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The variance sum law and its implications for modelling
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Abstract Basic understanding of linear model is primordial in quantitative psychology and mod-

elling. As an advanced topic for students in psychology, modelling data according to given sets of

parameters can be challenging. In this paper, we address the variance sum lawwhich states how to

combine variance of variables into a new one. The paper uses a progressive pedagogical approach,

presenting step by step the statistical prerequisites. An example with code in R is offered to support

the presentation. Some matrix algebra is gently introduced to stimulate readers to more advanced

topics. We hope this paper can stimulate research in data modelling and invite newcomers to the

fields.
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Introduction

Basic understanding of linear model and how to appropri-

ately model data according to given sets of parameters of

interest can be challenging. Sometimes, modellers fill free

parameters (like a regression coefficient or fixing an er-

ror variance) while unknowingly neglecting other core pa-

rameters (like covariance and correlation). For instance,

modellers might fix the regression coefficients and the

same error variances for two comparable linear models,

but change the variance of variables, thereby altering the

magnitude of the regression coefficients. Another exam-

ple, modeller might fix error variance and regression co-

efficients, but forget to compute covariance between vari-

ables, which decreases the variance of some variable (es-

pecially the outcome), thereby increasing the magnitude

of the regression parameters. In these scenarios, param-

eters were fixed by design, but other properties were al-

tered. Many more scenarios may happen (we do not point

them out here) and may raise an eyebrow at times in the

methodological literature.

In this paper, we address the variance sum law, an ad-

vanced topic for students in social and behavioral, and

health sciences (and even researchers!), that has many

implications in data modelling (for recent example, see

Achim, 2020; Beribisky, Constance, & Cribbie, 2020; Caron

& Valois, 2018; Caron, Valois, & Gellen-Kamel, 2020; Lorah,

2020, and there is many more). Basic understanding of lin-

ear regression is helpful. Some knowledge of matrix alge-

bra is helpful but not mandatory. We hope this paper can

be a gentle introduction to the usefulness of matrix algebra

for behavioral sciences students. Code in R (R Core Team,

2021) is used to illustrate an example.

Variance sum law

The variance sum law (Casella & Berger, 2002, p. 171)

states how to sum the variance of random variables, re-

gardless of their distribution. The simplest case being two

variables, let say x1 and x2, and how they add up to a third

variable, y. Appendix 1 shows a complete derivation of
the variance sum law for interested readers. Let’s have the

simple model being two independents xi as:

y = x1 + x2, (1)

then, the variance of their sum takes the following form:

σ2
y = σ2

x1
+ σ2

x2
(2)

where σ2
is the usual symbol for variance. The variance of

the sum (or difference) of two independent random vari-

ables is their sum. In fact, the sum of p independent vari-
ables is the sum of their variances. In practice, it is rare

that independent variables are uncorrelated. Developing

the general case where the variables are correlated, if the

covariance between x1 and x2 is σx1x2
, then the variance
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sum law is:

σ2
y = σ2

x1
+ σ2

x2
+ 2σx1x2

(3)

from which equation (2) is a special case when σx1x2 = 0.
Note that the correlation is obtained with ρx1,x2 =

σx1x2

σx1
σx2

and inversely the covariance is obtained by ρx1x2
σx1

σx2
=

σx1x2
(Howell, 2012).

Some mathematically oriented readers might notice

the relation between the variance sum law depicted in

equation (2) and the Pythagoras theorem. Consequently,

we can envision two uncorrelated variables to be repre-

sented by a right-angled triangle. Equation (3) is the cosine

rule, or the generalisation of the Pythagoras theorem for

non-right-angled triangles, so we can see the correlation as

an angle (Rogers & Nicewander, 1988).

Another more intuitive fashion to compute the vari-

ance sum law is to see that the variance of the sum of p
variables is the “grand sum” of their covariance matrix.

