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ABSTRACT Deep learning has served pattern classification in many applications, with a performance
which often well exceeds that of other machine learning paradigms. Yet, in general, deep learning has
used computational architectures built, albeit partially, by ad hoc means, and its classification decisions
are not necessarily interpretable in terms of knowledge relevant to the application it serves. This is often
referred to as the black box problem, which in certain applications, such as epileptic seizure prediction,
can be a serious impediment. The purpose of this study is to investigate an interpretable deep learning
classifier for epileptic EEG-driven seizure prediction. This neural network is interpretable because its layers
can be visualized and interpreted as a result of a novel architecture where the learned weights follow from
signal processing computations such as frequency sub-band and spatial filters. Consequently, the extracted
features are no longer abstract as they correspond to the features commonly used for decoding EEG data.
In addition, the network uses layer-wise relevance propagation to reveal pertinent features which can further
explain the computations leading to the decisions. In seizure prediction experiments using the CHB-MIT data
set, themethod produced classification results which improved on the state-of-the art, with first network layer
filters corresponding to clinically relevant frequency bands, and the input channels in the brain location in
which the seizure originates contributing most significantly to the network predictions.

INDEX TERMS Epileptic seizure prediction, deep neural networks, interpretable decisions, EEG signal.

I. INTRODUCTION
Deep neural networks have extended considerably the ability
of common neural networks to learn and classify patterns,
with striking, unprecedented results in long standing appli-
cations, and in challenging new ones as well [1]. However,
in many other important applications, such as EEG signal
classification for epileptic seizure prediction, which is the
subject of this study, pattern feature learning in deep neural
networks, or deep learning (DL) [2], suffers from what is
often referred to as the black box problem, where, in gen-
eral, some prevalent network architecture is used, without
explicit justification, to have its parameters learned from data
by often adhoc trial and error experimentation. As a result,
better classification is often missed. Moreover, even when the
classification is accurate, the results come essentially with no
interpretation of how the network reached its classification
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decisions. The ability to interpret these decisions may not be
an issue in simple classification tasks where a wrong outcome
is of little consequence. However, in general, interpretation
aids in learning better network parameters, for instance by
biasing the network structure to favor learning of application-
relevant features. In domains such as healthcare, it may be
essential to develop efficient applications relevant in clinical
settings. In this study, we consider a neural network to be
interpretable at two levels: First, by designing layers that
bias learned filters toward common signal processing com-
putations, such as frequency sub-band and spatial filtering,
which are relevant to the application that the network serves
and, second by explaining the influence of the various input
variables, or of the network learned features, in reaching the
classification decisions. For instance, the deep neural network
we investigate in this study for epileptic seizure prediction
is interpretable in that it uses a convolution layer similar to
a filter bank to extract characteristic filters corresponding to
clinically relevant frequency bands, and the input channels in
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the brain location in which the seizure originates contribute
most significantly to the network predictions.

The ability to interpret classifiers has been of general inter-
est in Artificial intelligence and has first appeared in symbolic
reasoning which supports decision making in expert systems,
such as MYCIN [5] which sets to diagnose patients on the
basis of reported symptoms andmedical tests results, and also
GUIDON [6] for knowledge based tutoring, and SOPHIE [7]
for hazard identification. In machine learning as well, being
able to explain the relationship between the input and output
of predictive models, and interpret the outcomes of this rela-
tionship, has been a concern [8]. Notable contributions in this
regard are decision trees and related classifying structures,
considered interpretable from the flow of their successive
decision making stages [9].

