assessment factors knowing that
they fully contribute to a patient’s clinical condition.

3.1. Clinical conditions’ oriented relationship

Considering furthermore in this case, that all blocks
are supposed to be linked to the clinical condition

Figure 2. Path diagram and full between-sets connections design of data sets. X1, X2, X3 and X4 are all connected.
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(KOOS) data block. Figure 4 illustrate the path dia-
gram of this guided between-blocks connections
design. The main idea behind the combination of the
conventional and functional knee OA assessment fac-
tors is to identify factors associated with the patient’
clinical conditions that characterize sufficiently his

well-being, specifically level of pain, function during
activity of daily living and symptom. This design of
relationships’ structure is oriented toward the explan-
ation of the patients’ clinical conditions by imposing
a connection between the clinical KOOS block and
the other different assessments of knee OA.

Figure 3. Network of correlated assessment factors: (a1 and a2) for women; (b1 and b2) for men. The correlations between fac-
tors range from –0.4 to 0.3 for both sexes. Each note is a factor assessment (blue for biomechanical factors, green for musculo-
skeletal factors, orange for demographic factors and pink for KOOS subscales). The edges (representing the link between each
note) are represented for an absolute correlation value higher than 0.20 to avoid weaker correlations.

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 5



The canonical correlation values (for all patients
and both genders separately) are illustrated in Figure 4.
Results suggest that musculoskeletal and biomechan-
ical characteristics are somewhat more associated with
the patient clinical condition than radiographic

severity and demographic characteristics for all knee
OA patients and each gender.

Figure 5 illustrates the heatmap of associations
between all pairs of KOOS factors (of clinical KOOS
set) and the assessment factors for the other sets

Table 2. Description of the biomechanical and musculoskeletal assessment factors.
Assessment factors Description
Biomechanical factor

1 varus_end_push.off Varus at the end of the push-off phase
max_abd.add_varus Maximum varus angle (highly correlated with 1)
min_abd.add_valgus Minimum valgus angle (highly correlated with 1)

2 flex_loading Flexion during the loading phase
3 ROM_flex.ext Range of motion of flexion/extension
4 flex_contact Flexion at the initial contact
5 flex_end_push.off Flexion at the end of the push-off phase
6 rot_endload_contact Rotation between end of loading phase & initial contact
7 rot_end_push.off Rotation at the end of the push-off phase
8 ext_stance Extension during the stance phase
9 flex_swing Flexion during the swing phase
10 abs_varus_contact Absolute varus at initial contact
11 abs_varus_end_push.off Absolute varus at the end of the push-off phase
12 ext_rot_contact External rotation at initial contact
13 int_rot_loading Internal rotation during the loading phase
14 max_rot Maximum of rotation
15 rot_end_loading Rotation at the end of loading phase
16 rot_end_terminal_stance Rotation at the end of terminal stance
17 rot_stance Rotation during the stance phase
18 abs_rot_end_loading Absolute rotation at the end of loading phase
19 abs_rot_end_terminal_stance Absolute rotation at the end of terminal stance
20 varus_static Varus of functional lower limb alignment

Musculoskeletal Factor
1 flex_ROM Passive flexion range of motion
2 balance Balance test
3 ext_ROM Passive extension range of motion
4 30 s_CST Functional 30-second chair-stand test
5 ext_rot_hip_strength Strength of external rotation of hip

Figure 4. Path diagram of the directed between data sets connections toward the clinical conditions. X1, X2, and X3 are con-
nected to the KOOS block X4. The design matrix C encoding the relationship is: Cj4 ¼ 1; j¼ 1, 2, 3, and Cjk ¼ 0, j 6¼ k ¼ 1, 2, 3,
otherwise. jcorj represent the value of canonical correlation between data sets.
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(demographic and radiographic, biomechanical, and
musculoskeletal). The darkest colored boxes reflect
the most relevant associations. Figures 5(a) and 5(b)
represent the Heatmap that highlight the assessment
factors for women and men, respectively, that are the
most correlated with the KOOS subscales.

Results, shows that biomechanical and musculo-
skeletal factors are mostly related to pain, function
during activity of daily living and function during
sports and recreation KOOS subscale for women
(Figure 5(a)) and to symptoms and quality of life for
men (Figure 5(b)). These relationships are similar to
the one previously reported in Figure 3 and Table 2:
3 biomechanical factors for women against 2 for men,
3 against 2 of musculoskeletal factors for women and
men respectively, BMI for both genders, in addition
to grade for men (Figures 5(a,b)).

The heatmaps allow to appreciate the close positive
relationship between patient reported outcomes and

biomechanical factors (flexion angle during the load-
ing phase and flexion angle at the end of push-off
phase) and musculoskeletal parameters (Flexion ROM
and functional 30-second chair-stand test and bal-
ance). Additionally, other factors were negatively cor-
related with patient’ condition, such as varus angle at
the end of the push-off phase and patient BMI.

