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RIMS Kôkyûroku Bessatsu
B93 (2023), 183–222

On the norm of normal matrices

By

Ludovick Bouthat∗, Javad Mashreghi∗∗ and Frédéric
Morneau-Guérin∗∗∗

Abstract

In this article, we present some recent results related to the calculation of the induced

p-norm of n × n circulant matrices A(n, a, b) with diagonal entries equal to a ∈ R and off-

diagonal entries equal to b ∈ R. For circulant matrices with nonnegative entries, an explicit

formula for the induced p-norm (1 ≤ p ≤ ∞) is given, whereas for A(n,−a, b), a > 0 the

situation is no longer so simple and calls for a more subtle analysis. As a matter of fact, while

the 2-norm of A(n,−a, b) is precisely determined, the exact value of the induced p-norm for

1 < p < ∞, p ̸= 2, still remains elusive. Nevertheless, we provide a lower bound as well as

two different categories of upper bounds. As an indication of not being far from the exact

values, our estimates coincide at both ends points (i.e., p = 1 and p = ∞) as well as at p = 2

with the precise values. As an abstract approach, we also introduce the ∗-algebra generated

by a normal matrix A accompanied by an axis-oriented norm, and obtain some estimations

of the norm of elements of the ∗-algebra. We then exhibit the connection between the new

generalized estimates and the previously obtained estimates in the special case where A is a

circulant matrix. Finally, using an optimization-oriented approach, we provide insight on the

nature of the maximizing vectors for
∥Ax∥p
∥x∥p . This leads us to formulate a conjecture that, if

proven valid, would make it possible to derive an exact formula for the induced p-norm of

A(n, a, b) whenever a = 1−n
n

and b = 1
n
.
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§ 1. Introduction

Given positive integers m,n ≥ 2, let Cm×n denote the set of m × n matrices

with entries in the complex field C. For α0, α1, . . . , αn−1 ∈ C, the circulant matrix

circ(α0, α1, . . . , αn−1) is defined as

circ(α0, α1, . . . , αn−1) = [αi−j ]
n
i,j=1 =


α0 α1 α2 · · · αn−1

αn−1 α0 α1 · · · αn−2

αn−2 αn−1 α0 · · · αn−3

...
...

...
. . .

...

α1 α2 α3 · · · α0

 .

The index k in αk is always calculated mod n, and thus runs between 0 and n− 1. The

circulant matrices are a very special type of square Toeplitz matrices [20, Chapter 4].

According to the mathematician and historian of early linear algebra Thomas Muir

[39, Vol 2., Ch. 14], circulant matrices were first introduced, although somewhat im-

plicitly, by Eugène Catalan in [9] in 1846. More than half a century elapsed, however,

before the systematic study of this important class of matrices began to gain significant

momentum. The first comprehensive monograph dedicated to the study of the various

properties of circulant matrices, dating from 1979, was penned by Davis [16].

In recent years, circulant and block-circulant matrices have become omnipresent in

many sub-disciplines of mathematics. For reasons that will become apparent later in

our presentation, these matrices naturally prove themselves to be of fundamental im-

portance in areas of mathematics where the roots of unity come into play. Additionally,

they also have a wide range of applications in various parts of modern and classical

mathematics. For instance, they have been used in the study of functional equations

with several complex variables [46], in solving polynomial equations [30, 5], in solving

various ordinary and partial differential equations [13, 17, 45, 34], in image processing

[47], in signal processing [1, 25], in numerical analysis [12, 31, 48], in Wiener-Hopf equa-

tions [10, 7, 36, 6, 42], in information theory [21], and in various branches of operator

theory (see [2, 27, 26, 22, 11, 18, 24, 29, 14, 28, 38, 32] and references therein). It goes

without saying that, due to the abundance of contributions, our treatment is by no

means exhaustive.

In order to provide a more refined definition of circulant matrices, we first need

to introduce a particular operator, the right circular shift, that is acting on vectors of

length n by operating a rearrangement of their entries consisting in moving the final

entry to the first position while shifting all other entries to the next position. Formally,

a right circular shift is an operator S : Cn → Cn defined by

S(α0, α1, . . . , αn−1) := (αn−1, α0, . . . , αn−2).
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One can view A := circ(α0, α1, . . . , αn−1) as the n × n matrix whose rows are given

by iterations of the right circular shift acting on the vector (α0, α1, . . . , αn−1), i.e., for

k = 1, . . . , n, the k-th row of A is Sk−1(α0, α1, . . . , αn−1).

By identifying a circulant matrix with its first row, one can see that circn(C), the
set of all complex-valued n×n circulant matrices, forms an n-dimensional vector space

with respect to the usual operations of matrix addition and multiplication of matrices

by scalars. This space can be interpreted as the space of complex-valued functions on

Z/nZ, the cyclic group of order n. For more information concerning the circular shift

operator and its connections with circulant matrices, we point the reader to the very

detailed treatment given by Fuhrmann in [19, § 5.2 and § 5.3].

§ 2. Organization of the paper and a sketch of the main results

Recall that a function ‖ · ‖ : Cm×n → [0,∞) is a matrix norm or a ring norm if,

for all A,B ∈ Cm×n, it satisfies the following five axioms:

(i) ‖A‖ ≥ 0, Nonnegativity,

(ii) ‖A‖ = 0 if and only if A = 0, Positivity,

(iii) ‖λA‖ = |λ|‖A‖ for all scalar λ, Homogeneity,

(iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖, Subadditivity,

(v) ‖AB‖ ≤ ‖A‖‖B‖, Submultiplicativity.

The first four properties of a matrix norm are identical to the axioms for a norm. Since

the set of m×n matrices with complex entries, can be equated to with the set of vectors

of length m×n with complex entries, it does makes sense to endow Cm×n with a norm

that does not satisfy property (v). In order to avoid any confusion, such norms shall be

called vector norms.

Suppose that a vector norm ‖ · ‖α on Cn and a vector norm ‖ · ‖β on Cm are given.

Then any m × n matrix A represents, with respect to the canonical basis, a linear

operator from Cn to Cm. We define the corresponding induced matrix norm or operator

norm or lub norm (this acronym stands for the least upper bound norm) on the space

Cm×n of all m× n matrices as

‖A‖α→β := sup

{
‖Ax‖β
‖x‖α

: x ∈ Cn, x 6= 0

}
.

The notation ‖A‖α→β is a shorter replacement for ‖A‖(Cn,∥·∥α)→(Cm,∥·∥β). Throughout

this paper, the only operator norms that we shall consider are those induced by p-norms
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for vectors. Recall that, for p ≥ 1, the p-norm of vector x = (x1, . . . , xn) is defined by

‖x‖p =

(
n∑

k=1

|xk|p
)1/p

,

and the ∞-norm is

‖x‖∞ = max{|x1|, . . . , |xn|}.

It is customary, in particular in operator theory texts, to denote the vector space Cn

endowed by the vector p-norm by ℓnp (C).
In this note, our main objective is a comprehensive study of the induced p-norm

of a special class of circulant matrices, acting as operators from ℓnp (C) to ℓnp (C). The

circulant matrices under consideration are those with the diagonal entries equal to a ∈ R
and the off-diagonal entries equal to b ∈ R, i.e.,

(2.1) A(n, a, b) =


a b b · · · b

b a b · · · b

b b a · · · b
...

...
...
. . .

...

b b b · · · a

 ,

where a, b ∈ R. However, via a normalization process, it suffices to consider the following

two cases: A(n, a, b) and A(n,−a, b), where a, b ≥ 0.

Since the A(n, a, b)’s are matrices with real entries, it may appear that there is

some ambiguity as to whether they are acting on Rn or on Cn, and thus possibly ends

with different p-norms for the real and complex cases. As a matter of fact, this is not

an issue as it was shown by Taylor in [44] (1958) that for any m×n matrix B with real

entries and all q ≥ p ≥ 1, the induced norm

‖B‖p→q := sup

{
‖Bx‖q
‖x‖p

: x 6= 0

}
is the same whether x runs through all non-zero vectors with complex entries or only

through all non-zero vectors with real entries. Note that the author points out that a

proof of this result had been sketched in an earlier paper (1927) by M. Riesz [40]. Also,

we refer to Crouzeix [15] since this is, to the best of our knowledge, the most simple

and direct proof of this result in the case that is considered here.

Our interest for estimating the induced p-norms of A(n,±a, b) stems from other

studies of the geometry of the set of doubly stochastic matrices. Indeed, one can verify

that the Chebyshev radius of the n-dimensional Birkhoff polytope, i.e., the greatest

lower bound of the radii of all balls containing Dn, with respect to the induced p-norm
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(1 ≤ p ≤ ∞) is given by

Rp(Dn) =

∥∥∥∥I − 1

n
K

∥∥∥∥
p→p

,

where I is the n×n identity matrix and K is the n×n all-ones matrix. This corresponds

to the induced p-norm of −A
(
n, 1−n

n , 1
n

)
.

In Section 3 of the present paper, we discuss some recent results (see [8, 41]) related

to the calculation of ‖A(n,±a, b)‖p→p for a, b ≥ 0 and 1 ≤ p ≤ ∞. We shall see that

the negative sign plays a crucial role, as the p-norms of A(n, a, b) and A(n,−a, b) differ

significantly. Indeed,

‖A(n, a, b)‖p→p = a+ (n− 1)b, (1 ≤ p ≤ ∞),

whereas ‖A(n,−a, b)‖p→p is a non-constant function of p that is monotonically non-

increasing for 1 ≤ p ≤ 2 and monotonically non-decreasing for 2 ≤ p ≤ ∞ (see [41]),

with

‖A(n,−a, b)‖2→2 =

a+ b, if (n− 2)b ≤ 2a,

−a+ (n− 1)b, if (n− 2)b ≥ 2a.

But the exact value of the induced p-norm of A(n,−a, b) for 1 < p < ∞, p 6= 2, remains

unknown. However, the following lower and upper bounds
a+ b ≤ ‖A(n,−a, b)‖p→p ≤ n|

1
p−

1
2 |(a+ b) if (n− 2)b ≤ 2a,

(n− 1)b− a ≤ ‖A(n,−a, b)‖p→p ≤ n|
1
p−

1
2 |((n− 1)b− a) if (n− 2)b ≥ 2a,

were obtained in [8]. Here, as a novel contribution, we provide a proof of the following

refined estimates
a+ b ≤ ‖A(n,−a, b)‖p→p ≤ (a+ b)

(
(n−1)b+a

a+b

)| 2p−1|
if (n− 2)b ≤ 2a,

(n− 1)b− a ≤ ‖A(n,−a, b)‖p→p ≤ ((n− 1) b− a)
(

(n−1)b+a
(n−1)b−a

)| 2p−1|
if (n− 2)b ≥ 2a.