Interpretable neural networks are of relatively recent inter-
est [11], although the need for these is quite plain because,
as mentioned earlier, neural networks, particularly deep neu-
ral networks, are currently used mostly in a black box
manner, to process a multitude of classification applica-
tions which would be more accurate and of more flexi-
ble and general usage were their internal architecture are
interpretable. Noteworthy investigations include studies and
applications of saliency maps to visualize and understand
non-linearity in neural networks [10], and computer vision
studies which related neural activity to image filtering [12].
The investigation in [12] was able to determine that the
first-layer filters learned by a deep belief network for natural
image patch recognition is analogous to location, orienta-
tion, and spatial frequency filters like Gabor filters used
for edge detection. For digits recognition using the MNIST
dataset, [13] observed that the network learned low-level
features similar to those found in stroke detectors typi-
cally used for text localization. For accrued interpretation
abiliy [14], an explanation producing model can be con-
strued using an architecture designed so as to simplify
interpretations of internal representations and corresponding
processing.

A means to explain a deep neural network computations
is the layer-wise relevance propagation (LRP) scheme [15],
by which a network decision is decomposed into relevance
scores for each neuron, starting from last layer and propagat-
ing back towards the input. LRP has been a useful explanation
tool in many applications. For instance, [16] used LRP to
explain digit recognition and gender classification using the
AudioMNIST dataset, which contained spoken digit records.
The spectrogram representation showed that different areas
of the input were critical to each class for digit classification,
and the low frequency range was a determinant for gen-
der classification. Moreover, based on waveform data, large
magnitude data were determined also important. In another
study [17] LRP was used to explain the classification of
subjects EEG recordings while imagining left and right hand
movements. The relevance score was calculated for each
channel at each time point. The channel relevance of a time
point reveals a typical lateralized motor activation pattern,

which, when averaged over all epochs, yields a similar
pattern.

In spite of the evident progress in building interpretable
pattern classifiers for several important image-based
applications, the subject remains actual and challenging for
waveform data. Little work has been done in EEG-based
applications, and none in epilepsy seizure prediction, the
subject of this study. This study takes up the problem of
developing an interpretable deep learning neural network
applicable to epileptic seizure prediction in EEG recordings.
Epilepsy seizure prediction is a subject worthy of inves-
tigation because epilepsy affects about 2.4 million people
of all ages worldwide each year [18] and involve seizures
with the risk of periodic disruptions in cognitive and behav-
ioral functions. Predicting seizures would obviously benefits
patients significantly, and also lighten physicians workload.
Electroencephalography (EEG), which involves recording
brain activity with electrodes placed on the scalp, has proven
to be a reliable non-invasive clinical approach for epilepsy
diagnosis. Predicting the eventual occurrence of seizures
relies on identifying the pre-ictal period prior to the onset of
a seizure [19], during which EEG recordings show different
patterns from the patterns of the seizure and also from the ear-
lier periods, so-called inter-ictal periods. As a result, the
classification of inter-ictal and pre-ictal states simplifies the
prediction of seizures. This study provides three contributions
to the field: 1. Design of an architecture following the filter
bank common spatial pattern (FBCSP) paradigm and build
an explanation-producing model that biases learned filters
toward relevant common sub-band frequency and spatial
filters, 2. interpretation of the network abstract features
encoding, by learned filters visualization and, 3. explanation
of the network model decisions by layer relevance propa-
gation. We tested the model on the CHB-MIT dataset for
epilepsy prediction and its results outperformed those of the
current state of the art. The model architecture showed a fair
interpretability. Indeed, we found that the first layer trained
filters gather data from specific frequency bands. Explanation
of the model’s decisions for several trials of patients with
focal seizures reveals that the input channels in the brain
location from which the seizure originates contribute most
to the model’s prediction.

The remainder of this paper is organized as follows:
Section II describes the data set and the proposed archi-
tecture; Section III details the experimental results, and
Section IV contains a discussion.

II. MATERIALS AND METHODS
The functional diagram of the seizure prediction task is illus-
trated in Figure 1. The proposed framework consists of three
main steps: the first step consists of pre-processing and seg-
mentation of the data(Section II-A). This is followed by train-
ing and evaluation of the neural network (Section II-B). The
resulting models are interpreted by visualizing the learned
filters and explaining the model decision for several trials
(Section III).
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FIGURE 1. The functional diagram of the seizure prediction task.

