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Doubly stochastic matrices

Definition
A square matrix is doubly stochastic if:

• nonnegative coefficients;
• row sums = 1;
• column sums = 1.

The set of doubly stochastic matrices of order n is denoted by Ωn.

Example

D =

0.1 0.3 0.6
0.4 0.2 0.4
0.5 0.5 0

 .
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Geometric interpretation

Theorem (Birkhoff; 1946)

Ωn is a convex polytope in Rn2
of dimension (n − 1)2 with the n!

permutation matrices as its vertices.

• Ωn is vertex-symmetric and edges-symmetric.

• The matrix Jn :=
1
n

1 · · · 1
...

. . .
...

1 · · · 1

 is the geometrical centroid of Ωn.
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The Chebyshev radius

Definition
Let E be a bounded set of a norm-induced metric space (∥ · ∥,U). The
Chebyshev radius R(E) of E is the smallest radius of a bounding sphere of
E . The Chebyshev center C (E) of E is the center of the bounding sphere
for which the minimum is attained.

E

C (E)
R(E)

Figure: The Chebyshev radius and the Chebyshev center of E .
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Permutation-invariant matrix norm

Definition
A matrix norm ∥ · ∥ is permutation-invariant if

∥QAP∥ = ∥A∥

for every permutation matrix P and Q.

Example
Every matrix norm induced by a permutation-invariant vector norm is a
permutation-invariant matrix norm.
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The Chebyshev radius and center of Ωn

Proposition
If ∥ · ∥ is a permutation-invariant matrix norm, then the Chebyshev center
of Ωn is the matrix Jn and the Chebyshev radius is given by

R(Ωn) = ∥In − Jn∥.
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The operator norm from ℓp → ℓp

Lemma
If ∥ · ∥ℓp→ℓp denote the operator norm from ℓp → ℓp, then

∥In − Jn∥ℓ1→ℓ1 = ∥In − Jn∥ℓ∞→ℓ∞ = 2
(

1 − 1
n

)
&

∥In − Jn∥ℓ2→ℓ2 = 1.
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A generalization

Open question: Determine the operator norm from ℓp → ℓp of

A(n, a, b) := (a− b)In + bnJn =


a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a

 .

• In particular, we have In − Jn = A(n, n−1
n ,− 1

n ).
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Circulant matrices
Definition

Definition
Let α1, . . . , αn be real numbers. A circulant matrix is an n × n matrix of
the form

Circ(α1, . . . , αn) =


α1 α2 α3 · · · αn

αn α1 α2 · · · αn−1
αn−1 αn α1 · · · αn−2

...
...

...
. . .

...
α2 α3 α4 · · · α1

 .
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The norm of A(n, a, b)
Positive case

Theorem
If α1, . . . , αn ≥ 0, then

∥Circ(α1, . . . , αn)∥ℓp→ℓp = α1 + · · ·+ αn .

Corollary
If a, b ≥ 0, then

∥A(n, a, b)∥ℓp→ℓp = (n − 1)b + a .
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The spectral norm of A(n,−a, b)

Theorem (B., Khare, Mashreghi, Morneau-Guérin; 2021)
If a, b ≥ 0, then

∥A(n,−a, b)∥ℓ2→ℓ2 =

{
a+ b if (n − 2)b ≤ 2a,
(n − 1)b − a if (n − 2)b ≥ 2a.
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The p-norm of A(n,−a, b)

Theorem (B., Khare, Mashreghi, Morneau-Guérin; 2021)
If a, b ≥ 0 and A = A(n,−a, b), then for all p ≥ 2,

∥A∥ℓ2→ℓ2 ≤ ∥A∥ℓp→ℓp ≤ ∥A∥2/p
ℓ2→ℓ2

∥A∥1−2/p
ℓ∞→ℓ∞ .

Moreover, the upper bound becomes an equality if p = 2,∞.

Theorem (Sahasranand; 2022)
If a, b ≥ 0 and A = A(n,−a, b), then for all p ≥ 2, ∥A∥ℓp→ℓp is
monotonically non-decreasing in p.
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More general norms

Definition
Let ∥ · ∥ be a matrix norm and U be an n × n matrix. Then

∥U∥ℓ := sup

{
∥UX∥
∥X∥

: X ∈ Cn×n,X ̸= 0
}

is the left operator norm induced by ∥ · ∥ of U and

∥U∥r := sup

{
∥XU∥
∥X∥

: X ∈ Cn×n,X ̸= 0
}
.

is the right operator norm induced by ∥ · ∥ of U.
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A general result

Proposition

Let ∥ · ∥ be a norm on Cn×n which satisfies

∥ diag(a1, . . . , an)∥ = max{|a1|, . . . , |an|} (1)

and let A ∈ Cn×n be a normal matrix which admits the decomposition
Udiag

(
λ1, . . . , λn

)
U∗. Then for each polynomial p in two variables,

∥p(A,A∗)∥ ≤ ∥U∥ℓ∥U∗∥r max
{
|p(λ1, λ1)|, . . . , |p(λn, λn)|

}
and

∥p(A,A∗)∥ ≥ 1
∥U∥r∥U∗∥ℓ

max
{
|p(λ1, λ1)|, . . . , |p(λn, λn)|

}
.
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Application to circulant matrices

• Let A = Circ(α1, . . . , αn) be a circulant matrix and let
PA(z) = α1 + α2z + · · ·+ αnz

n−1 be its associated polynomial. Let
ωn := e2πi/n and define

Cn := Circ(0, 1, 0, . . . , 0) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 .