In Section 4, we take a wider perspective and investigate the induced p-norm of

elements of the ∗-algebra generated by a normal matrix A in the case where ‖ · ‖ is an

axis-oriented matrix norm. We then discuss how these estimates are related to those

mentioned above in the case where A is a circulant matrix.

Finally, in Section 5 we open some new fronts in dealing with the question that was

initially attracted our interest in estimating the induced p-norm of circulant matrices of

the form given by (2.1). By leveraging the power of an optimization-oriented approach,

we gain insights on the nature of the maximizing vectors for
∥Ax∥p

∥x∥p
. This leads us to
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formulate a conjecture that, if proven valid, would make it possible to derive an exact

formula for ‖I − 1
nK‖p→p.

§ 3. The induced p-norm of circulant matrices

As versatile and pervasive as circulant matrices are, a great deal of their key prop-

erties can be established using only elementary linear algebra. In this section, we will

present those properties that shall prove useful later on.

§ 3.1. The DFT matrix

The following cyclic permutation matrix of order n

Cn := circ(0, 1, 0, . . . , 0) =


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

1 0 0 · · · 0 0


is regarded as the basic circulant matrix. Indeed, Cn has the fundamental representation

property

(3.1) A = α0I + α1Cn + α2C
2
n + · · ·+ αn−1C

n−1
n = PA(Cn),

where A = circ(α0, α1, . . . , αn−1) and PA is the polynomial

PA(z) = α0 + α1z + α2z
2 + · · ·+ αn−1z

n−1.

This polynomial is called the associated polynomial, or representer (see [16, 33]), of the

circulant matrix A.

The characteristic polynomial of Cn is pCn
(λ) = λn − 1, and thus its eigenvalues

are

λj := ωj
n, 0 ≤ j ≤ n− 1,

where ωn = exp(2πi/n) is a primitive n-th root of unity. The corresponding normalized

eigenvectors are

xj :=
1√
n
(1, ωj

n, ω
2j
n , . . . , ω(n−1)j

n )⊺, 0 ≤ j ≤ n− 1.

Since these vectors are pairwise orthogonal, we deduce the diagonalization

(3.2) Cn = Wn diag(1, ωn, ω
2
n, . . . , ω

n−1
n )W ∗

n ,
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where Wn is the unitary matrix of order n whose columns are x0, x1, . . . , xn−1. More

explicitly,

Wn =
1√
n



1 1 1 · · · 1 1

1 ωn ω2
n · · · ωn−2

n ωn−1
n

1 ω2
n ω4

n · · · ω
2(n−2)
n ω

2(n−1)
n

...
...

...
. . .

...
...

1 ωn−2
n ω

(n−2)2
n · · · ω

(n−2)2

n ω
(n−2)(n−1)
n

1 ωn−1
n ω

(n−1)2
n · · · ω

(n−1)(n−2)
n ω

(n−1)2

n


.(3.3)

The sequence ωk
n, k ≥ 0, is periodic, and thus there are only n distinct elements in Wn.

For example,

W4 =
1

2


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

 .

As a matter of fact, Wn is a most remarkable matrix: it is easily established that it is

symmetric, i.e. W ⊺
n = Wn, and unitary, i.e., W−1

n = W ∗
n = W

⊺
n . The combination of

these properties means that W−1
n = Wn. Moreover, it is the Vandermonde matrix for

the roots of unity up to a normalization factor. What is more essential is that Wn is

closely related to Fn, the unitary Discrete Fourier Transform (DFT) matrix [16, § 2.5]

of order n which was introduced by Sylvester in 1867 [43]. Indeed, Wn = F ∗
n = Fn.

Finally, we deduce from (3.1), (3.2), and Cn
n = I the following essential representation.

If A ∈ circn(C) then

(3.4) A = Wn diag
(
PA(1),PA(ωn),PA(ω

2
n), . . . ,PA(ω

n−1
n )

)
W ∗

n .

This means that the unitary matrix Wn simultaneously diagonalizes all n× n circulant

matrices. For further details see [16, § 3.2].

It follows from the foregoing that, PA(z), the associated polynomial of a given

A ∈ circn(C) is actually closely related to pA(z), the characteristic polynomial of A.

Indeed, PA(z) is the unique polynomial of degree strictly less than n whose values at

ωj
n, j = 0, 1, . . . , n− 1, spans over each and every one of eigenvalues of A (counted with

multiplicity), whereas pA(z) is the unique monic polynomial of degree n that vanishes

precisely at the eigenvalues of A.

To conclude this introductory commentary, remark that, in the light of above obser-

vations, one can easily check that the product of two circulant matrices is again circulant

and that, for this set of matrices, multiplication is commutative. Thus, circn(C) forms
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a commutative ∗-algebra over C, with involution given by the conjugate transpose. Fur-

thermore, circn(C) is canonically isomorphic to diagn(C), the set of all complex-valued

diagonal matrices of order n.

§ 3.2. The induced p-norm of A(n,±a, b), Cases p = 1 and p = ∞

As previously mentioned, we seek to find the induced p-norm of the circulant ma-

trices A(n,±a, b) as given by (2.1). For p = ∞, the situation is straightforward. Indeed,

given any matrix A ∈ Cn×n, we have

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣ n∑
j=1

ai,jxj

∣∣∣∣ ≤ ‖x‖∞ max
1≤i≤n

n∑
j=1

|ai,j |.

This shows that ‖A‖∞→∞ ≤ max
1≤i≤n

n∑
j=1

|ai,j |. For the reverse inequality, we choose an

index 1 ≤ i0 ≤ n that realizes the maximum in the previous expression and we consider

x ∈ Cn such that xj := sgn(ai0,j), where sgn(z) denotes the complex signum function

defined as

sgn(z) =

 z
|z| , z 6= 0,

0, z = 0.

Hence, ‖x‖∞ = 1 and

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣ n∑
j=1

ai,jxj

∣∣∣∣ ≥ ∣∣∣∣ n∑
j=1

ai0,jxj

∣∣∣∣ = n∑
j=1

|ai0,j | = max
1≤i≤n

n∑
j=1

|ai,j |.

Therefore,

‖A‖∞→∞ = max
1≤i≤n

n∑
j=1

|ai,j |,

which is simply the maximum absolute row sum of the matrix. In particular, for a, b ≥ 0

and for A(n,±a, b) as given by (2.1), we have

‖A(n,±a, b)‖∞→∞ = |a|+ (n− 1)|b|.

From the above calculation, we can directly also infer that

‖A(n,±a, b)‖1→1 = |a|+ (n− 1)|b|.

Indeed ‖A‖p→p = ‖A‖q→q for Hölder conjugate indices p and q, since A is self-adjoint

[23, § 5.4 and Theorem 5.3.35]. Nevertheless, we provide a different detailed proof,

which is interesting in its own right. Given any x ∈ Cn, consider a partition of a

-
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matrix A ∈ Cn×n according to its columns as A = [a1|a2| · · · |an] ∈ Cn×n. The triangle

inequality gives

‖Ax‖p =

∥∥∥∥ n∑
j=1

xjaj

∥∥∥∥
p

≤
n∑

j=1

|xj | · ‖aj‖p = ‖x‖1 max
1≤j≤n

‖aj‖p

This shows that ‖A‖1→p ≤ max
1≤j≤n

‖aj‖p. For the reverse inequality, we choose an index

1 ≤ j0 ≤ n that realizes the maximum in the previous expression and we consider the

canonical basis vector ej0 , i.e., the vector whose components are all zero, except the

j0-th that equals one. Then

‖Aej0‖p = ‖aj0‖p = max
1≤j≤n

‖aj‖p.

Hence,

‖A‖1→p = max
1≤j≤n

‖aj‖p.

For p = 1, this is simply the maximum absolute column sum of the matrix. In particular,

for a, b ≥ 0 and for A(n,±a, b) as given by (2.1), we have

‖A(n,±a, b)‖1→1 = |a|+ (n− 1)|b|.

As a by-product, we also deduce

‖A(n,±a, b)‖1→p =
(
|a|p + (n− 1)|b|p)1/p.

§ 3.3. The induced p-norm of A(n,±a, b), Case p = 2

For 1 < p < ∞, the situation is no longer so simple. One cannot easily calculate

the induced p-norm of A(n,±a, b) by inspection. As a matter of fact, we shall see

that the sign of the real number a plays a crucial role as the p-norms of A(n, a, b)

and A(n,−a, b) are entirely different in general. Before discussing the general case, we

start by addressing the case p = 2. To do this, we first remark that, for a diagonal

matrix, all the induced p-norms are equal to the maximum of the absolute value of the

entries. In [41], Sahasranand calculated this value for diagonal matrices involved in the

diagonalization of A(n, a, b) and A(n,−a, b) as in (3.4).

Lemma 3.1. Let a, b ≥ 0, and let A = A(n,±a, b) be given by (2.1). Let

WnΛW
∗
n be the diagonalization of A as in (3.4) and assume that 1 ≤ p ≤ ∞.

(i) If A = A(n, a, b) = WnΛW
∗
n , then we have

‖Λ‖p→p = a+ (n− 1)b.



192 Ludovick Bouthat, Javad Mashreghi, and Frédéric Morneau-Guérin

(ii) If A = A(n,−a, b) = WnΛW
∗
n , then we have

‖Λ‖p→p =

a+ b, if (n− 2)b ≤ 2a,

−a+ (n− 1)b, if (n− 2)b ≥ 2a.

Proof. By (3.4), the matrix A can be expressed as

A = WnΛW
∗
n ,

where Λ is a diagonal matrix whose entries on the main diagonal are given by

Λ1,1 = PA(1) = a+ (n− 1)b

and, for k = 2, . . . , n,

Λk,k = PA(ω
k−1
n )

= a+ bωk−1
n + bω2(k−1)

n + · · ·+ bω(n−1)(k−1)
n

= (a− b) + b
n−1∑
j=0

wj(k−1)
n

= a− b.

The last equality results from the application of the following well-known identity (see

[35, § 3, Ex. 3]),
n−1∑
j=0

ωjs
n =

n, if s = 0 mod n,

0, otherwise.

The result follows by calculating

‖Λ‖p→p = sup

{
‖Λx‖p
‖x‖p

: x 6= 0

}

= sup


( n∑

k=1

|Λk,kxk|p
)1/p

( n∑
k=1

|xk|p
)1/p : x 6= 0


= max

1≤k≤n
|Λk,k|

for 1 ≤ p ≤ ∞, first for A(n, a, b) and then for A(n,−a, b).

As in [41], we now use the previous lemma to derive an exact expression for

‖A(n, a, b)‖2→2 and ‖A(n,−a, b)‖2→2 for a, b ≥ 0. In doing so, we obtain an alter-

native proof of the result presented in [8].

□ 



On the norm of normal matrices 193

Theorem 3.2. Let a, b ≥ 0.

(i) For A = A(n, a, b) defined as in (2.1), we have

‖A‖2→2 = a+ (n− 1)b.