A. DATASET DESCRIPTION AND PRE-PROCESSING
The dataset used for this study is the publicly available
CHB-MIT dataset collected at the Boston Children’s Hos-
pital [20]. CHB-MIT contains 940 hours of long-term con-
tinuous multi-channel scalp EEG recordings collected from
23 pediatric patients aged 1.5 to 19 years as shown in Table 1.
A minimum of 17 electrodes was used in all trials distributed
according to the international standard 10/20 system. The
sampling rate was set to 256Hz. Using a notch filter with an
upper cutoff frequency of 50Hz and a band-pass filter with
a bandwidth of 0.5-70Hz, we eliminated noise and artifacts
and focused on relevant frequencies. Based on published
literature, we set the pre-ictal period to be 30 minutes before
the onset of the seizure, as outlined in [21], [22], and elim-
inated 30 minutes after the end of the seizure to exclude
effects of the post-ictal periods. Subsequently, we divided the
recordings into non-overlapping 5-second- windows yielding
529,415 and 66,782 samples of inter-ictal and pre-ictal activ-
ity respectively.

B. NEURAL NETWORK ARCHITECTURE
The deep neural network architecture uses the Filter Bank
Common Spatial Pattern (FBCSP) algorithm [23] as follows.

FBCSP aims at finding spatial filters that map the raw data
into additive components that are capable of discriminating
between the sources more efficiently. FBSCP is widely used
for decoding EEG data in different applications, such as
brain-computer interfaces experiments [24], mental work-
load estimation [24], major depression detection [25], and
epilepsy prediction [26], [27]. The algorithm is composed
of two main components: (1) A filter bank and (2) Spatial
filtering using the Common Spatial Pattern (CSP) algorithm.

• The Filter bank consists of a set of band-pass filters
that separates the input signal into multiple signals, each
corresponding to a unique frequency sub-band of the
original input.

• The spatial filters are linear transformations which
project raw channel data into a spatial space known as
‘‘source space’’ to separate sources of activity [28]. The
CSP algorithm computes a transformation matrix which
maximize the variance of the output signal for one class
and minimize it for the other.

The outputs of the algorithm are generally used to extract
features such as the log-variance of each sub-component in
all sub-frequency bands. These features are then used for the
classification task.

In this study, we followed the steps of this algorithm
to design a neural network architecture that simplifies the

interpretation of its layers. The use of FBSCP-inspired archi-
tectures for different applications has been very little stud-
ied before. The study by [24] suggested a convolutional
neural network (CNN) with convolutional layers similar to
the bandpass and spatial filters used to decode and visual-
ize task-related information from EEG recordings. An alter-
native similar compact architecture [17] has been used to
classify EEG signals from different brain-computer interface
paradigms. Neither of these studies considered long, con-
tinuous EEG data. Instead, they used the simpler data of
event-related potentials (ERPs), which are brain responses
to a specific sensory, cognitive, or motor events. [30] have
investigated a convolutional neural network architecture
whose first layer function is equivalent to spatial filtering
for sleep-stage classification using multivariate, multimodal
continuous time-series data. However, these studies did not
include classification decisions explanations or interpreta-
tions. In this paper, we present an architecture that is designed
to take into account the type of long continuous EEG data.
Moreover, a number of interpretations and explanations have
been provided to delve further into the architecture.

Figure 2 and Table 2 show the overall diagram and the full
detailed description of the proposed architecture.
• The network first layer performs a standard temporal 2D
convolution that learns a set of band-pass filters to out-
put multiple components, each representing a frequency
band within the original signal. This step is equivalent
to the filter bank stage of the FBCSP algorithm. With
a temporal kernel that is half the sampling frequency,
it is possible to capture frequency information starting
at 2 Hz. Following this operation, the batch normaliza-
tion is used to stabilize the training.

• The subsequent component of the architecture starts
with a depth-wise convolution, which is the application
of convolution filters to each feature map (output from
the previous layer) independently from the other maps.
To learn spatial filters, this type of convolution is imple-
mented using kernels of shape (C, 1) where C is the
number of channels. Subsequently, batch normalization,
non-linear activation and average pooling were consec-
utively applied. A dropout layer is added to regularize
the model.

