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Abstract

Iterated hash functions process strings recursively, one character at a time. At each
iteration, they compute a new hash value from the preceding hash value and the next
character. We prove that iterated hashing can be pairwise independent, but never 3-
wise independent. We show that it can be almost universal over strings much longer
than the number of hash values; we bound the maximal string length given the collision
probability.
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1. Introduction

We consider hash functions mapping variable-length strings to L-bit integers. They
have numerous applications from indexing—e.g., with hash tables [3, 9, 20, 33] and
Bloom filters [24]—to spell-checking [13], compression [17] and cryptography [26].

We consider hash functions h picked randomly from a family H [4]. We focus
on iterated hash functions [15, 23]: given a string s1s2 · · ·sn, starting from an initial
value (or seed) H0, the hash value of the whole string, Hn, is computed recursively
from a compression function F as Hi = F(Hi−1,si) for i = 1,2, . . . ,n. Thus, a hash
function is defined both by an initial value H0 and a compression function F . A typical
example is Carter-Wegman Polynomial Hashing over finite fields [4, 12], that is, hash
functions of the form h(s) = ∑i tn−isi for some randomly chosen element t. Many hash
functions over variable-length strings are iterated including Pearson hashing [21, 32],
SAX and SXX [25] as well as the hash functions commonly used in C++ and Java.
In cryptography, iterated hashing is also known as Merkle-Damgård [16] hashing; it
includes the popular functions MD4, MD5, SHA-0 and SHA-1.

Good hash functions are such that hash values appear random. Formally, a family
is (pairwise) universal if the probability of a collision is no larger than if the hash
values were random: P(h(s) = h(s′)) ≤ 1/2L for s 6= s′. It is ε-almost universal [31]
(or ε-AU) if the probability of a collision is bounded by ε < 1. Furthermore, a family is
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Table 1: Upper bounds on the string length for arbitrarily large iterated hash families.
We write LCM2L for the least common multiple of the integers from 1 to 2L.

Cardinality-based bounds (§ 6) New bounds (§ 7)

strongly universal L+2log2L!− log(2L−1)−1 2L +1

universal 2L+L2L+1 2L +1

almost universal (any ε < 1) L(2L(2L+1+1)+1) 2L +LCM2L −1

k-wise independent if given k distinct elements s(1),s(2), . . . ,s(k), their hash values are
independent:

P
(

h(s(1)) = y(1) ∧ h(s(2)) = y(2) ∧·· ·∧ h(s(k)) = y(k)
)
=

1
2kL

for any hash values y(1),y(2), . . . ,y(k). Pairwise (or 2-wise) independence implies pair-
wise universality and thus, it is also called strong universality.

The main contributions are as follows.

• We show that iterated hashing cannot be 3-wise independent (§ 3). Thus, we
have to be satisfied with pairwise independence. We can get 3-wise indepen-
dence if we consider a generalization of iterated hashing where there is a new
compression function with each iteration in the computation. However, 4-wise
independence remains impossible.

• We show that pairwise independence is possible for iterated hashing by present-
ing the TABULATED family (§ 5.2).

• We show that almost universality is possible for strings longer than 2L characters,
e.g., with the Pearson family (§ 5.4).

• Iterated hashing families have limited cardinality: there are only so many possi-
ble compression functions. This limits their universality. We apply results from
Nguyen and Roscoe [18] and Stinson [31] to derive new bounds (§ 6). To make
one such bound tighter, we use the fact that pairwise independent families must
have permuting compression functions, a concept we introduce in § 4.

• We can derive tighter bounds using the innate limitations of iterated hashing
(§ 7). Table 1 summarizes some of our results.

2. Preliminaries

We want L-bit integer hash values: hash functions map elements to integers in
{0,1, . . . ,2L− 1}. The weakest property we require from a family is uniformity: all
hash values are equiprobable. That is a family is uniform if P(h(s) = y) = 1

2L for
any s and y. (We pick h uniformly at random from the family H .) It is not difficult
to construct such a family. For example, let H be the set of all 2L distinct constant



functions (h(s) = c for all s). This family is uniform but a poor choice in practice
because any two elements s and s′ are sure to collide: P(h(s) = h(s′)) = 1.