(ii) For A = A(n,−a, b) defined as in (2.1), we have

‖A‖2→2 =

a+ b, if (n− 2)b ≤ 2a,

−a+ (n− 1)b, if (n− 2)b ≥ 2a.

Proof. Let WnΛW
∗
n be the diagonalization of A(n,±a, b) as in (3.4). We have

‖A‖2→2 = ‖WnΛW
∗
n‖2→2 ≤ ‖Wn‖2→2 · ‖Λ‖2→2 · ‖W ∗

n‖2→2.

Observe that

‖W ∗x‖22 = (W ∗x)∗W ∗x = x∗WW ∗x = x∗x = ‖x‖22.

From this relation – which bears the name of Parseval’s identity – we deduce that

‖W ∗‖2→2 = 1, and the same goes for W . The first part of Lemma 3.1 implies that

(3.5) ‖A(n, a, b)‖2→2 ≤ a+ (n− 1)b,

while the second part entails that

(3.6) ‖A(n,−a, b)‖2→2 ≤ a+ b

if (n− 2)b ≤ 2a, and

(3.7) ‖A(n,−a, b)‖2→2 ≤ −a+ (n− 1)b

if (n− 2)b ≥ 2a.

One can easily check that x = (1, 1, . . . , 1)⊺ is actually a maximizing vector for

(3.5) and (3.7), i.e., that we can replace ≥ by the equal sign in these equations. As for

the inequality in (3.6), it suffices to consider the vector y = (1,−1, 0, . . . , 0)⊺ to see that

it too is saturated.

We shall now present a generalization of the case A(3,−a, b).

Proposition 3.3. If A = circ(α1, α2, α3) for arbitrary α1, α2, α3 ∈ R, then

‖A‖2→2 =


√
α2
1 + α2

2 + α2
3 − (α1α2 + α2α3 + α3α1), if α1α2 + α2α3 + α3α1 ≤ 0,

|α1 + α2 + α3|, if α1α2 + α2α3 + α3α1 ≥ 0.

□ 
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Note that the special case b = α2 = α3 ≥ 0 and −a = α1 < 0 yields the case

A(3,−a, b). The proof of Proposition 3.3 is omitted since we shall now state and prove

a more general theorem, presented in [8], that subsumes both previous results and that

conceptually explains why there are two cases that arise in calculations.

Theorem 3.4. Suppose A = [c1|c2| · · · |cn] ∈ Rn×n is an arbitrary matrix whose

columns c1, . . . , cn ∈ Rn satisfy

c⊺1c1 = . . . = c⊺ncn = ρ, c⊺i cj = β, (1 ≤ i < j ≤ n),

for some scalars ρ, β ∈ R. Then

‖A‖2→2 =


√
ρ− β , if β ≤ 0,√
ρ+ (n− 1)β, if β ≥ 0.

Proof. It is well-known that the square of the induced 2-norm (also called the

spectral norm) of any real n × n matrix A is precisely the largest eigenvalue of the

symmetric matrix A⊺A. Then, under the above-stated hypotheses,

A⊺A =


ρ β β · · · β

β ρ β · · · β

β β ρ · · · β
...

...
...
. . .

...
β β β · · · ρ

 = (ρ− β)I + βK,

where I is the n×n identity matrix and K is the n×n all-ones matrix (i.e., the matrix

where every element is equal to 1). The eigenvalues of the positive semidefinite matrix

A⊺A = (ρ − β)I + βK are ρ − β (with multiplicity of n − 1) and ρ + (n − 1)β (with

multiplicity 1). Taking their maximum and then its square root, the result follows.

Note that Theorem 3.2.(ii) corresponds to the case

ρ = a2 + (n− 1)b2 and β = − 2ab+ (n− 2)b2,

whereas Proposition 3.3 corresponds to the case n = 3, and

ρ = α2
1 + α2

2 + α2
3 and β = α1α2 + α2α3 + α3α1,

of Theorem 3.4.

§ 3.4. The p-norm of A(n, a, b)

In [8, Theorem 3.2], it was shown that if a, b ≥ 0, then for all 1 ≤ p ≤ ∞,

‖A‖p→p = a+ (n− 1)b. Here, we present a short proof taken from [41].

□ 
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Theorem 3.5. Let a, b ≥ 0, and let A = A(n, a, b) be given by (2.1). Assume

1 ≤ p ≤ ∞. Then

‖A‖p→p = a+ (n− 1)b.

Proof. Using the vector x = (1, 1, . . . , 1)⊺, we see that

‖A(n, a, b)‖p→p ≥ ‖A(n, a, b)x‖p
‖x‖p

= a+ (n− 1)b.

This implies that, in order to prove the result, it suffices to show that x = (1, 1, . . . , 1)⊺

is actually a maximizing vector.

We have seen that

‖A‖∞→∞ = a+ (n− 1)b = ‖A‖2→2.

Now, by applying the Riesz–Thorin interpolation theorem [37, Theorem 1.1.1] with

p0 = q0 = 2, p1 = q1 = ∞ and pθ = qθ, we obtain,

(3.8) ‖A‖pθ→pθ
≤ ‖A‖1−θ

2→2‖A‖θ∞→∞,

for (with a mild abuse of notation)

1

pθ
=

1− θ

2
+

θ

∞
=

1− θ

2
, (0 ≤ θ ≤ 1).

Hence,

‖A‖pθ→pθ
≤ ‖A‖∞→∞ = a+ (n− 1)b,

for 2 ≤ pθ ≤ ∞. Since A is self-adjoint, the result also follows for 1 ≤ p ≤ 2.

Using similar arguments as in the proof of Theorem 3.5, one can show that

‖ circ(α0, α1, . . . , αn−1)‖p→p ≤ α0 + α1 + · · ·+ αn−1,

where αj ≥ 0. Then, considering again the same maximizing vector x = (1, 1, . . . , 1)⊺,
one concludes that

‖ circ(α0, α1, . . . , αn−1)‖p→p = α0 + α1 + · · ·+ αn−1.

§ 3.5. The p-norm of A(n,−a, b)

It turns out that the calculations of the induced p-norms of A(n,−a, b) with a, b ≥ 0

are more involved than those of A(n, a, b). In fact, to the best of our knowledge, the

exact value of ‖A(n,−a, b)‖p→p for 1 < p < ∞, p 6= 2 is not known yet. Note however

that lower bounds were provided in [8] as well as the two different set of upper bounds

that we shall now present.

□ 



196 Ludovick Bouthat, Javad Mashreghi, and Frédéric Morneau-Guérin

Theorem 3.6. Let a, b ≥ 0, and let A = A(n,−a, b) be given by (2.1). Assume

1 ≤ p ≤ ∞. Then

‖A‖p→p ≤ n|
1
p−

1
2 |‖A‖2→2.

Proof. We follow [41]. Because A is self-adjoint, we will assume without any loss

of generality that 2 ≤ p ≤ ∞. Recall that for vectors in Cn, we have

‖x‖22 = x⊺x = x∗x.

Moreover, for 1 ≤ r ≤ p,

(3.9) ‖x‖p ≤ ‖x‖r ≤ n
1
r−

1
p ‖x‖p.

Both inequalities will prove useful in the special case 2 = r ≤ p.

For x 6= 0, the essential representation (3.4) implies that

‖Ax‖p ≤ ‖Ax‖2
= ‖WnΛW

∗
nx‖2

≤ ‖Wn‖2→2 · ‖Λ‖2→2 · ‖W ∗
nx‖2.

By the Parseval’s identity and that ‖Wn‖2→2 = 1, we deduce that

‖Ax‖p ≤ ‖Λ‖2→2 · ‖x‖2 ≤ ‖Λ‖2→2 · n
1
2−

1
p ‖x‖p

whereby

‖A‖p→p ≤ n
1
2−

1
p ‖Λ‖2→2.

The desired result now follows from Lemma 3.1.

Using once again the Riesz-Thorin interpolation theorem, it is possible to obtain

another set of upper bounds for ‖A(n,−a, b)‖p→p.

Theorem 3.7. Let a, b ≥ 0, and let A = A(n,−a, b) be given by (2.1). Assume

1 ≤ p ≤ ∞. Then

‖A‖p→p ≤ ‖A‖2→2

(
‖A‖∞→∞

‖A‖2→2

)|1− 2
p |
.

Proof. For 2 ≤ p ≤ ∞, it suffices to interpolate between between ‖A‖2→2 and

‖A‖∞→∞. As in the proof of Theorem 3.5, fix p0 = q0 = 2, p1 = q1 = ∞, and qθ = pθ

to obtain

(3.10) ‖A‖pθ→pθ
≤ ‖A‖1−θ

2→2‖A‖θ∞→∞

□ 
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for (with a mild abuse of notation)

1

pθ
=

1− θ

2
+

θ

∞
=

1− θ

2
, (0 ≤ θ ≤ 1).

Remark that θ = 1− 2
pθ
. Hence (3.10) can be restated as

‖A‖pθ→pθ
≤ ‖A‖

2
pθ
2→2‖A‖

1− 2
pθ∞→∞, (2 ≤ pθ ≤ ∞).

Since A is self-adjoint, the result follows for 1 ≤ p ≤ 2 with a bit of simplification.

(a) n = 5, a = 2
3
and b = 1

3
. (b) n = 23, a = 0.1 and b = 0.05.

Figure 1: Upper and lower bounds of ‖A‖p→p for different values of n, a, b.

Even though the estimations provided in Theorem 3.7 are more complex than those

given in Theorem 3.6, they are more accurate. In fact, when n is small, the difference

between the two estimations is marginal. However, as n grows, the first estimation

becomes significantly better than the latter (see Figure 1, where the parameters a, b

have been normalized so that ‖A‖2→2 = 1). Note, however, that neither of them

provide the precise value of ‖A(n,−a, b)‖p→p.

Open question 3.8. Evaluate ‖A(n,−a, b)‖p→p.

Using similar arguments as in the proof of Theorem 3.7, Sahasranand [41, Theorem

6] showed the following.

Theorem 3.9. Let a, b ≥ 0, and let A = A(n,−a, b) be given by (2.1). For

1 ≤ p ≤ 2, ‖A‖p→p is monotonically non-increasing in p, whereas for 2 ≤ p ≤ ∞,

‖A‖p→p is monotonically non-decreasing in p.

Proof. Fix p ≥ 2 and β > 0. Let α ≥ 0 be such that 1
p−α + 1

p+β = 1. This time,

we apply the Riesz–Thorin interpolation theorem with p0 = q0 = p− α, p1 = q1 = p+ β

□ 

- Upper bound from Theorem 3.6 -Upper bound from Theorem 3.6 

- Upper bound from Theorem 3.7 4 - Upper bound from Theorem 3.7 

- IIAIIH - IIAIIH 

p p 
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and pθ = qθ to obtain

(3.11) ‖A‖pθ→pθ
≤ ‖A‖1−θ

(p−α)→(p−α)‖A‖θ(p+β)→(p+β),

for
1

pθ
=

1− θ

p− α
+

θ

p+ β
, (0 ≤ θ ≤ 1).