The grand sum is an informal mathematical function who

refers to the sum of all the element in a matrix. Let Σ be

the variance-covariance matrix of two random variables x
(remember that diagonal elements are variances), then

σ2
y = grand sum (Σ)

= grand sum

[
σ2
x1

σx1x2

σx1x2 σ2
x2

]
(4)

which, if we sum it all up, lead to equation (3), and again,

if σx1x2
= 0 , then equation (4) is equal to equation (2).

This formulation has the advantage to show the origin of

the two covariances in equation (3).

Even though the matrix notation might not seem

appealing at first, it becomes much more interesting

when the number of variables, p, increases, as there is
p (p− 1)/2 off-diagonal elements to add to p variances.
In the p = 3 example, equation (4) would be:

σ2
y = grand sum (Σ)

= grand sum

 σ2
x1

σx1x2
σx1x3

σx1x2
σ2
x2

σx2x3

σx1x3 σx2x3 σ2
x3

 (5)

In the form of equation (3), it is:

σ2
y = σ2

x1
+ σ2

x2
+ σ2

x3
+ 2σx1x2 + 2σx1x3 + 2σx2x3 (6)

and getting longer with increasing p.
A matrix operation equivalent to the grand sum is

1′Σ1, where 1 is a vector of length p containing only 1.
Doing this operation, yield the sum of all the elements in

Σ. This will be useful to derive a more general case in the
next section.

Adding scaling constants β

Equation (3), (4), (5) and (6) are special cases of a more gen-

eral law. They would not work if scaling constants were

added (that will be later regression coefficients) or to com-

pute the difference (a type of scaling also).

Consider the fact that the variable y is the product of a
constant β and the variable x as:

y = βx (7)

(a linear model without error). It might be useful to con-

sider β the degree to which two variances are related but
also as a pure standard deviation modifier (a scaling con-

stant). The same way a random variable with mean of 0

and standard deviation of 1, x ∼ N (0, 1), multiplied by
value δ, an arbitrary scaling factor, becomes distributed
like δx ∼ N (0, δ). So, δ modified (or scaled) the standard
deviation of the distribution. A related and frequently en-

countered case of this is when data are standardized as

z-score or unstandardized (divided or multiplied respec-
tively by σ). At this point, the contribution is a standard
deviation, so β has to be squared to yield the variance of y,
thus β2

. To compute the variance of y, the equation is

σ2
y = β2σ2

x. (8)

Now, let us go further with a model with two scaling

constants. The linear model of the form:

y = β1x1 + β2x2 (9)

which is the samemodel as in equation (1) wherewe added

the scaling factor βi. To consider scaling constants, the
variance sum law becomes for two independent variables,

based on equation (2):

σ2
y = β2

1σ
2
x1

+ β2
2σ

2
x2

(10)

and when they covary, like equation (3), it becomes:

σ2
y = β2

1σ
2
x1

+ β2
2σ

2
x2

+ 2β1β2σx1x2 (11)

In these equations, we see that βi are scaling the variance
and the covariance. Like previously, the matrix algebra

form is simpler and more elegant:

σ2
y = B′ΣB (12)

where B is a vector containing all the regression coeffi-

cient βi of length p predicting y and apply for any number
of predictors x. The prime ′ is the transpose symbol, an
operator which flips a matrix over its diagonal, and in the

case of vector, flip the columns into rows and vice-versa

(see its implication in equation (13) for example). In equa-

tion (12), using the two vectors B twice act the same as
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squaring βi. Notice that if B are all 1, then equation (12)

is the same as the definition of a grand sum. Finally, it is

worthy to note that equation (12) is the same as the coeffi-

cients of determination, R2
(Cohen, Cohen, West, & Aiken,

2003), when all variables and regressions coefficients are

standardized.

