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Abstract—We present CNN-n-GRU, a new end-to-end (E2E)
architecture built of an n-layer convolutional neural network
(CNN) followed sequentially by an n-layer Gated Recurrent
Unit (GRU) for speech emotion recognition. CNNs and RNNs
both exhibited promising outcomes when fed raw waveform
voice inputs. This inspired our idea to combine them into a
single model to maximise their potential. Instead of using hand-
crafted features or spectrograms, we train CNNs to recognise
low-level speech representations from raw waveform, which
allows the network to capture relevant narrow-band emotion
characteristics. On the other hand, RNNs (GRUs in our case)
can learn temporal characteristics, allowing the network to better
capture the signal’s time-distributed features. Because a CNN
can generate multiple levels of representation abstraction, we
exploit early layers to extract high-level features, then to supply
the appropriate input to subsequent RNN layers in order to
aggregate long-term dependencies. By taking advantage of both
CNNs and GRUs in a single model, the proposed architecture
has important advantages over other models from the literature.
The proposed model was evaluated using the TESS dataset
and compared to state-of-the-art methods. Our experimental
results demonstrate that the proposed model is more accurate
than traditional classification approaches for speech emotion
recognition.

Index Terms—Speech emotion recognition, CNN, RNN, GRU,
Signal processing, Waveform signal.

I. INTRODUCTION

In this study, we are interested in speech emotion recogni-
tion (SER), which is an approach for detecting feelings and
emotions from speech signal. It is the process of extracting the
speaker’s emotional state from speech signal’s para-linguistic
(PROSODIC) aspects without necessarily understanding the
language [1], which is a relatively recent area of study that has
experienced tremendous growth since the turn of the century.

Based on CNN and RNN models, we propose a new type of
architecture that contributes in solving these issues according
to two aspects. On one hand, setting convolutional layers at the
beginning of the network is an effective technique to minimise
input dimensionality, which can greatly simplify the training
procedure. On the other hand, a deep CNN, may be used to
extract high-level properties, which are then transferred to an
RNN for final time aggregation.

Classification models can be divided into two categories,
including traditional machine learning classifiers and deep
learning classifiers. Previous works have also used hybrid
approaches that combine both categories (see Fig. 1). In [2]
and [3], the authors’ starting point was the extraction of
handcrafted features from speech signal and the generation of
the Mel frequency cepstral coefficients (MFCC) spectrogram.
However, this could not be an appropriate representation of
speech because it is based on the mel scale, a perceptual scale
of pitches judged by listeners to be equal in distance from one
another. As a result, there is no assurance that they are ideal for
all speech-related activities since many characteristics may be
lost. Following that, [2] used a CNN as the basic component
of the model to extract the relevant speech features, while
taking into account the locally distributed data and ignoring
the time dependency of the voice, whereas [3] attempted to
avoid this weakness by using Bidirectional Long Short-Term
Memory (BLSTM) to consider time and attention mechanism
to focus on the most important parts of the spectrogram
that emphasise the emotions. In [4], the authors used MFCC
with no spectrogram, since the conventional SVM model was
considered to classify emotions. In [5], another principle was
employed to address the temporal representation of the speech,
which consists of a 3D-CNN after computing deltas and delta-
deltas for log-Mels attention CRNN. However the limitation
of this study is still the speech representation that was used
to feed the model. In [6], the authors attempted to address
the data’s high dimentionality by using Principal Component
Analysis (PCA) as a first approach to represent the data, loses
some of the data’s information that may be relevant. For the
second approach, which is based on spectrograms, the authors
still have data representation issues. To address this problem,
they applied the VGG16 network to the spectrogram as an
image. However, this does not take into consideration the time
dependency in the speech signal. In our work, we used raw
waveform instead of going through any sort of hand-crafted
feature extraction or spectrograms, which is to our knowledge
applied for the first time on TESS dataset [7]. By using this
conception, we take into consideration both local and time-
distributed features of the speech for emotion recognition.
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II. PROPOSED METHOD

In order to ensure robust and invariant representations,
weight sharing, local filters, and pooling are important tech-
niques that often useful within CNN architectures for process-
ing raw speech samples. Moreover, GRUs have also the poten-
tial to ensure effeicient representations, since they process data
using their gate principles and memory capabilities, and depict
it in a time-distributed manner. The basic concept behind
our strategy is to combine a 1-D CNN with a GRU into a
single model to take advantage of their respective capabilities.
This model will be applied directly to the speech signal’s raw
waveform, without manual feature manipulation, in order to
ensure relevant feature extraction within a robust end-to-end
(E2E) model. This is illustrated by the path with red arrows
in Fig. 1.