Since p − α and p + β are Hölder conjugates and since A is self-adjoint, we have

‖A‖(p−α)→(p−α) = ‖A‖(p+β)→(p+β) and (3.11) can be restated as

‖A‖p→p ≤ ‖A‖(p+β)→(p+β),

which implies that ‖A‖p→p is monotonically non-decreasing in p for 2 ≤ p ≤ ∞. The

case 1 ≤ p ≤ 2 is dealt with similarly.

Finally, as Sahasranand [41] pointed out, conditional upon knowing the exact value

of ‖A(n,−a, b)‖r→r for some r > p > 2, yet another use of Riesz–Thorin interpolation

theorem allows us to derive an upper bound ‖A‖p→p that is even more precise than the

one given by Theorem 3.7.

Corollary 3.10. Let a, b ≥ 0, and let A = A(n,−a, b) be given by (2.1). Assume

2 ≤ p ≤ ∞. Then, for β ≥ 0,

‖A‖p→p ≤ ‖A‖

1
p
− 1

p+β
1
2
− 1

p+β

2→2 ‖A‖

1
2
− 1

p
1
2
− 1

p+β

(p+β)→(p+β).

Obviously, an analogous result holds for 1 ≤ p ≤ 2.

§ 4. An operator theoretic approach

In this section, we adopt an abstract approach to study the norm. Our setting is

general enough and in the special case of circulants, leads us to some of our previous

results as well as some new estimations.

§ 4.1. Axis-oriented norms

Suppose we endow Cn×n, the ring of complex n × n matrices, with a norm ‖ · ‖
which satisfies

(4.1) ‖diag(z1, . . . , zn)‖ = max{|z1|, . . . , |zn|}.

Recall that the spectral radius of a given matrix A ∈ Cn×n whose eigenvalues are

λ1, . . . , λn is defined as

ρ(A) := max{|λ1|, . . . , |λn|}.

□ 



On the norm of normal matrices 199

The spectral radius, though not itself a matrix norm, is some sort of infimum over all

matrix norms, in that ρ(A) ≤ ‖A‖ for all A ∈ Cn×n and all matrix norm ‖·‖. Therefore,
a norm satisfying (4.1) is optimal for all diagonal matrices.

Matrix norms induced by a vector norm verifying (4.1) were said to be axis-oriented

by Bauer and Fike in [3]. As it turns out, using the following equivalence relations (see

[4, Theorems 2 and 3]), one can easily verify that axis-orientedness is not an uncommon

property of induced matrix norms.

Theorem 4.1. Let n ≥ 2, and let ‖ · ‖ be a vector norm on Cn. The following

are equivalent.

(i) The matrix norm induced by ‖ · ‖ satisfies (4.1).

(ii) The vector norm ‖·‖ is absolute, i.e., ‖x‖ =
∥∥|x|∥∥ for all x ∈ Cn, where |x| denote

the vector the components of which are the moduli of the components of x.

(iii) The vector norm ‖ · ‖ is monotonic, i.e., ‖x‖ ≤ ‖y‖ whenever |xi| ≤ |yi| for all

1 ≤ i ≤ n.

One can easily verify from their definition that the p-norms (1 ≤ p ≤ ∞) are

absolute. Therefore, their respective induced matrix norms satisfy (4.1).

The extension of the concept of axis-orientedness to all matrix norms (that is, even

to the matrix norms that are not induced by any vector norm) and to vector norms on

Cn×n is a natural step forward since there are vector norms and non-induced matrix

norms satisfying (4.1). Consider for instance the element-wise (vector) norm

‖A‖max := max
1≤i,j≤n

|aij |,

which is not sub-multiplicative and thus not a matrix norm, or the sub-multiplicatives

matrix norms

‖A‖max{p,q} := max{‖A‖p→p, ‖A‖q→q}, (1 ≤ p, q ≤ ∞, p 6= q),

which are not minimal, hence non-induced (see [23, Theorem 5.6.32]).

§ 4.2. The ∗-algebra TA

Let P denote the set of all analytic polynomials in two independent variables, i.e.,

p(z, w) :=
N∑

m,n=0

amnz
mwn.

Note that, being in the world of commutative polynomial, there is no difference between

zw and wz. Hence, for an arbitrary polynomial p, the combination p(A,B) will be
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meaningful if the matrices A and B commute. In particular, p(A,A∗) makes sense

whenever A is normal, i.e., AA∗ = A∗A.

Given a normal matrix A, let TA be the ∗-algebra generated by A, i.e.,

TA = {p(A,A∗) : p ∈ P}.

We may even generalize the above definition by considering the functions f(z, w) which

are defined at least on the set σ(A)× σ(A). However, we stick to polynomials to make

the presentation free of some technical difficulties.

By the Spectral Theorem for normal matrices [23, Theorem 2.5.3], there exists

a unitary matrix U such that A = UΛU∗, where Λ = diag(λ1, . . . , λn) is the diagonal

matrix whose entries are the eigenvalues of A. Therefore, an easy algebraic computation

shows

(4.2) p(A,A∗) = Up(Λ,Λ∗)U∗ = Udiag
(
p(λ1, λ1), . . . , p(λn, λn)

)
U∗.

In subsequent subsections, we seek to calculate (or, failing that, estimate) the value of

‖p(A,A∗)‖, where ‖ · ‖ is some axis-oriented matrix norm.

§ 4.3. Unitarily invariant norms

A norm ‖ · ‖ on Cn×n is called unitarily invariant if

‖UX‖ = ‖XU‖ = ‖X‖

for all X ∈ Cn×n and all unitary matrices U ∈ Cn×n. Important examples of unitarily

invariant norms include the spectral norm ‖A‖ =
√
ρ(A∗A), the Frobenius norm

‖A‖F :=

( n∑
i=1

n∑
j=1

|ai,j |2
)1/2

,

and the Schatten p-norms

‖A‖S∞ := max
1≤i≤n

σi(A) & ‖A‖Sp :=

( n∑
i=1

σp
i (A)

)1/p
, (1 ≤ p < ∞),

where σi’s designate the singular values of A ∈ Cn×n.

One needs only look to the Frobenius norm to see that not all unitarily invariant

norms on Cn×n satisfy the condition (4.1). In fact, it is not difficult to verify that the

spectral norm is the only unitarily invariant norm on Cn×n that is axis-oriented. By

the singular value decomposition theorem [23, Theorem 2.6.3], for all A ∈ Cn×n, there

are unitary matrices U, V ∈ Cn×n such that A = UΣV ∗, where Σ = diag(σ1, . . . , σn)
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is a diagonal matrix whose entries are the singular values of A listed in non-increasing

order. Hence, if ‖ · ‖ is a unitarily invariant norm satisfying (4.1), then

‖A‖ = ‖UΣV ∗‖ = ‖Σ‖ = ‖diag(σ1, . . . , σn)‖ = max{|σ1|, . . . , |σn|} = σ1 = ‖A‖2→2.

The following result is an immediate consequence of (4.2) and the assumption (4.1).

Proposition 4.2. For all normal matrix A ∈ Cn×n and all polynomial in two

variables p,

‖p(A,A∗)‖2→2 = max
{
|p(λ1, λ1)|, . . . , |p(λn, λn)|

}
.

§ 4.4. More general norms

If ‖ · ‖ is not unitarily invariant, then some upper and lower estimates come into

play. A given matrix U acts as an operator on Cn×n by left or right multiplication.

Hence, we naturally consider the left operator norm induced by ‖ · ‖

‖U‖ℓ := sup

{
‖UX‖
‖X‖

: X ∈ Cn×n, X 6= 0

}
,(4.3)

and the right operator norm induced by ‖ · ‖

‖U‖r := sup

{
‖XU‖
‖X‖

: X ∈ Cn×n, X 6= 0

}
.(4.4)

In other words, ‖U‖ℓ and ‖U‖r are respectively the best constant such that

(4.5) ‖UX‖ ≤ ‖U‖ℓ‖X‖, X ∈ Cn×n,

and

(4.6) ‖XU‖ ≤ ‖U‖r‖X‖, X ∈ Cn×n.

If U is a unitary matrix, we can replace U by U∗ in the above inequalities and

obtain the corresponding bounds for U∗. Then, depending on the case, replacing X by

UX or XU , we obtain the lower bounds

(4.7) ‖UX‖ ≥ 1

‖U∗‖ℓ
‖X‖, X ∈ Cn×n,

and

(4.8) ‖XU‖ ≥ 1

‖U∗‖r
‖X‖, X ∈ Cn×n.

In the important case where ‖ · ‖ is submultiplicative, we have ‖A‖ℓ ≤ ‖A‖ and

‖A‖r ≤ ‖A‖ for every A ∈ Cn×n. The reverse inequalities trivially hold if ‖ · ‖ satisfies

‖I‖ = 1. From these observations, we can deduce the following result.
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Proposition 4.3. If ‖ · ‖ is a matrix norm on Cn×n satisfying ‖I‖ = 1, then

the left operator norm and the right operator norm coincide with the norm itself.

Although there is a vast class of norms for which ‖ · ‖ℓ ≡ ‖ · ‖r ≡ ‖ · ‖, and chief

among them will be the induced matrix norms, this equivalence does not always occur.

One only needs to took at the left and right operator norms induced by the Frobenius

norm. For the identity matrix I, for instance, we have

‖I‖ℓ = ‖I‖r = 1 <
√
n = ‖I‖F .

It should furthermore be noted that if ‖X‖ = ‖X∗‖ for all X ∈ Cn×n, then

‖U‖ℓ = ‖U∗‖r and ‖U∗‖ℓ = ‖U‖r. And if ‖ · ‖ is a unitarily invariant norm, then

clearly ‖U‖ℓ = ‖U‖r = 1.

Equipped with these estimations, we may derive a result analogous to Proposition

4.2 that equally holds for unitarily invariant and non-unitarily invariant norms. The

price to pay for having greater generality is that we no longer have an exact expression

for ‖p(A,A∗)‖, but rather some lower and upper bounds.

Proposition 4.4. Let ‖ · ‖ be a norm on Cn×n which satisfies (4.1) and let

A ∈ Cn×n be a normal matrix which admits the decomposition Udiag
(
λ1, . . . , λn

)
U∗.

Then

‖p(A,A∗)‖ ≤ ‖U‖ℓ‖U∗‖r max
{
|p(λ1, λ1)|, . . . , |p(λn, λn)|

}
and

‖p(A,A∗)‖ ≥ 1

‖U‖r‖U∗‖ℓ
max

{
|p(λ1, λ1)|, . . . , |p(λn, λn)|

}
.

Proof. The proof is based on a judicious use of estimations developed above. First,

by (4.2),

p(A,A∗) = Up(Λ,Λ∗)U = Udiag
(
p(λ1, λ1), . . . , p(λn, λn)

)
U∗.