• For the feature extraction from the activity source signals
learned in the previous layers, we applied a combination
of 2D convolutional layers, a nonlinear activation layer
and an averaging layer. The outputs are finally passed
through a dropout layer.

• The last stage of the architecture is a fully connected
layer that flattens the features into a one-dimensional
vector that is fed to a Softmax classifier.

C. NEURAL NETWORK INTERPRETATION
1) FILTER VISUALIZATION
In neural network terminology, the learned filters are simply
the weights of the convolutional kernels of the network.
Visualizing the learned filters allows us to see how each layer
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TABLE 1. An overview of the CHB-MIT dataset.

FIGURE 2. Diagram of the proposed architecture. The network processes EEG inputs with standard convolution with filters of shape (1,128) allowing
learning frequency filters. It uses depth-wise convolution to learn spatial filters for each feature-map output of the previous layer separately. Finally 2D
convolution is used to extract features. The outputs of the pipeline are finally fed to a fully connected layer.

extracts information from the input. Generally, for standard
convolution layers, interpreting the filters proves challenging
since it performs both an in-channel and in-space computa-
tion at the same time. Using the 2D convolutional filter of
size (1, 128) and the depth-wise convolution to learn filters
for each input channel separately, it is possible to interpret
time convolution as band-pass frequency filters and depth
convolution as spatial filters.

2) LAYER-WISE RELEVANCE PROPAGATION
The RLP technique explains neural network decisions by
assigning a score to each input point (e.g., pixels) related
to its relevance to the classification decision. RLP is based

on back-propagating the prediction score f (x) according to
specific propagation rules (see Figure 3). The prediction score
is redistributed from the output layer down to the neurons
of the lower layer and so forth until it reaches the input
layer. For each point in the input layer, the relevance score
corresponds to its contribution to the decision. A high rele-
vance score indicates a relevant pattern. On the other hand,
parts of input with a low relevance score are considered
irrelevant.

Let f (x) andR(l)j be the prediction score and relevance score
of the neuron j in layer l respectively. Any propagation rule
satisfying the following properties could be used for PRL.
First, the relevance must be preserved between layers, so that

60144 VOLUME 10, 2022



I. Jemal et al.: Interpretable Deep Learning Classifier for Epileptic Seizure Prediction Using EEG Data

TABLE 2. The detailed architecture of the network, where C = number of channels, T = signal duration, F1 = number of convolution kernels filters to
learn frequency filters, F2 = number of convolution kernels to learn spatial filters, F3 = number of convolution kernels for feature extraction, N = number
of classes, respectively.

FIGURE 3. Diagram of the LRP technique. The prediction score f (x) is first
computed through the forward pass. Then, it is back-propagated from the
output layer to the input layer according to specific rules. The scores
obtained on the input layer indicate the contribution of each feature in
the classification decision.

the following equation is verified.

f (x) = . . . =
∑
d∈l+1

R(l+1)d =

∑
d∈l

R(l)d (1)

Moreover, the relevance score of a node should be equal to the
sum of the relevance score coming from nodes in upper layers
and redistributed in same amount to nodes in lower layers as
indicated in Equation 2.

R(l)j =
∑
k

R(l,l+1)j←k and R(l+1)k =

∑
i

R(l,l+1)j←k (2)

where R(l,l+1)j←k is the relevance score sent from the neuron
k in layer l to the neuron i in the next layer l + 1. Finally,
the propagation rule must ensure that the relevance scores
are related to the neuron activation or inhibition; a positive
score corresponds to the existence of a feature whereas a
negative or null score indicates to the absence of a pattern.
There are several propagation rules that have proven effective
in practice that satisfy the constraints listed above.

a: BASIC RULE (LRP − 0)
This intuitive rule redistributes the relevance score in pro-
portion to the contribution of each input to the neuron’s pre-
activation.