Then, for better patient reported outcomes, treat-
ment goals should be: (1) increase the patient’ knee
flexion movement during the loading phase, (2)
increase the knee flexion during push off phase, (3)
increase the passive range of motion, (4) improve
patient balance, (5) reduce knee varus angulation at
the end of the push off phase and (6) reduce
patient’ BMI.

The demographic & radiographic, biomechanical
and musculoskeletal factors that are involved for
patient well-being are similar to the relevant ones
from Figure 3. As shown in this Figure 3, clinical

Figure 5. Heatmap representing the strongest clinical conditions’ related assessment factors for women (a) and men (b). The
correlation values range from –0.3 to 0.2 for both sexes.

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 7



KOOS factors are strongly associated with the other
assessment factors, which is important for improving
the patient’ clinical conditions. Indeed, for women,
the same factors which strongly correlate with clinical
conditions are related together (Figures 5(a, a2)). For
men, there are more biomechanical factors related to
knee rotation function (Figure 3(b2)) in addition to
those highly correlated with clinical KOOS factors
(Figure 5(b)). These factors are clustered in two sub-
network (Figure 3(b2)). For one of these clusters, the
biomechanical factors related to knee rotation func-
tion gathered with age, BMI and the strength of exter-
nal rotation of hip, were not really correlated with the
clinical KOOS factors.

Differences between genders were reported:

� The implication of more biomechanical factors for
men than women (More biomechanical factors are
involved in men than in women).

� The implication of more musculoskeletal factors
for men than women. Passive extension range of
motion and the strength of external rotation of hip
were only involved for men.

� Age has no impact for women while severity grade
interacts more for men than for women.

� Dynamic flexion & varus function and BMI
explain well the clinical condition related precisely
to pain and activities of daily living, differences
were noted between men and women for the effect
of balance and functional 30-second chair-
stand tests.

4. Discussion

The biomechanical assessment covered the important
characteristics of OA functions that must be consid-
ered, while the musculoskeletal assessment contrib-
uted only with few (static) factors (from Figures 3
and 5, only flexion & extension ROM, 30-second
chair-stand tests and balance functions are considered
to be closely related to other parameter sets.). The
flexion ROM of musculoskeletal factors seemed to be
the most important one that a physician should pri-
marily consider. The biomechanical factors combined
nearly all knee movement functions and correlate
well, depending on gender, with the severity grade,
clinical conditions and sociodemographic characteris-
tics of the patient.

Identifying specific abnormal mechanics can be
challenging for clinicians as there are numerous fac-
tors that can be assessed. The highest correlated fac-
tors can be used to help prioritize biomechanical

evaluations. Clinicians should be aware that knee flex-
ion angle and varus angle at push-off, as well as knee
flexion excursion are important biomechanical factors
associated with the other assessment factors.

Based on our results, when the physician wants to
design a treatment plan for patient suffering from
knee osteoarthritis which aims at improving patient’s
pain, function during activities of daily living, func-
tion during sport and recreation and patient’s quality
of life, he should take into account not only clinical
factors, but also biomechanical factors and musculo-
skeletal factors as well. Results also suggest that
strength and flexibility testing do not seem to be
strongly linked to patient reported outcome measures
and that treatments should rather focus on neuro-
musculoskeletal control such as flexion absorption at
loading during gait, push off strategy in flexion and
varus/valgus, as well as balance exercises.

Our results could serve as a card of basic combin-
ation rules or guidelines, which could be resumed in
two steps that define an approach for the physician:
According to our results and depending on gender,
for instance, (1) the clinicians should first rely, on the
flexion and extension range of motion, (2) then com-
plete the examination, by assessing biomechanical
functions, which are primarily varus and flexion
movement of the knee during specific stages of the
gait cycle. Identifying patients with abnormal motions
for these assessment factors can help provide targeted
therapies and identify those most at risk for
poor function.

This study suggests also that: (1) Musculoskeletal
and biomechanical characteristics are better associated
with knee clinical condition than radiographic severity
in osteoarthritis patient (as established by (Bensalma
et al. 2021)), and (2) Informations from musculoskel-
etal tests are present in biomechanical functions. The
dynamic information (biomechanical markers) is
more complete and confirmed what is reported from
passive functions (musculoskeletal parameters) in
addition to being complementary (gives information
not provided in static).

5. Conclusions

MCCA was used to identify the most distinguished
assessment factors referring and corresponding to
patients’ characteristics as well to decision-making in
the conservative care procedure. Indeed, results
helped to identify the biomechanical and musculo-
skeletal factors that are correlated with the patient’
clinical condition on which the physician should base
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the initial treatment of patients, which are biomech-
anical factors (flexion angle during the loading phase,
flexion and varus angle at the end of push-off phase)
and musculoskeletal parameters (flexion/extension
ROM, functional 30-second chair-stand test
and balance).

Finally, the importance of multimodal relationship
led to: (1) determine the most relevant evaluation fac-
tors to customize the treatment approach, (2) give
priority to accommodating factors which affect clin-
ical decision making for planning the treatment.
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