In the simple linear model depicted in equation (9),

equation (11) becomes:

σ2
y =

[
β1 β2

] [ σ2
x1

σx1x2

σx1x2
σ2
x2

] [
β1

β2

]
(13)

which is equivalent to equation (11). At this stage, some

might have had the intuition that equations (1) to (6) were

only a special case where all β = 1.
The variance of the difference of two variables is equiv-

alent to stating that the subtracted variables’ β is the re-
verse sign, i.e.,− β, which for the model lead to

y = β1x1 − β2x2 (14)

or, equivalently,

y = (β1)x1 + (−β2)x2 (15)

yield

σ2
y =

[
β1 −β2

] [ σ2
x1

σx1x2

σx1x2 σ2
x2

] [
β1

−β

]
= (β1)2σ2

x1
+ (−β2)

2
σ2
x2

+ 2(β1) (−β2)σx1x2

= β2
1σ

2
x1

+ β2
1σ

2
x2
− 2β1β2σx1x2

(16)

so the variance of the difference of two random variables

is the sum of their variances subtracting twice their covari-

ance scale by β, as expected.

Implications for modelling

The variance sum law has many implications in computa-

tional modelling, especially if data are shaped according to

certain desirable characteristics, like in linear models. Lin-

ear regression is an approach to model additive effects (in-

dependent variables, xi) to predict a dependent variable
(y). Linearity refers to the property of a function of be-
ing compatible with addition and scaling. As such, there is

a direct relation between equations above and the linear

model:

y = β1x1 + · · ·+ βpxp + ε (17)

omitting the constant β0, which plays no role in the vari-

ance of the dependent variables and adding the error, a

particular independent variable which is assumed to be
unrelated to xi, have 0 mean, a standard deviation σ.
Equation (17) is the general form of linear model in equa-

tion (1) and (8) in which the variance of y is a function of
the variances-covariances of x weighted by β.

Computing the error variance

Taking the most basic linear model:

y = x+ ε (18)

where ε is the residual error term. We have at this stage
the very basic to build a bivariate model. It is the same bi-

variate sum as equation (1), but x2 is replaced and defined

as independent of x1. Based on this model, equation (2)

leads to the following equation,

σ2
y = σ2

x + σ2
ε (19)

In most cases in data modelling, the variances σ2
x and σ

2
y

are known rather than σε so computing a priori the error
variance instead of varying the parameters of interest is

more relevant. Rearranging equation (18) to isolate ε, we
get

ε = y − x (20)

and in terms of variance:

σ2
ε = σ2

y + σ2
x − 2σxy (21)

or the equation (16) for the form in matrix algebra:

σ2
ε =

[
1 −1

] [ σ2
y σxy

σxy σ2
x

] [
1
−1

]
= σ2

y + σ2
x− 2σxy. (22)

Error variance with β

As we have seen, one concern during data modelling it to

preserve the desired properties of the model in the data

sets like variance of error, regression parameters, covari-

ances, etc. After the variance of the error term, the last ele-

ment to consider is the regression coefficients, βi, in other
words, the size of the relation between the independent

and dependent variables. From equation (18), we add the

slope the error:

y = βx+ ε (23)

The variance sum law for this model becomes

σ2
y = β2σ2

x + σ2
ε (24)

Remember the error is not correlated to the independent

variable xi. As before, the matrix algebra form is simpler
and more elegant:

σ2
y = B′ΣB + σ2

ε (25)

where B is a vector containing all the regression coeffi-

cient β predicting y and apply for any number of predic-
tors x. Taking advantage of independence of the error
term, we can rearrange the equation as:

σ2
ε = σ2

y −B′ΣB (26)
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which gives the variance of the error term. In a linear form

(for a single independent variable), we can also rearrange

equation (24) to isolate σε

σ2
ε = σ2

y − β2σ2
x (27)

Remember that β =
σxy

σ2
x
and, as we mentioned earlier, the

covariance σxy , is equal to ρσxσy.

The standardized case

To conclude this section, we look at the standardize case,

that is, when variances of variable are equal to 1. Specifi-

cally, the variance of every variable is fixed; only residual

errors have to be adjusted to maintain these properties.