Rj =
∑
k

ajwjk∑
j ajwjk

Rk . (3)

where aj is the neuron activation from the previous layer and
wjk is the weight of the connection from unit j to unit k .

b: EPSILON RULE (LRP − ε)
To ensure that Rj does not take unbounded values for small or
null values of neuron activation, a positive term ε is added to
the denominator.

Rj =
∑
k

ajwjk
ε +

∑
j ajwjk

Rk . (4)

where aj is the neuron activation from the previous layer and
wjk is the weight of the connection from unit j to unit k .

c: GAMMA RULE (LRP − γ )
The LRP − γ rule denoted by the equation 5 is used to
highlight the positive contributions over the negative contri-
butions. The parameter γ controls the importance of positive
evidence.

Rj =
∑
k

aj(wjk + γw
+

jk )∑
j aj(wjk + γw

+

jk )
Rk . (5)

where aj the neuron activation from the previous layer, wjk is
the weight of the connection from unit j to unit k and w+jk is
the positive part of the weight.

As suggested in [31] we used LRP − 0 rule for the upper
layers, the Epsilon rule for the middle layer and the Gamma
rule for the lower layers.

D. CLASSIFICATION AND IMPLEMENTATION DETAILS
As mentioned earlier, an inter-ictal and pre-ictal segments
classification could simplify seizure prediction. However,
epileptic patterns vary widely from seizure to seizure as well
as from patient to patient, which makes binary classification
challenging. Seizure prediction can be performed through
general cross-subject models applicable to all patients or by
patient-specific modeling applicable to each patient individu-
ally.Models that are patient-specific are generally impractical
since it requires recording a sufficient number of seizures for
each patient. Cross-subject modeling does not require treating
each patient separately, but it faces the major challenge of
adapting the prediction algorithm to unseen data from new
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patients, mainly due to the high variability of cross-subject
EEG patterns [32].

In this study, we focused mostly on the patient-specific
modelling to evaluate the proposed architecture. Accordingly,
a single architecturewas designed and trained for each subject
separately. Pytorch [33] was used to implement the proposed
architecture. For data pre-processing TheMNE-Python pack-
age [34] was utilized. To ensure reliable generalization per-
formance, a 5-fold stratified cross-validation test setup was
used. A holdout validation is nested within a cross-validation
procedure in order to further divide the training set of each
fold into a validation set and a training set so that the early
stopping criteria can be enforced to prevent over-fitting.
In fact, the training runs up to 500 epochs, or until the
validation loss remains constant for at least 20 epochs. Across
all tasks, we use the gradient-based ADAM optimizer with
coefficients β1, and β2 of 0.9 and 0.999 respectively because
it is fast and reliable for reaching a global minimum. We use
a learning rate of 0.005 and a dropout regularization value
of 0.25.

III. RESULTS
In the following, we applied the proposed architecture to
the classification of inter-ictal and pre-ictal brain states for
seizure prediction. After the model training, the next step is
to visualize the learning filters and explain the decisionsmade
by the neural network using LRP-based technique.

A. PATIENT-SPECIFIC SEIZURE PREDICTION
Using the CHB-MIT data, we evaluated the proposed archi-
tecture for specific-subject seizure prediction on 23 patients.
Table 3 shows some performancemeasures such as prediction
accuracy, sensitivity, specificity, precision, F1-score, Area
under the ROCCurve(AUC) and false alarm per hour for each
patient model. Across all patients, the overall averaged accu-
racy, sensitivity, specificity and F1-score across all patients
are 90.9%, 96.1%, 84.6%, and 91.9%, respectively. An aver-
aged area under the ROC curve of 0.918% was achieved. The
models have a reasonably low averaged false prediction rate
per hour(FPR/h) of 0.041 indicating good predictive power.

For further evaluation of the proposed architecture,
we compared our results to earlier publications that employed
the same dataset, as given in Table 4. In the previous works
considered, CNN architectures with different numbers of lay-
ers were used, such as the single-layer architecture as in [35],
the three-layer architecture as in [36] and the five-layers
architecture as in [37]. The authors of [27] used the FBCSP
algorithm followed by a CNN classifier. The proposed archi-
tecture achieved the highest sensitivity with the lowest false
alarm rate.