Then by (4.5) (applied for U) and (4.6) (applied for U∗), we obtain

‖p(A,A∗)‖ ≤ ‖U‖ℓ‖U∗‖r‖diag
(
p(λ1, λ1), . . . , p(λn, λn)

)
‖.

The result now follows upon using (4.1). The other part is proved similarly.

Note that the decomposition A = Udiag
(
λ1, . . . , λn

)
U∗ is not unique, and some

decomposition may lead to more precise estimations than others in Proposition 4.4.

It is easily verified that these estimations are sharp in general since we can replace

both inequalities by an equality when ‖ · ‖ is the spectral norm (see Proposition 4.2).

Moreover, it is trivial to show that both estimations becomes an equality if A is a

diagonal matrix. However, it is unknown in general when it is possible to replace the

inequalities of Proposition 4.4 by equalities.

□ 
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Open question 4.5. Characterize the cases of equality in both estimations of

Proposition 4.4.

Remark. In (4.3) and (4.4), we defined ‖U‖ℓ and ‖U‖r as

sup

{
‖UX‖
‖X‖

: X ∈ Cn×n, X 6= 0

}
, & sup

{
‖XU‖
‖X‖

: X ∈ Cn×n, X 6= 0

}
,

respectively. These definitions were deemed natural, since we considered the matrix

U acting as an operator on Cn×n by left or right multiplication. We then restricted

ourselves to the cases where U is a unitary matrix. With this assumption, it is in many

ways more natural to view U as an operator acting on the unitary group U(n), i.e., the
group of n× n unitary matrices. The associated norms would thus be

‖U‖ℓ∗ := sup

{
‖UX‖
‖X‖

: X ∈ Un

}
and

‖U‖r∗ := sup

{
‖XU‖
‖X‖

: X ∈ Un

}
.

Of course, these norms are not appropriate for our study and they do not help us obtain

a better result than Proposition 4.4. Nonetheless, we propose the following question

which is interesting in its own right.

Open question 4.6. Find necessary and sufficient conditions such that ‖U‖ℓ∗ =

‖U‖ℓ.

§ 4.5. Application to circulant matrices

With the help of the tools presented in the previous subsections, we now turn our

attention to the circulant matrices. Let A be an arbitrary circulant matrix and recall

the fundamental representation (3.4) of A, i.e.,

A = Wn diag
(
PA(1),PA(ωn),PA(ω

2
n), . . . ,PA(ω

n−1
n )

)
W ∗

n ,

where Wn is the adjoint of the Discrete Fourier Transform matrix and PA is the asso-

ciated polynomial of A. Then, by Proposition 4.4,

‖A‖ = ‖PA(Cn)‖ ≤ ‖Wn‖ℓ‖W ∗
n‖r max

{
|PA(1)|, . . . , |PA(ω

n−1
n )|

}
,

and

‖A‖ = ‖PA(Cn)‖ ≥ 1

‖Wn‖r‖W ∗
n‖ℓ

max
{
|PA(1)|, . . . , |PA(ω

n−1
n )|

}
.
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In particular, if the norm is unitarily invariant (i.e., if it is the spectral norm) then

‖A‖2→2 = max
{
|PA(1)|, . . . , |PA(ω

n−1
n )|

}
,(4.9)

which corresponds to a special case of Proposition 4.2. More generally, if the matrix

norm is the induced p-norm, then Proposition 4.3 reveals that the above estimations

reduce to

‖A‖p→p ≤ ‖Wn‖p→p‖Wn‖q→q max
1≤k≤n

|PA(ω
k
n)|(4.10)

and

‖A‖p→p ≥ 1

‖Wn‖p→p‖Wn‖q→q
max

1≤k≤n
|PA(ω

k
n)|.(4.11)

It is not immediately clear how precise these estimations are and naturally wonders

if they are sharper than those presented in Theorem 3.7, in the particular case where A =

A(n,−a, b). To answer this question, we first need to compute the value of ‖Wn‖p→p.

Lemma 4.7. Let Wn be defined as in (3.3) and assume that 1 ≤ p ≤ ∞. Then

‖Wn‖p→p = ‖W ∗
n‖p→p = n|1/p−1/2|.

Proof. Let us suppose that 1 ≤ p ≤ 2. Since Wn is unitary, we have

‖Wnx‖p ≤ n
1
p−

1
2 ‖Wnx‖2 = n

1
p−

1
2 ‖x‖2 ≤ n

1
p−

1
2 ‖x‖p.(4.12)

It thus follows that ‖Wn‖p→p ≤ n1/p−1/2.

Considering the vector x = (1, 0, . . . , 0)⊺, we have

‖Wnx‖pp
‖x‖pp

=

∑n−1
i=0

∣∣∣∑n−1
j=0 xjω

−ij
∣∣∣p

np/2
∑n−1

i=0 |xi|p
=

∑n−1
i=0 |1|p

np/2
=

n

np/2
= n1− p

2 .

Hence, we conclude ‖Wn‖p→p = n1/p−1/2. The same method can then be used to show

that ‖W ∗
n‖p→p = n

1
p−

1
2 . Therefore, the conclusion follows after a bit of simplification

by noticing that

‖W ∗
n‖p→p = ‖Wn‖q→q & ‖Wn‖p→p = ‖W ∗

n‖q→q,

where q denote the H旦 lder conjugate of p.

Remark. Let cp and Cp be the the best constants such that

cp‖x‖p ≤ ‖Ux‖p ≤ Cp‖x‖p,(4.13)

□ 
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where U varies over all unitary matrices and x ∈ Cn. It is not difficult to show that we

have cpCp = 1. Also, observe that (4.12) and its analog for 2 ≤ p ≤ ∞ are also valid

for any unitary matrix U . In particular, we have

‖Ux‖p ≤ n|
1
p−

1
2 |‖x‖p

for any n× n unitary matrix U and x ∈ Cn. Moreover, we have shown in the previous

proof that there exist some x ∈ Cn such that ‖Wnx‖p = n|1/p−1/2|‖x‖p. Therefore, we
cannot replace n|1/p−1/2| by a smaller constant in the inequality ‖Ux‖p ≤ Cp‖x‖p and

thus, we have shown that Cp = n|1/p−1/2| = c−1
p .

Now, we know from (4.9) that max1≤k≤n |PA(ω
k
n)| = ‖A‖2→2 and Lemma 4.7

ensures that ‖Wn‖p = n|1/p−1/2|. Therefore, we see that (4.10) and (4.11) become

n−| 2p−1|‖A‖2→2 ≤ ‖A‖p→p ≤ n|
2
p−1|‖A‖2→2.

Compare this to the upper bound

‖A‖p→p ≤ n|
1
p−

1
2 |‖A‖2→2.

of Theorem 3.6. While the form is obviously very similar, it is interesting to note that

their derivation was quite different. In fact, it is an easy exercise to show that for

every p ∈ [1,∞], the latter (i.e., the upper bound obtained by interpolation) is sharper.

Hence, the new approach detailed in this section, despite being novel and general, does

not improve the previous estimations of the induced p-norm of A = A(n,−a, b) for

a, b ≥ 0.

As for the lower bound, remark that since the induced p-norm is a matrix norm,

we have ρ(A) ≤ ‖A‖p→p for every A ∈ Cn×n. Moreover, notice that the |PA(ω
k
n)|’s are

in fact the eigenvalues of A. Thus, it follows that

n−| 2p−1|‖A‖2→2 = n−| 2p−1| max
1≤k≤n

|PA(ω
k
n)| = n−| 2p−1|ρ(A).

Hence, we easily see that the lower bound is not sharp, except if n−| 1p− 1
2 | = 1. As

n ≥ 2, this only happens if p = 2.

§ 5. An optimization-oriented approach

In this section, we discuss some of our partial findings relative to the Open ques-

tion 3.8: Is it possible to provide a simple closed formula for ‖A(n,−a, b)‖p→p? Here,

we adopt a more direct approach using essentially tools from elementary calculus. Ac-

cordingly, the results obtained are more limited in scope, and their proofs are quite
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technical in nature. Although, once more, we derive some results that cover a wide

scope, the key difference is that we eventually focus our attention on the particular case

of ‖A(n,−a, b)‖p→p.

§ 5.1. A more precise lower bound

We begin with the following proposition, which provides a more refined lower bound

for ‖A(n,−a, b)‖p→p. This estimate will be used later on.

Proposition 5.1. Let a, b ≥ 0, and let A = A(n,−a, b) be given by (2.1). As-

sume 1 < p < ∞. Then

‖A‖pp→p ≥

∣∣∣a+ b (n− 1)
2−p
1−p

∣∣∣p + (n− 1)
1

1−p

∣∣∣a+ b
(
(n− 1)

1
p−1 − n+ 2

)∣∣∣p
1 + (n− 1)

1
1−p

.

In particular, we also have

‖A‖p→p ≥ a+ b,

with equality if and only if either n = 2, or (n− 2)b ≤ 2a and p = 2.

Proof. Fix η := n − 1 and ρ := 1
p−1 . Consider the vector x = (−ηρ, 1, 1, . . . , 1)⊺.

A simple computation gives

‖Ax‖pp
‖x‖pp

=

∣∣a+ bη1−ρ
∣∣p + η−ρ |a+ b (ηρ − η + 1)|p

1 + η−ρ
,

proving the first part of the statement. Now, let f(z) := |z|p and let t := (1 + η−ρ)
−1

.

Then we can rewrite the above equation as

‖Ax‖pp
‖x‖pp

= tf
(
a+ bη1−ρ

)
+ (1− t)f (a+ b (ηρ − η + 1)) .

Hence, the convexity of f ensures us that

‖Ax‖pp
‖x‖pp

≥ f
(
t
(
a+ bη1−ρ

)
+ (1− t) (a+ b (ηρ − η + 1))

)
= f

(
a+ bt

(
η−ρ + 1

)
(η − ηρ) + b (ηρ − η + 1)

)
= f (a+ b (η − ηρ) + b (ηρ − η + 1))

= f (a+ b)

= (a+ b)p.

It follows that ‖A‖p→p ≥ a + b. Moreover, since f is never linear, the inequality is in

fact an equality if and only if a + bη1−ρ = a + b (ηρ − η + 1). This occurs if and only

if (ηρ + 1)
(
η1−ρ − 1

)
= 0, if and only if n = 2 or p = 2. It is trivial to verify that

‖A‖p→p = a + b for every p ∈ [1,∞] if n = 2 and we know from Theorem 3.2 that

‖A‖2→2 = a+ b if and only if (n− 2)b ≤ 2a. This concludes the proof. □ 
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Remark. If p tends to 1 (resp. to ∞), then the inequality given in Proposition

5.1 becomes a+ (n− 1)b, which is precisely the value of ‖A‖1→1 (resp. of ‖A‖∞→∞).