In this scenario, the variance-covariance matrix, Σ, is a
correlation matrix, which defines the residual error vari-

ances. To compute variables’ error variance, we can use

equation (26) and (21) replacing variance of variables by 1

as

σ2
ε = 1−B′ΣB (28)

or, for a single predictor,

σ2
ε = 1− β2σ2

x (29)

Numerical examples in R

Listing 1 illustrates some of the more relevant formula and

confirmed what has been presented. The code begins by

fixing an arbitrarily large sample size, n, and setting the
seed for reproducibility. It then produce a variable x with
standard deviation of σx = 3, which can be verified with
the function sd() in R. Lines 13-18 depicts then equations
(5), (8), for β = 4, i.e.,

β = 4

y = βx

σ2
y = β2σ2

x = (4)
2
(3)

2
= 144

After, lines 25-35 is used to generate a model with ρxy =
.20, and as previously, σ2

x = 32
, σ2

y = 122. We can a pri-
ori compute the error variance by computing firstly the re-

lated β (an intuitive explanation is shown in Appendix 2)
as

β =
σxy
σ2
x

=
ρσxσy
σ2
x

=
ρσy
σx

=
.2 ∗ 12

3
= .80

and from equation (27) we get

σ2
ε = σ2

y − β2σ2
x = 122 − 0.82 × 32 = 138.24

or in standard deviation, 11.75755. Lines 36-41 in Listing
1 then proceed to confirm the result by modelling, x, ε and
y.
Finally, lines 44-50 in Listing 1 shows a standardized

scenario (where means are 0 and variance are 1) with

βx1,x2
= 0.40, βx1,x3

= 0.50, and βx2,x3
= 0.30, much like

a mediation model, where error variances are computed

with equation (27):

σ2
εx2

= σ2
y − β2

x1x2
σ2
x1

= 1− 0.402 × 1 = 0.84

and

σ2
εx3

= 1−
(
β2
x1x3

σ2
x1

+ β2
x2x3

σ2
x2

+ 2βx1x3
βx2x3

βx1x2

)
= 1−

(
0.502 ∗ 0.302 + 2 ∗ 0.50 ∗ 0.30 ∗ 0.40

)
= 0.54,

and in matrix algebra, equation (26):

σ2
εy = 1−

[
.50 .30

] [ 1 0.40
0.40 1

] [
0.50
0.30

]
= 0.54

Conclusion

The purpose of the current paper is to describe the vari-

ance sum law and how to use it to model data according

to some parameters defined by the modellers. As an ad-

vanced topic for most students in psychology, basic under-

standing on how to build these models can be challenging.

We hope that by using a pedagogical approach, as well as

supporting examples in R, more inclined toward students

and researchers of behavioral, health and educational sci-

ences, we can stimulate research in data modelling from

a more applied-orientated perspective and invite newcom-

ers to the fields.
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Appendix 1

Here, we derive the variance sum law. We use a slightly different notation than the main article to simplify the presenta-

tion. If

z = ax+ by

where x and y are the predictors, a and b are scaling constants, then

σ2
z = (n− 1)−1E ((ax+ by)− (aµx + bµy))

2

in which µi is the mean of i. We continue as

σ2
z = (n− 1)−1E (a(x− µx) + b(y − µy))

2

= (n− 1)−1E
(
a2(x− µx)2 + b2(y − µy)2 + 2ab(x− µx)(y − µy)

)
= a2E(x− µx)2(n− 1)−1 + b2E(y − µy)2(n− 1)−1 + 2abE(x− µx)(y − µy)(n− 1)−1

where we see that E(x−µx)2/(n− 1) and E(y−µy)2/(n− 1) are variances, σ2
x and σ

2
y respectively, and E(x−µx)(y−

µy)/(n− 1) = cov(x, y) = σxy, then we end up with :

σ2
z = a2σ2

x + b2σ2
y + 2abσx,y

Appendix 2

Here we give an intuitive explanation on the case of a single regression coefficient, β. In the model,

y = βx

We can isolate β

β =
ȳ

x̄

where the symbol ¯ denote the average of the variables. Multiplying x̄x̄ = 1 on both side lead to

β =
xy

x2

If we center x and y, then we get

β =
σxy
σ2
x

The above equations are the same as in the matrix notation to

B = [X′X]
−1

Xy

which computes regression coefficients as to minimize the error (omitted herein), the ordinary least square estimators.
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Listing 1. Illustration in R of the variance sum law.