B. FILTER VISUALIZATION
Following model training, the interpretation of the learned
data representation was conducted. As previously stated, the
proposed architecture’s first layer is supposed to be equiva-
lent to a filter-bank. As a result, we are especially interested

in seeing if the model was able to learn band-pass fre-
quency filters. Therefore, for all subjects we visualized the
filters learned on the first layer of the various patient-specific
models. The convolution filter for the first layer of patient
20’s model, as well as the frequency domain representation
derived using the Fast Fourier Transform (FFT) are shown in
Figure 4. The frequency bandwidths were calculated using
the FFT. Figure 5 shows the frequency bandwidths of the
seven learnt first layer filters in each of the 23 patients’
subject-specific models.

C. EXPLAINING MODEL DECISION
The LRP technique is used to explain the model decision
for many samples, which is the third level of interpretabil-
ity explored in this work. As outlined in Section II, LRP
computes, on a sample basis, the relevance scores for indi-
vidual features related to their contribution to the ultimate
classification decision. Positive relevance values suggest fea-
tures that support the classification decision, whilst negative
values indicate features that are irrelevant to the prediction.
The relevance scores of individual features for successfully
and inaccurately detected pre-ictal EEG samples were deter-
mined in this study. To display the topographic map, the
relevance scores were averaged across time. Figure 6 shows
the topographic representation of the relevance scores for var-
ious pre-ictal samples from seven patients with focal frontal
seizures.

D. CROSS-SUBJECT SEIZURE PREDICTION
To evaluate the patient-independent model we used all of the
data from the 23 patients at CHB-MIT. Thus, we divided the
dataset into three stratified sets with the same proportions of
classes: the training set, the validation set, and the test set. The
proposed architecture yields satisfactory results. With a false
prediction rate of 0.6/h, we were able to achieve a sensitivity
of 67.17%. An F1 score of 65.84% was achieved.

IV. DISCUSSION AND CONCLUSION
This study investigated an interpretable deep learning model
for seizure prediction using EEG signals. Its evaluation was
conducted in three steps.

As a first step, we created an interpretable deep learning
architecture whose earlier layers act according to the FBSCP
scheme. The architecture was tested with a patient-specific
seizure prediction task using the CHB-MIT dataset. The
proposed architecture achieved a reasonably high level of
prediction accuracy. Table 4 shows the benchmark of recent
seizure prediction methods. Because these methods have
been evaluated according to different metrics, the proposed
classifier has been evaluated using several metrics commonly
used in seizure prediction. From a clinical perspective, it is
desirable to have a high sensitivity and a low false alarm rate.
Authors of [36] proposed a three-layer CNN architecture that
yielded a sensitivity of 81.% and FPR of 0.16/h as tested with
13 patients from the CHB-MIT dataset. The study in [35]
adopted a more compact single-layer CNN which performs
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TABLE 3. The performance of the proposed architecture on the 23 patients of the CHB-MIT dataset.

TABLE 4. Comparison to prior works on epileptic seizure prediction using the CHB-MIT dataset.

FIGURE 4. Visualization of the learned convolution filters of the first layer of the patient 20’s model. Top row shows the temporal kernels of shape
(1,128) for a 0.5 window. Bottom row display the FFT calculated for each filter to determine the frequency bandwidths.

much better, giving a better sensitivity of 94.2% a high accu-
racy of 95.6%, and a specificity of 96.9%. However, the eval-
uation is incomplete because no false alarm rate was reported.
Another patient-specific CNN classifier has been described
in [27]. The FBCSP algorithmwas applied prior to the feature

extraction step. The authors reported accuracy, specificity and
sensitivity values of 90%, 92%, and 92%, respectively, with
a relatively low false alarm rate of 0.12/h. A more advanced
approach [36] used a five-layer one-dimensional binary con-
volutional neural network. They tested the model on only
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FIGURE 5. The frequency bandwidths of the seven learned filters of the first layer in all subject-specific models of the 23 patients.