As usual, let a, b ≥ 0, and let A = A(n,−a, b) be given by (2.1). The maximizing

real vectors of
∥Ax∥p

∥x∥p
are the vectors x for which

‖Ax‖p
‖x‖p

= ‖A‖p→p.

As a direct application to the previous proposition, we obtain the following result. This

corollary will be used in the following section, which provides further details on the

maximizing real vectors of
∥Ax∥p

∥x∥p
.

Corollary 5.2. Let a, b ≥ 0, and let A = A(n,−a, b) be given by (2.1). Assume

that x ∈ Rn is a maximizing real vector for
∥Ax∥p

∥x∥p
which satisfies x1 + · · · + xn = 0.

Then either n = 2, or (n− 2)b ≤ 2a and p = 2.

Proof. If x1+· · ·+xn = 0, a direct computation reveals that
∥Ax∥p

∥x∥p
= a+b. Hence,

since x is a maximizing real vector for
∥Ax∥p

∥x∥p
, we find ‖A‖p→p = a+ b. Proposition 5.1

then ensures that this occurs if and only if either n = 2, or (n−2)b ≤ 2a and p = 2.

§ 5.2. The maximizing vectors for
∥Ax∥p

∥x∥p

Let a, b ≥ 0, and let A = A(n,−a, b) be given by (2.1). We now focus on the

maximizing real vectors for
∥Ax∥p

∥x∥p
. It is proved in [8] that, in the particular case where

p = 2 and (n − 2)b ≤ 2a, the maximizing real unit vectors are those whose entries

verify x1 + x2 + · · ·+ xn = 0. Whereas in the case where p = 2 but (n− 2)b ≥ 2a, the

maximizing real unit vectors are x = ± 1√
n
(1, 1, . . . , 1)⊺.

Finding the maximizing real unit vectors for
∥Ax∥p

∥x∥p
when 1 ≤ p ≤ ∞ and p 6= 2

is a daunting task. However, in what follows, we show that the entries of a given

maximizing real vector always form a set of cardinality at most three. The proof of this

result is somewhat convoluted. Prior to presenting a detailed demonstration, we need

to establish the following two technical lemmas.

We also need to define x[p] := sgn(x)|x|p = x|x|p−1, which is the derivative of
1

p+1 |x|
p+1 when 1 < p < ∞.

Lemma 5.3. Assume 1 ≤ p ≤ ∞. Let a, b, c1, c2, d ∈ R, and consider the real-

valued function

f(x) := a (c1x− c2)
[p−1] − bx[p−1] + d.

Then either f is identically zero or it has at most three distinct roots.

□ 
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Proof. Suppose that f is not identically zero. A computation reveals that

f ′(x) = (p− 1)
(
ac1 |c1x− c2|p−2 − b |x|p−2

)
.

If abc1 ≤ 0, then f ′ is either always non-negative or always non-positive. In the special

case where f ′ ≡ 0, we find that f has no roots since f 6≡ 0. Otherwise, f is either

strictly increasing or strictly decreasing, and thus f has exactly one root.

If abc1 > 0, then f ′ changes sign precisely at the following two points:

x1 =

(
ac1
b

) 1
p−2 c2(

ac1
b

) 1
p−2 c1 + 1

& x2 =

(
ac1
b

) 1
p−2 c2(

ac1
b

) 1
p−2 c1 − 1

.

Hence, f is decreasing on (−∞,min{x1, x2}), increasing on (min{x1, x2},max{x1, x2})
and decreasing on (max{x1, x2},∞), or vice versa. It follows immediately that f has

at most three distinct roots, as stated.

Lemma 5.4. Let a, b ≥ 0, with at least one of them non-zero. Let A = A(n,−a, b)

be given by (2.1). Suppose n > 2. Assume 1 < p < ∞. If x ∈ Rn is a maximizing real

vector for
∥Ax∥p

∥x∥p
, then, for every 1 ≤ j, k, l ≤ n,(

w
[p−1]
k − w

[p−1]
j

)(
x
[p−1]
k − x

[p−1]
l

)
=
(
w

[p−1]
k − w

[p−1]
l

)(
x
[p−1]
k − x

[p−1]
j

)
(5.1)

where wi = (a+ b)xi − b(x1 + x2 + · · ·+ xn).

Proof. We have

‖A‖pp→p = sup
∥x∥p=1

‖Ax‖pp

= sup
∥x∥p=1

n∑
i=1

|(a+ b)xi − b(x1 + · · ·+ xn)|p

= sup
∥x∥p=1

n∑
i=1

|wi|p.

Since the unit circle is compact, we can define the Lagrange multiplier

L(x, λ) := ‖Ax‖pp − λ
(
‖x‖pp − 1

)
and since for 1 < p < ∞, the derivative of |x|p exist everywhere, we find that the

maximum of ‖Ax‖pp on the set of unit vectors is obtained if and only if we have ∂L
∂λ = 0

and ∂L
∂xk

= 0, for every k ∈ {1, 2, . . . , n}. It is then easily verified that we have ∂L
∂xk

= 0

if and only if

(a+ b)w
[p−1]
k −

n∑
i=1

bw
[p−1]
i = λx

[p−1]
k .(5.2)

□ 
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Now, if any two of xj , xl and xk are equal (1 ≤ j, k, l ≤ n) equation (5.1) is directly

satisfied. Otherwise, choose any j, k, l such that xj 6= xk 6= xl. Subtracting the equation

(5.2) associated with the coefficient j (resp. l) to the one associated with the coefficient

k and simplifying, we get

w
[p−1]
k − w

[p−1]
j

x
[p−1]
k − x

[p−1]
j

=
λ

a+ b
&

w
[p−1]
k − w

[p−1]
l

x
[p−1]
k − x

[p−1]
l

=
λ

a+ b
.

Note that we can safely divide by a+b since a, b ≥ 0, with at least one of them non-zero.

Hence, equalling the left hand side of both equations and simplifying yield(
w

[p−1]
k − w

[p−1]
j

)(
x
[p−1]
k − x

[p−1]
l

)
=
(
w

[p−1]
k − w

[p−1]
l

)(
x
[p−1]
k − x

[p−1]
j

)
and we are done.

We now have everything in hand to demonstrate that the following holds true.

Proposition 5.5. Let a, b ≥ 0, with at least one of them non-zero. Let A =

A(n,−a, b) be given by (2.1). Suppose n > 2. Assume 1 < p < ∞, with p 6= 2. If

x ∈ Rn is a maximizing real vector for
∥Ax∥p

∥x∥p
, then the entries of x form a set of

cardinality at most three.

Proof. Suppose without any loss of generality, even if it means rearranging the

coefficients of x, that x1 6= x2 and for simplicity, define ρ := p − 1. Then Lemma 5.4

ensures us that (
w

[ρ]
k − w

[ρ]
1

)(
x
[ρ]
k − x

[ρ]
2

)
=
(
w

[ρ]
k − w

[ρ]
2

)(
x
[ρ]
k − x

[ρ]
1

)
for any k, where wi = (a+ b)xi− b(x1+x2+ · · ·+xn). Since n > 2 and p 6= 2, Corollary

5.2 ensures us that x1 + · · ·+xn 6= 0. Hence, we can define yi := xi/(x1 + · · ·+xn) and

zi := wi/(x1 + · · · + xn) = (a + b)yi − b. A simple division by x1 + · · · + xn 6= 0 then

allows us to show that(
z
[ρ]
k − z

[ρ]
1

)(
y
[ρ]
k − y

[ρ]
2

)
=
(
z
[ρ]
k − z

[ρ]
2

)(
y
[ρ]
k − y

[ρ]
1

)
, (1 ≤ k ≤ n).

This can be rewritten using the function

f(x) :=
(
y
[ρ]
2 − y

[ρ]
1

)(
(a+ b)x− b

)[ρ]
+
(
z
[ρ]
1 − z

[ρ]
2

)
x[ρ] +

(
y
[ρ]
1 z

[ρ]
2 − y

[ρ]
2 z

[ρ]
1

)
(5.3)

as f(yk) = 0 for every 1 ≤ k ≤ n. Now, let α := y1 and β := y2. An application of

Lemma 5.3 reveals that the function f has at most three distinct roots. Moreover, we

easily verify that f(α) = f(β) = 0. Therefore, the roots of f are α, β and possibly

another value, call it γ. Since f(yk) = 0 for every 1 ≤ k ≤ n, it follows that for any

1 ≤ k ≤ n, we either have yk = α, β or γ. Hence, yk can take at most three distinct

values and thus, xk can also take at most three distinct values.

□ 

□ 
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Remark. Note that, even though the proof given in the previous proposition does

not apply for p = 1, 2,∞, it is not actually a problem since the norm of A for all of

these values are known and are almost trivial problems. Moreover, in all of these cases

(with the exception of p = 2 and (n− 2)b ≤ 2a), the entries of the maximizing vectors

actually only have at most two distinct values.

If x is a maximizing real vector for
∥Ax∥p

∥x∥p
, then Proposition 5.5 tells us that x has at

most three distinct coefficients. Suppose that x does indeed have exactly three distinct

coefficient and define once again yi := xi/(x1 + · · ·+xn) and zi := wi/(x1+ · · ·+xn) =

((a+ b)yi − b). Moreover, assume that two of the three distinct coefficients of y are α,

occurring m times, and β, occurring k times. Then the third distinct coefficient of y,

say γ, is precisely the unique root of f which is not equal to α or β, where f is given by

(5.3). Moreover, by construction, the sum of the coefficients of y must be equal to 1,

i.e., they must satisfy the equation mα+ kβ + (n−m− k)γ = 1 and thus we also find

that γ = 1−mα−kβ
n−m−k . Remark that this is two completely different way of determining

the value of γ. However, it is natural to assume that the two functions determining the

value of γ are independent and thus that we have no reason to expect the two methods

to give the same result. This observation motivated the following conjecture, which is

strongly backed up with numerical evidence for several values of a, b, n and p.

Conjecture 5.6. Let a, b ≥ 0, with at least one of them non-zero. Let A =

A(n,−a, b) be given by (2.1). Assume 1 ≤ p ≤ ∞, with p 6= 2. If x ∈ Rn is a

maximizing real vector for
∥Ax∥p

∥x∥p
, then the entries of x form a set of cardinality at most

two.

§ 5.3. The special case of I − 1
nK

Our interest in the matrices A(n, a, b) stems from other studies on the geometry of

the Birkhoff polytope and originated with the matrix I − 1
nK which corresponds to the

matrix −A(n, 1−n
n , 1

n ). Here, we provide a description of ‖I − 1
nK‖p→p, assuming the

validity of Conjecture 5.6. We then show that the conjecture is valid in the special case

n = 3.