1 #We take an arbitrarily large sample size
2 #to ensure accuracy in estimates.
3 n = 100000000
4 #For reproducibility, we set a given seed.
5 set.seed(1234)
6 #rnorm generate n random values with mean mu (default = 0)
7 #and standard deviation sd = 3.
8 X = rnorm(n, sd=3)
9 #To compute variance, use the function var()
10 # or sd() for standard deviation.
11 var(X)
12 sd(X)
13 #We can check equation (5) (linear model) and equation (8)
14 # (variance sum law) for beta = 4
15 beta = 4
16 Y = beta * X
17 var(Y)
18 #which yield to 4^2*3^2=144 (or 12^2) as expected.
19

20 #Now, let say we use equation (23) to build a model with
21 #correlation (rho) of .2,
22 #var_x = 3^2 and var_y = 12^2. What would be the var_e of the error term?
23 #Let use equation (27) and excluding the last two terms,
24 #because we only have a single IV, we can compute
25 rho=.2
26 sd_x=3
27 sd_y=12
28 cov_xy=rho*sd_x*sd_y
29 beta = cov_xy/sd_x^2
30 beta
31 #equation (27):
32 var_e = sd_y^2 - beta^2*sd_x^2
33 #which we can verified with
34 e = rnorm(n, sd = sqrt(var_e))
35 Y = beta*X + e
36 var(X)
37 #9
38 var(Y)
39 #144
40 var(e)
41 #138.24
42 round(cov(X,Y),3)
43 round(cor(X,Y),3)
44 #Standardized case with b_x1x2 = .4; b_x2x3 = .3; b_x1x3 = .5.
45 b_x1x2 = .4; b_x2x3 = .3; b_x1x3 = .5;
46 x1 = rnorm(n)
47 x2 = b_x1x2 * x1 + rnorm(n, sd = sqrt(1-b_x1x2^2))
48 #Variance of the error in x3
49 var_ex3 = 1-(b_x1x3^2+b_x2x3^2+2*b_x1x3*b_x2x3*b_x1x2)
50 x3 = b_x1x3 * x1 + b_x2x3 * x2 + rnorm(n, sd = sqrt(var_ex3))
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51

52 #Seeing the extension of equation (8) and (27), the
53 #covariance between x1 and x2 is their beta.
54 #We can also carry the above formula with matrix algebra
55 #The beta matrix:
56 B = matrix(c(b_x1x3, b_x2x3),2,1)
57 #The variance-covariance matrix
58 S = matrix(c(1,b_x1x2,v_x1x2,1),2,2)
59

60 #Variance of the error in x3 in matrix algebra
61 #see equation (26)
62 var_ex3_m = 1-(t(B)%*%S%*%B)
63 X3 = b_x1x3 * x1 + b_x2x3 * x2 + rnorm(n, sd = sqrt(var_ex3_m))
64 #To verify we can check
65 var_ex3
66 var_ex3_m
67 cor(cbind(x1,x2,x3))
68 lm(x2~x1)
69 lm(x3~x2+x1)

Citation

Caron, P.-O., & Lemardelet, L. (2021). The variance sum law and its implications for modelling. The Quantitative Methods
for Psychology, 17(2), 80–86. doi:10.20982/tqmp.17.2.p080

Copyright © 2021, Caron and Lemardelet. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Received: 10/04/2021∼ Accepted: 30/04/2021

The Quantitative Methods for Psychology 862

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p080
https://dx.doi.org/10.20982/tqmp.17.2.p080