A. Motivation

The CNN component of our design is motivated by the
work [1] on the ambient sound detection challenge using
CNNs. To simulate the band-pass filter, it employs a relatively
tiny receptive field in the convolutional layers, while a large
receptive field in the first layer is determined based on the
audio sampling rate. To optimize representation learning in
the convolutional layers, our CNN component layers are
completely convolutional, with no dropout, and can be applied
to audio signal with varying duration. We solve the difficulty
of training very deep models while keeping the computation
cost low by using batch normalization and a careful design of
down-sampling layers.

As human beings, we only keep the information that we
believe is sufficient to assess a situation or an event, while
the rest simply fades away from memory. This is the driving
force underlying the selection of GRUs. They were developed
as a solution to the problem of short-term memory. They
have internal mechanisms known as gates that allow them to
govern information flow. These gates can learn which data in
a sequence should be kept or discarded. This allows to convey
important information down the lengthy chain of sequences in
order to generate predictions. [8].

B. Method

The major components of our CNN’s portion architecture
are the convolutional layers, which accept as input a 1D vector.

They also allow to process time-series waveforms encoded as
a long 1D vector as input instead of hand-tuned features or
specifically generated spectrograms. To decrease the cost of
computation in the rest of the network, we drastically lowered
the temporal resolution in the top two layers, by utilising
massive convolutional and max-pooling strides with a massive
receptive field. Following that, we apply a batch normalisation
to its output before passing it to an activation function, which
in our instance is Leaky ReLU since it lacks zero-slope
sections, overcomes the “dying ReLU” problem and speeds
up training, based on the evidence that maintaining the “mean
activation” at zero speeds up training [9]. Following the first
convolutional layer, we implement a series of convolutional
layers with smaller receptive fields to reduce the number of
parameters in the model, followed by a single max-pooling
layer (see Fig. 2).

Thus, to ensure that the CNN and GRU networks are
properly linked, we use a single global average pooling layer
that averages the activation throughout the temporal dimension
to reduce each feature map to a single float. Then, we use this
as an input to a fully connected layer, which will reduce the
data by half to lower computation cost in the n-layer GRU
component. This, in our case, is an important component of
the model since it is the piece that will contribute the final time
aggregation for time-dispersed data features representation due
to the gates concept that controls the memory functioning.
After the GRU layers, we apply another fully connected layer
to aggregate the data and get an output equal to the number
of classes, on which we apply softmax for final classification
(see Fig. 2).

III. EXPERIMENTS AND RESULTS
A. Dataset

In this work we used TESS [7]. Toronto emotional speech
set (TESS) is essentially a dataset that contains a total of 2800
stimuli in which two actresses, a young female and an older
female, said a set of 200 target words in the carrier phrase ”Say
the word ,’. Recordings were taken of the set expressing
each of seven moods (anger, disgust, fear, happiness, pleasant
surprise, sadness, and neutral) [10].

B. Experimental setup

We first ensured that our signal has a sampling rate of
16KHz and is mono-channel to standardise our experimental
data format. The dataset is segmented as follows: 80% for
training, 10% for validation, and 10% for testing. We applied a
Grid search using Asynchronous Successive Halving algorithm
(ASHA) to find the appropriate hyperparameters, due to its
high performance [11].

We examined four CNN-n-GRU architectures with n = 3, 5,
11, and 18. Each model is run for 100 epochs until it converges
using Adam [12] without using any pretrained model (i.e. the
weights of each model are started from scratch). The receptive
field of our first CNN layer is equal to (sampling rate /
100), which is in our case 760 to cover a 10-millisecond time
span, to be comparable to the window size for many MFCC
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Fig. 2. Layer-wise CNN-n-GRU model architecture

computations. Our trials were run on a distributed multi-node
system powered by four Nvidia Tesla T4 GPUs. Since TESS
dataset is balanced we used the accuracy and Fl-score as
evaluation metrics for our model [13].

C. Results

Table I presents the results of other state-of-the-art algo-
rithms compared to our proposed method, where Table II
shows the outcome of the four tested architectures of our
model. These results show that our model performs well,
where the best architecture of our model was CNN-18-GRU
that reached 99.2% in accuracy and a Fl-score of 99%, out-
performing the state-of-the-art methods. The detailed findings
derived from the CNN-18-GRU model are presented in Table
I, fig. 3, and the confusion matrix in fig. 4.

TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE
TESS DATASET

Related works
TESS Test Accuracy | Fl-score
Igbal et al. [4] 97% NA
Aggarwal, Apeksha, et al. [6] | 97.6% 97%
Dupuis et al. [14] 82% NA
Praseetha et al. [15] 95.8% NA
Huang et al. [16] 85% NA
Choudhary et al. [17] 97.1% 96%
Kapoor et al. [18] 97.5% 97.4%
Krishnan et al. [19] 93.3% NA
Our Method: CNN-18-GRU 99.2% 99%
TABLE II
CNN-N-GRU PERFORMANCE ON THE TESS DATASET
Our Results
TESS Precision | Recall | Fl-score | Test Accuracy
CNN-3-GRU 98.8% 98.8% | 98.8% 98.9%
CNN-5-GRU 96% 98% 97% 99%
CNN-11-GRU | 64% 62.5% | 63% 67%
CNN-18-GRU | 98.7% 98.5% | 99% 99.2%

Table III presents the classification report, including preci-
sion, recall, and F1-score of CNN-18-GRU. It’s shown that the
highest F1-score was obtained for the classes ’fear’, ’neutral’
and ’sad’, while the lowest F1-score was achieved for the class
“surprised’.

TABLE III
CLASS-WISE CNN-18-GRU PERFORMANCE ON THE TESS DATASET

Emotion Precision | Recall | Fl-score | Support
angry 100% 97.5% | 98.7% 40
disgust 97.6% 100% 98.8% 40
fear 100% 100% 100% 40
happy 100% 97.5% | 98.7% 40
neutral 100% 100% 100% 40
sad 100% 100% 100% 40
surprised 94.9% 97.9% | 96.4% 32
accuracy 99.2% 272
macro avg 98.7% 98.5% | 99% 272
weighted avg | 98.7% 98.5% | 99% 272
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Fig. 3. CNN-18-GRU training and validation accuracy over epochs

Fig. 3 illustrates the training and validation accuracy con-
sidering 100 epochs in model CNN-18-GRU.

D. Result analysis and interpretation

We can observe that performance highly depends on the
depth of the network. Generally, the models performed well,
except for CNN-11-GRU (67% accuracy and 63% F1-score,
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Fig. 4. CNN-18-GRU model confusion matrix

see Table II). To validate our method, we compared it to sev-
eral state-of-the-art methods. While they all performed well,
data representation choices, as well as the ability to generalise
regarding the variety of speech characteristics, remained an
issue with most state-of-the-art methods. This is because they
all use heuristically hand-crafted features, such as MFCC and
spectrograms, which we aimed to eliminate as a step in the
process of speech emotion recognition.

One of the limitations of this study is the use of the TESS
dataset. In fact, the reliability of this actor-based dataset in
comparison with everyday human speech is limited by several
factors. This includes the brevity of the content, the intensity
of emotional expression, the fact that only female voices were
used, and the limited demographic variation of participating
people.

As shown in fig. 3, CNN-18-GRU converged quickly
(around the 20th epoch) and it did not take a lot of time
for training compared to other techniques that need more than
100 epochs to train. Given our balanced classes, we can see in
table III that the emotions ’fear’, 'neutral’, *disgust’, and ’sad’
were correctly predicted. However, the Fl-score for ’disgust’
was 98.8%, and 97.5% for both 'mad’ and ’happy’, which
were confused with ’surprise’. This suggests that the two
classes may share certain acoustic characteristics. We can see
from the confusion matrix (fig. 4) that an correct classification
score of 96.88% was achieved for the class ’surprise’, while
we observe a confusion of 3.12% with ’disgust’. We can
also notice from table III that the Fl-score of ’surprise’ is
96.4%, which indicates that it is relatively more prone to be
misclassified than the other emotions. These results highlight
the importance of providing the model with the ability to learn
by itself the appropriate local and time-distributed features.

IV. CONCLUSION

We presented a new deep learning model called CNN-n-
GRU for end-to-end speech emotion recognition from acoustic
waveform data. We employ a wide receptive field in the
first convolutional layer, which acts as an acoustic features
extractor. The rest of the network uses narrow receptive
fields followed by the multi-layer GRU neural networks, that

contributes in the time-distributed features aggregation. Our
proposed technique outperforms state-of-the-art methods in
terms of accuracy and Fl-score, as it captures local and time
distributed features. In this way, we take advantage of both
CNNs and RNNSs capabilities. As future work, we first plan to
improve the first layer filters in order to enhance our model’s
generalizability. Second we aim to test our model on more
realistic datasets, with an emphasis on the end-to-end approach
that eliminates the need for explicit feature extraction.
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