Proposition 5.7. Let 1 ≤ p ≤ ∞, with p 6= 2. Let xp be the unique root of the

function

x 7−→ (p− 1)
(
1 + (x− 1)

1
p−1

) (
1− (x− 1)p−2

)
+
(
1− (x− 1)

2−p
p−1

) (
1 + (x− 1)p−1

)
in the interval [1, 2], and let m1 :=

⌊
n
xp

⌋
and m2 :=

⌈
n
xp

⌉
. Suppose that Conjecture 5.6

is valid. Then

∥∥I − 1
nK
∥∥
p→p

= max
m∈{m1,m2}

((
n
m − 1

)p−1
+ 1
)1

p
((

n
m − 1

) 1
p−1 + 1

)1− 1
p

n
m

.(5.4)
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Proof. Let x be the maximizing real vector with coefficients α, occurring m times,

and β, occurring (n − m) times. We know from Corollary 5.2 that the sum of the

coefficients of x cannot be 0. Hence, without any loss of generality, suppose that mα+

(n−m)β = n, i.e., that β = n−mα
n−m . In this case, a direct computation reveals that

‖(I − 1
nK)x‖pp

‖x‖pp
=

m (α− 1)
p
+ (n−m)

(
m−mα
n−m

)p
mαp + (n−m)

(
n−mα
n−m

)p =: fm(α).

Taking the derivative relative to α, we get

f ′
m(α) = 0 ⇐⇒ α =

n (n−m)
2−p
p−1

m (n−m)
2−p
p−1 −m

1
p−1

,(5.5)

and we easily verify that this critical point is, in fact, a local maximum. Putting this

value in fm(α) and simplifying, we get

fm(α) =


(
( n

m−1)
p−1

+1
)(

( n
m−1)

1
p−1 +1

)p−1

( n
m )

p if m 6= 0,

1 if m = 0.

Therefore,

∥∥I − 1
nK
∥∥p
p→p

= max
1≤m≤n

((
n
m − 1

)p−1
+ 1
)((

n
m − 1

) 1
p−1 + 1

)p−1

(
n
m

)p .(5.6)

Remark that, since α and β are interchangeable, we can consider only the maximum

for n
2 ≤ m ≤ n. Moreover, defining

g(x) :=

(
(x− 1)

p−1
+ 1
)(

(x− 1)
1

p−1 + 1
)p−1

xp
,

we have that the right hand side of (5.6) correspond to max1≤m≤n g(n/m). Since
n
2 ≤ m ≤ n, finding the maximum of g(n/m) is closely related to finding the maximum

of g in [1, 2]. Let xp be the unique root of the function

x 7−→ (p− 1)
(
1 + (x− 1)

1
p−1

) (
1− (x− 1)p−2

)
+
(
1− (x− 1)

2−p
p−1

) (
1 + (x− 1)p−1

)
in [1, 2]. Then, an analysis of g reveal that it is increasing on [1, xp] and decreasing on

[xp, 2]. Therefore, the value of m ≥ n
2 for which the maximum of g(n/m) is attained

must be one of the two closest values of n/m to xp. More precisely, it can be verified

that it must be either
⌊

n
xp

⌋
or
⌈

n
xp

⌉
. □ 
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Figure 2: Values of xp between p = 1 and p = 5.25.

Despite its complicated description, we may use various methods to obtain approx-

imations of xp and evaluate it numerically. It is also possible to show that xp varies

between 1 (when p → 1,∞) and ≈ 1.090776, which is the unique root of ln (x− 1)− 2x
x−2

in [1, 2] (when p → 2). This observation alone can greatly reduce the number of cases

needed to verify in (5.6) to compute the norm of I − 1
nK (still assuming the validity of

Conjecture 5.6), even without precisely knowing xp for every value of the parameter p.

§ 5.4. A special case of the Conjecture 5.6

We now turn our attention to proving that Conjecture 5.6 is valid in the particular

case n = 3. To do this, we first need to prove the following two technical lemmas.

Lemma 5.8. Let J(t) :=
(
t+ γ−1

3

)p−1−tp−1, where t ∈ ( 12 , 1] and 2
2−p
p−1 ≤ γ < 1.

If p > 2 is a rational number with an even numerator and an odd denominator, then

J(t) < J(1− t).

Proof. We have

J ′(t) = (p− 1)

((
t+

γ − 1

3

)p−2

− tp−2

)
.

Therefore, J ′(t) < 0 if and only
(
t+ γ−1

3

)p−2
< tp−2. Because of our hypothesis on the

form of p, this inequality is satisfied if and only if
∣∣t+ γ−1

3

∣∣ < |t|, which is equivalent to

0 <
1− γ

6
< t.

p 
0 2 3 4 5 
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Hence, since 0 < 1−γ
6 , we find that J(t) is strictly decreasing on ( 1−γ

6 , 1] and strictly

increasing on [0, 1−γ
6 ). In particular, since

1− γ

6
≤ 1− 1/2

6
<

1

2
,

J(t) is strictly decreasing for t ∈ ( 12 , 1]. Therefore, for each t ∈ ( 12 , 1], we have J(t) <

J( 12 ) and min{J( 12 ), J(0)} ≤ J(1− t). Now, notice that J( 12 ) ≤ J(0) if and only if(
2γ − 2

3
+ 1

)p−1

−
(
2γ − 2

3

)p−1

≤ 1.

Setting z := 2γ−2
3 , we find that J(1/2) ≤ J(0) if and only if

(z + 1)
p−1 − zp−1 ≤ 1.

It is then a simple matter to show that (z + 1)
p−1−zp−1 is increasing for every z ≥ −1/2.

Noticing that −2
3 ≤ 2γ−2

3 < 0, we find that (z + 1)
p−1 − zp−1 attains its maximum at

z = 0. Hence,

(z + 1)
p−1 − zp−1 ≤ (0 + 1)

p−1 − 0p−1 = 1,

and we indeed have J(1/2) ≤ J(0). Therefore, min{J(1/2), J(0)} = J(1/2) and we

finally find, for t ∈ (1/2, 1],

J(t) < J(1/2) = min{J(1/2), J(0)} ≤ J(1− t),

which is what we wanted to show.

Lemma 5.9. Let t ∈ [0, 1], s = 2
2−p
p−1 , γ ∈ [s, 1] and

Fγ(t) :=

(
t+ γ−1

3

)p
+
(
1− t+ γ−1

3

)p
+
(
1+2γ

3

)p
tp + (1− t)

p
+ γp

.(5.7)

If p > 2 is a rational number with an even numerator and an odd denominator, then

max
s≤γ≤1

max
0≤t≤1

Fγ(t) =

(
2p−1 + 1

) (
2

1
p−1 + 1

)p−1

3p
,

where the equality is attained only if t = 1
2 .

Proof. Case 1 (γ = 1): If γ = 1, then Fγ(t) = 1 for each t ∈ [0, 1].

Case 2 (γ 6= 1): Computing the derivative of Fγ , we find

F ′
γ(t) = p

((
t+ γ−1

3

)p−1 −
(
1− t+ γ−1

3

)p−1

tp + (1− t)
p
+ γp

− Fγ(t)
tp−1 − (1− t)

p−1

tp + (1− t)
p
+ γp

)
.

□ 
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By direct verification, F ′
γ(t) = 0 if t = 1/2. If t 6= 1/2, then tp−1 − (1− t)

p−1 6= 0 and

we have

F ′
γ(t) = p

tp−1 − (1− t)
p−1

tp + (1− t)
p
+ γp

((
t+ γ−1

3

)p−1 −
(
1− t+ γ−1

3

)p−1

tp−1 − (1− t)
p−1 − Fγ(t)

)
,

which vanishes if and only if(
t+ γ−1

3

)p−1 −
(
1− t+ γ−1

3

)p−1

tp−1 − (1− t)
p−1 = Fγ(t).

We now show that we always have(
t+ γ−1

3

)p−1 −
(
1− t+ γ−1

3

)p−1

tp−1 − (1− t)
p−1 < 1.(5.8)

It will then follow that if F ′
γ(t) vanishes at a point (γ, t), with t 6= 1/2, then we must

have Fγ(t) < 1. Therefore, by Case 1, the point (γ, t) cannot be a maximum, and we

will be able to reject these points.

First notice that by the symmetry along the x = 1/2 axis, we can suppose without

any loss of generality that 1/2 < t ≤ 1 (since we supposed that t 6= 1/2). In that case,

both (
t+

γ − 1

3

)p−1

−
(
1− t+

γ − 1

3

)p−1

& tp−1 − (1− t)
p−1

are positive and thus (5.8) is equivalent to having(
t+

γ − 1

3

)p−1

− tp−1 <

(
1− t+

γ − 1

3

)p−1

− (1− t)
p−1

,(5.9)

for 1/2 < t ≤ 1. Now, if we define

J(t) :=

(
t+

γ − 1

3

)p−1

− tp−1,

the above inequality can be restated as J(t) < J(1−t). Lemma 5.8 then ensures us that

this inequality is satisfied and thus, (5.9) is valid and so is (5.8). Therefore, the only

points (γ, t) which can give rise to a maximum of Fγ(t) occurs when t = 1
2 . Moreover,

it is easily verified that for a fixed γ ∈ [s, 1], t = 1
2 is indeed a maximum of Fγ , and in

particular that Fγ(t) < Fγ(1/2) for every t ∈ [0, 1
2 ) ∪ ( 12 , 1]. Hence, for t ∈ [0, 1] and

γ 6= 1, we have

max
s≤γ<1

max
0≤t≤1

Fγ(t) = max
s≤γ<1

Fγ(1/2)

= max
s≤γ<1

2
(
1
2 + γ−1

3

)p
+
(
1+2γ

3

)p
21−p + γp

=
21−p + 1

3p
max
s≤γ<1

(1 + 2γ)
p

21−p + γp
=:

21−p + 1

3p
max
s≤γ<1

H(γ),
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where the first equality is attained if and only if t = 1/2.

Now, we have

H ′(γ) = p

(
22−p − γp−1

)
(2γ + 1)

p−1

(21−p + γp)
2 .

Since γ is positive, we have H ′(γ) ≤ 0 if and only if 22−p − γp−1 ≤ 0, i.e., if and only if

γ ≥ 2
2−p
p−1 = s. Therefore, H(γ) is decreasing for s ≤ γ < 1 and thus,

max
s≤γ<1

max
0≤t≤1

Fγ(t) =
21−p + 1

3p
max
s≤γ<1

H(γ)

=
21−p + 1

3p
H(s)

=
21−p + 1

3p
(2s+ 1)

p

21−p + sp

=

(
2p−1 + 1

) (
2

1
p−1 + 1

)p−1

3p
,

where the equalities are attained simultaneously only if t = 1/2. Combining Case 1 and

Case 2 and noticing that
(2p−1+1)

(
2

1
p−1 +1

)p−1

3p ≥ 1 for every p ∈ [1,∞] yield the desired

result.