Then A admits the decomposition

A = PA(WnCnW
∗
n ) = Wndiag

(
PA(1),PA(ωn), · · · ,PA(ω

n−1
n )

)
W ∗

n .
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Application to circulant matrices

Corollary
Let A = Circ(α1, . . . , αn) and let ∥ · ∥ be a matrix norm satisfying (1).
Then

∥A∥ ≤ ∥Wn∥ℓ∥W ∗
n ∥r max

{
|PA(1)|, . . . , |PA(ω

n−1
n )|

}
,

and
∥A∥ ≥ 1

∥Wn∥r∥W ∗
n ∥ℓ

max
{
|PA(1)|, . . . , |PA(ω

n−1
n )|

}
.

Unfortunately, this does not yield better results than what was previously
known for the particular cases A(n,−a, b) and In − Jn.
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An interesting case

Proposition
If ∥ · ∥ is a matrix norm on Cn×n satisfying ∥I∥ = 1, then the left operator
norm and the right operator norm coincide with the norm itself.

Remark
The left operator norm and the right operator norm does not always
coincide with the norm itself. For instance, for the Frobenius norm ∥ · ∥F ,
we have

∥I∥ℓ = ∥I∥r = 1 <
√
n = ∥I∥F .
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Definition

Definition

Let A ∈ Mn(R). The maximizing vectors of ∥Ax∥p
∥x∥p are the vectors x ∈ Rn

for which
∥Ax∥p
∥x∥p

= ∥A∥ℓp→ℓp .

Example
Let

A =

[
1 0
0 0

]
.

Then the maximizing vectors of ∥Ax∥p
∥x∥p are those of the form x = (a, 0)⊺,

where a ∈ R and a ̸= 0.
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The maximizing vectors of A(n,−a, b)

Proposition (B., Mashreghi, Morneau-Guérin; 2022)
Let a, b ≥ 0, with at least one of them non-zero and let A = A(n,−a, b).
Suppose that n > 2 and that 1 ≤ p ≤ ∞, with p ̸= 2. If x ∈ Rn is a
maximizing vector of ∥Ax∥p

∥x∥p , then the entries of x form a set of cardinality
at most three.

Conjecture
Under the previous hypothesis, the entries of x form a set of cardinality at
most two.
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The special case In − Jn

Proposition
Let 1 ≤ p ≤ ∞, with p ̸= 2 and ρ := p − 1. Let xp be the unique root of
the function

x 7−→ ρ
(
1 + x

1
ρ

) (
1 − xρ−1)+ (1 − x

1−ρ
ρ

)
(1 + xρ)

in the interval [0, 1], and let m1 :=
⌊

n
1+xp

⌋
and m2 :=

⌈
n

1+xp

⌉
. Suppose

that the previous Conjecture is valid. Then

∥In − Jn∥ℓp→ℓp = max
m∈{m1,m2}

((
n
m − 1

)p−1
+ 1
)1

p
((

n
m − 1

) 1
p−1 + 1

)1− 1
p

n
m

.
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Concluding remarks
Generalized measures of statistical dispersion

Definition
If x ∈ Rn and p ∈ [1,∞), then the p-deviation of x is

Dp(x) :=

(
1
n

n∑
i=1

|xi − x |p
)1/p

,

where x := x1+x2+···+xn
n .
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Concluding remarks
The p-generalized variance

Remark
Let x ∈ Rn and p ∈ [1,∞). We have the identity

nDp
p (x) = ∥(In − Jn)x∥pp.

Determining ∥In − Jn∥ℓp→ℓp ⇐⇒ Maximizing
Dp(x)

∥x∥p
.
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Concluding remarks
A connection with harmonic analysis

Remark
Let Pn denote the space of polynomials of degree at most n. We may
interpret A = A(n,−a, b) as an operator on Pn−1. More explicitly, for each
polynomial f (z) = a0 + a1z + · · ·+ an−1z

n−1 ∈ Pn−1, we have

(Af )(z) = − (a+ b)f (z) + b(a0 + a1 + · · ·+ an−1)φ(z),

where
φ(z) = 1 + z + · · ·+ zn−1.
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Concluding remarks
A connection with harmonic analysis

• Using this interpretation, we get

∥A∥ℓp→ℓp ≤ a+ b + bn∥φ∥L1(T) ,

where

∥φ∥L1(T) =

∫ 2π

0
|φ(e iθ)| dθ

2π
.

Question: Can variations of the above estimation lead to a precise formula
for ∥A∥ℓp→ℓp?
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