FIGURE 6. Topographical representation of relevance scores for various pre-ictal samples from seven patients with focal frontal seizures. A high
relevance score implies a relevant feature, whereas a low score indicates an irrelevant input. The top row A shows the relevance scores of the correctly
classified samples. The bottom B row shows the relevance scores of the miss-classified segments.

5 patients from the CHB-MIT database and their seizure pre-
diction sensitivity averaged 94.96% with an FPR of 0.096/h.
Based on the results of evaluation on all 23 patients of the
CHB-mit dataset, our model reaches the highest sensitivity
of 96.1 with the lowest false alarm rate of 0.041. The overall
average of the areas under the receiver operating curve was
0.91. The model not only improves the results of the recent
others but also enhances and simplifies its interpretation.

Our next focus was on the interpretation of the learned
filters. We found that the first layer’s filters were found to
be similar to band-pass frequency filters and moreover, each
patient-specific model has its own set of filters. Additionally,
similar filters, such as those in ranges 0-5, 5-20, and 40-45
appear frequently in almost all subjects as shown in Figure 5.
The model learns low- and high-frequency filters in the range
0 to 60 Hz range for each subject, which is critical for the
epilepsy prediction task, since abnormal seizure discharge
is primarily observed in the 5 to 50 Hz frequency range.
Likewise, we found that, themodels recover essential features
of each patient by learning filters with a frequency of 25 Hz
or higher, which is consistent with the fact that epilepsy
prediction relies more on characteristics in the gamma band

(30-140 Hz) that are more relevant than other bands for
epilepsy prediction [29].

Finally, LRP enabled us to interpret several of the classi-
fication decisions. We found that features extracted from the
channels in the region of the seizure origin were shown to
be the most relevant features for pre-ictal segments classi-
fication. Hence, we determined that well classified samples
with a high prediction value (Figure 6 top row) possess high
relevance scores in the frontal regions where the seizure will
occur, while misclassified samples (6 bottom row) displayed
a distribution of relevance scores more broadly distributed
throughout the scalp.

Since EEG data vary greatly between subjects and only
a few patients are available, developing patient-independent
models is a complex task. Therefore, most researchers simpli-
fied the problem to develop models that are patient-specific.
To our knowledge, this is the first study to examine between-
subjects modeling. The proposed architecture yields satisfac-
tory results when tested on the entire dataset of the 23 patients
of the CHB-MIT dataset. However, due to the substantial vari-
ability of EEG data between patients, cross-subject seizure
prediction performed somewhat worse than patient-specific
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modelling, but the model appears to have potential applica-
bility to data from unknown subjects.

In summary, we introduced a novel interpretable neural
network architecture to simplify its opaque representation
of data. The proposed architecture is based on the com-
mon FBCSP paradigm where its layers where correspond to
known signal processing calculations, such as sub-frequency
band and spatial filtering. The architecture performance was
evaluated using the CHB-MIT dataset for the patient-specific
prediction task. The proposed architecture has achieved a
reasonably high predictive accuracy compared to other deep
learning methods. Next, the model was interpreted by visu-
alizing the learned filters, showing that the first-layer filters
are similar to the band-pass filters. Finally, using the LRP,
wewere able to explain several model decisions.We observed
that for the pre-ictal segments, the channels in the seizure
origin region were the most relevant characteristics for clas-
sification.

The study could be strengthened by using larger amounts
of data and using different EEG databases. Furthermore,
it is highly useful to study how to transfer learning for
cross-patient modelling, which could help to learn new rep-
resentations shared between-data subjects that would trans-
fer knowledge gained from multiple patients to new unseen
patients. Finally, the proposed architecture and explanation
scheme can be applied to other EEG-based classification
tasks, such as seizure diagnosis and seizure type categoriza-
tion, as well as autism and Alzheimer’s disease detection.
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