Equipped with these lemmas, we are now ready to prove that Conjecture 5.6 is true

for A = −A(3,− 2
3 ,

1
3 ). The proof is in three parts. First, we show that if x is a critical

point of the function
∥Ax∥p

∥x∥p
, then x must be of a particular form which only depends

on one parameter t (up to a constant). Next, we show that if it is also a maximizing

real vector, then
∥Ax∥p

∥x∥p
≤ Fγ(t), where Fγ(t) is defined as in (5.7). We then use Lemma

5.9 to prove that the maximizing real vector of
∥Ax∥p

∥x∥p
must have at most two distinct

coefficients, and we provide the operator p-norm of A at the same time.

Theorem 5.10. Let A = −A
(
3,− 2

3 ,
1
3

)
= I3 − 1

3K3, and let 1 < p < ∞ with

p 6= 2. If x ∈ R3 is a maximizing real vector of the function
∥Ax∥p

∥x∥p
, then x has at most

two distinct coefficients. Moreover,

‖A‖p→p =

(
2p−1 + 1

) 1
p
(
2

1
p−1 + 1

)1− 1
p

3
.(5.10)

Proof. Suppose without loss of generality that p > 2 is a rational number with an

even numerator and an odd numerator. Let x := (x1, x2, x3)
⊺, µ := x1+x2+x3

3 and

f(x) :=
‖(I3 − 1

3K3)x‖pp
‖x‖pp

=
(x1 − µ)p + (x2 − µ)p + (x3 − µ)p

xp
1 + xp

2 + xp
3

.

□ 
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If f(x) is a maximum, then each partial derivative ∂f
∂xk

vanishes. Since ‖x‖p 6= 0, it is

an easy exercise to verify that this occurs if and only if

(xj − µ)p−1 − (x1 − µ)p−1 + (x2 − µ)p−1 + (x3 − µ)p−1

3
= xp−1

j f(x),

for j = 1, 2, 3. Summing these equations over each j = 1, 2, 3, we get

f(x)(xp−1
1 + xp−1

2 + xp−1
3 ) = 0.(5.11)

Therefore, for x to be a maximum of f , we need to have xp−1
1 + xp−1

2 + xp−1
3 = 0.

Because of the hypothesis on the form of p, we can thus suppose without any loss of

generality that x3 = −(xp−1
1 + xp−1

2 )
1

p−1 .

It is obvious that x1, x2 and x3 are not all of the same sign, otherwise we would

not have xp−1
1 + xp−1

2 + xp−1
3 = 0. Hence, without any loss of generality, suppose that

x1, x2 ≥ 0 and x3 ≤ 0 (if it is not the case, rearrange the index and/or take −x instead

of x). Notice that we then have x1 + x2 > 0. Hence, we can furthermore suppose that

x1 + x2 = 1 (take x̃ := x/(x1 + x2) instead of x), i.e., that x2 = 1− x1. Because of the

positivity of x1, x2, it follows that x1 ∈ [0, 1]. Therefore, to find the maximum of f(x),

it suffice to consider the vectors of the form

x =
(
t, 1− t,−(tp−1 + (1− t)p−1)

1
p−1

)⊺
, (0 ≤ t ≤ 1).

For simplicity, we will write from now on (with a mild abuse of notation) f(t) instead

of f(x). Moreover, we will also denote (tp−1 +(1− t)p−1)
1

p−1 by Γ. Note that Γ attains

its maximum of 1 at t = 0, 1 and its minimum of s := 2
2−p
p−1 at t = 1/2. Therefore, using

Lemma 5.9, we have

max
0≤t≤1

f(t) = max
0≤t≤1

(
t+ Γ−1

3

)p
+
(
1− t+ Γ−1

3

)p
+
(
1+2Γ

3

)p
tp + (1− t)

p
+ Γp

≤ max
s≤γ≤1

max
0≤t≤1

(
t+ γ−1

3

)p
+
(
1− t+ γ−1

3

)p
+
(
1+2γ

3

)p
tp + (1− t)

p
+ γp

=: max
s≤γ≤1

max
0≤t≤1

Fγ(t) =

(
2p−1 + 1

) (
2

1
p−1 + 1

)p−1

3p
,

where the last equality is attained only if t = 1
2 . Furthermore, we have

f(1/2) =

(
2p−1 + 1

) (
2

1
p−1 + 1

)p−1

3p
.

Hence, it follows that

max
0≤t≤1

f(t) =

(
2p−1 + 1

) (
2

1
p−1 + 1

)p−1

3p
,
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where the equality is attained only if t = 1/2. Therefore, the unique (up to a constant)

maximizing real vector of
∥(I3− 1

3K3)x∥p

∥x∥p
is

x =
(

1
2 , 1−

1
2 ,−(( 12 )

p−1 + (1− 1
2 )

p−1)
1

p−1

)⊺
=
(
1
2 ,

1
2 ,−s

)⊺
,

which has at most two distinct coefficient. Moreover, we also find that

∥∥I3 − 1
3K3

∥∥
p→p

=

(
2p−1 + 1

) 1
p
(
2

1
p−1 + 1

)1− 1
p

3
,

which correspond to the casesm = 1 andm = 2 in (5.4). Finally, since we supposed that

p > 2, we note that the result follows for 1 ≤ p ≤ 2 because I3− 1
3K3 is self-adjoint.

Note that an analogue of (5.11) actually holds true for any n > 1. This provides

even further evidence for the validity of Conjecture 5.6, as it gives another independent

method to determine the third value of the maximizing real vector x, given that the

first two values are known. Finally, we note that what was shown in this section cannot

readily be generalized to the case A(n,−a, b). In particular, there is not an easy way to

extend Proposition 5.7 to the general setting A(n,−a, b). This is due to the fact that we

cannot solve simply the analogue of the equation f ′
m(α) = 0 in (5.5) in the more general

case. Hence, to provide a complete description of the operator p-norm of A(n,−a, b)

(assuming the validity of Conjecture 5.6), we will need some stronger tools and some

new ideas.

§ 6. Concluding remarks

(i) As mentioned earlier, the particular case A = −A(n, 1−n
n , 1

n ) = I − 1
nK, the norm

‖A‖p→p represents the Chebyshev radius of the n-dimensional Birkhoff polytope.

But there is also another description of ‖A‖p→p in this special case, which is

closely related to various important measures of statistical dispersion or variability.

Indeed, observe that

‖Ax‖pp = ‖x− 1
nKx‖pp =

n∑
k=1

∣∣∣∣xk − x1 + x2 + · · ·+ xn

n

∣∣∣∣p .
For p = 1, we see that

n−1‖Ax‖1 =
1

n

n∑
k=1

|xk − x|,

corresponds to the mean absolute deviation from the arithmetic mean of the data

set x. For p = 2, we have that

n−1/2‖Ax‖2 =

√√√√ 1

n

n∑
k=1

|xk − x|2,

□ 
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which is the standard deviation of x. Although it is less robust than the mean

absolute deviation from the arithmetic mean, the standard deviation remains the

most commonly used measure of the amount of variation or dispersion of a set of

values in various fields of application.

For p = ∞,

‖Ax‖∞ = max
{
|xk − x| : k = 1, . . . , n

}
corresponds to the maximum absolute deviation from the arithmetic mean of x.

This maximum is realized either by the sample maximum or by the sample min-

imum, and it cannot be less than half the range of the data set. Being highly

influenced by outliers, the maximum absolute deviation from the arithmetic mean

is a highly non-robust estimator of dispersion that is seldom used.

For any value of p other than 1, 2 and ∞, one can define the mean p-deviation

from the arithmetic mean of the vector x by

1

n1/p
‖Ax‖p =

(
1

n

n∑
k=1

|xk − x|p
)1/p

.

Note that the greater the value of p, the heavier large deviations are weighted and

thus the more heavily outliers can influence the measure of statistical dispersion.

In light of the above considerations, the value of the norm ‖A‖p→p for some fixed

1 ≤ p < ∞ represents the largest possible p-deviation of an n-dimensional vector

lying on the unit sphere of radius n1/p with respect to the p-norm.

While this interpretation fosters interest in the resolution of Open question 3.8, it

also adds weight to Conjecture 5.6.

Open question 6.1. Does this interpretation lead to a precise formula for

‖A‖p→p in the special case A = −A(n, 1−n
n , 1

n ) = I − 1
nK?

(ii) We encountered the following description of A(n,−a, b) which comes from har-

monic analysis. This observation provides another upper bound for ‖A‖p→p. Let

Pn denote the space of polynomials of degree at most n. We can write

A(n,−a, b) = − (a+ b)I + bK,

where K is the n×n all-ones matrix. We may interpret K as an operator on Pn−1.

More explicitly, for each polynomial f(z) = a0 + a1z+ · · ·+ an−1z
n−1 ∈ Pn−1, we

have

(Kf)(z) = (a0 + a1 + · · ·+ an−1)φ(z),
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where

φ(z) = 1 + z + · · ·+ zn−1.

Note that as a consequence of this interpretation, i.e., making a correspondence

between f ∈ Pn−1 and the vector (a0, a1, . . . , an−1) ∈ Rn, we have

‖f‖p = (|a0|p + |a1|p + · · ·+ |an−1|p)1/p.

Moreover, as another integral representation, it is also straightforward to see that

(Kf)(z) = φ(z)

∫ 2π

0

f(eiθ)φ(eiθ)
dθ

2π
.

Therefore, we immediately see that

‖K‖p→p = sup
f∈Pn−1

‖Kf‖p
‖f‖p

= sup
f∈Pn−1

‖φ‖p
‖f‖p

∣∣∣∣∫ 2π

0

f(eiθ)φ(eiθ)
dθ

2π

∣∣∣∣ .
Now, on one hand, ‖φ‖p = n1/p and, on the other hand,∣∣∣∣∫ 2π

0

f(eiθ)φ(eiθ)
dθ

2π

∣∣∣∣ ≤
∫ 2π

0

|f(eiθ)φ(eiθ)| dθ
2π

≤
∫ 2π

0

‖f‖pn1/q|φ(eiθ)| dθ
2π

= n1/q‖f‖p‖φ‖L1(T),

where

‖φ‖L1(T) =

∫ 2π

0

|φ(eiθ)| dθ
2π

.

Therefore,

‖K‖p→p ≤ n‖φ‖L1(T),

which gives the upper estimate

(6.1) ‖A(n,−a, b)‖p→p ≤ a+ b+ nb‖φ‖L1(T).

In the light of Theorem 3.9, the estimation (6.1), which does not depend on p

cannot entail an accurate upper bound for ‖A(n,−a, b)‖p→p for a, b ≥ 0.

Open question 6.2. Can variations along the lines that were used to obtain

the estimation given by (6.1) lead to a precise formula for ‖A‖p→p?
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Math., 49(3-4):465–497, 1927.

[41] K. R. Sahasranand. The p-norm of circulant matrices via Fourier analysis. Concr. Oper.,

9(1):1–5, 2022.

[42] Thomas Strohmer. Four short stories about Toeplitz matrix calculations. volume 343/344,



222 Ludovick Bouthat, Javad Mashreghi, and Frédéric Morneau-Guérin
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