Thus, we commonly seek families satisfying stronger conditions. A family is ε-
almost universal if the probability of a collision is bounded by ε< 1: P(h(s) = h(s′))≤
ε for any s and s′. We say that the family is universal when it is 1/2L-almost universal.

While bounding the probability of a collision is sufficient for some applications
like conventional hash tables, other results require stronger properties. A family is
pairwise independent (or strongly universal) if the hash values of any two elements are
independent:

P
(
h(s) = y∧h(s′) = y′

)
=

1
22L

for any two distinct elements s,s′ and any two hash values y,y′. It is 3-wise independent
if the hash values of any three elements are independent:

P
(
h(s) = y∧h(s′) = y′∧h(s′′) = y′′

)
=

1
23L

for any three distinct elements s,s′,s′′ and any three hash values y,y′,y′′. We can gen-
eralize this definition to k-wise independence. A family which is k-wise independent
for any k is fully independent. (A family is trivially k-wise independent over a set con-
taining less than k distinct elements. In our work, we implicitly assume that there are
at least k distinct elements whenever we consider k-wise independence.)

We have that k-wise independence implies k−1-wise independence for k ≥ 2. For
example, suppose we have 3-wise independence. Then we have that

P
(
h(s) = y∧h(s′) = y′

)
=

2L−1

∑
y′′=0

P
(
h(s) = y∧h(s′) = y′∧h(s′′) = y′′

)
= 2L× 1

23L =
1

22L .

Similarly, k-wise independence for any k > 1 implies uniformity.
A family that is universal, but not strongly universal might be XOR universal if the

bitwise exclusive OR of hash values appears random, that is P(h(s)⊕h(s′) = y) = 1/2L

for all distinct elements s,s′ and hash values y [11, 18]. (The symbol ⊕ is the bitwise
exclusive OR.)

We can weaken both strong universality and XOR universality:

• Given ε < 1, a family is ε-almost strongly universal if it is uniform and if
P(h(s) = y∧ h(s′) = y′) ≤ ε/2L for any two distinct elements s,s′ and any two
hash values y,y′. A 1/2L-almost strongly universal family is strongly universal.

• Similarly, it is ε-almost XOR universal (or ε-AXU) if the probability P(h(s)⊕
h(s′) = y) is bounded by ε.

We have that ε-almost strong universality implies ε-almost XOR universality which
itself implies ε-almost universality. (See Fig.1.)



strongly universal

almost strongly universal

XOR universal

almost XOR universal
almost universal

3-wise 
independent

Figure 1: Visual summary of the main properties related to universality. Strong uni-
versality is synonymous with pairwise independence.

We can also generalize almost universality to k-wise almost universality: a family
is k-wise ε-almost universal [18] if the probability of a k-way collision is bounded
by ε for some ε < 1. That is, if we have P(h(s(1)) = h(s(2)) = . . . = h(s(k))) ≤ ε as
long as the k elements s(1),s(2), . . . ,s(k) are distinct. We have that k-wise ε-almost
universality implies k+1-wise ε-almost universality. E.g., almost universality implies
3-wise almost universality.

3. Iterated hashing is pairwise independent at best

We write the concatenation ab of two strings a and b as a ‖ b= ab. If /0 is the empty
string, then /0 ‖ a= a. We begin by characterizing iterated functions.

Proposition 1 Consider hash functions over all strings, including the empty string.
The following statements are equivalent:

• H is a family of iterated hash functions;

• For any h ∈H , whenever h(s) = h(s′) for a pair of strings s,s′, then h(s ‖ s′′) =
h(s′ ‖ s′′) for any string s′′.

PROOF. By induction, iterated hash functions satisfy the second point. Indeed, suppose
that h ∈ H is an iterated function with a corresponding compression function F . Let
s′′i be the ith character of the string s′′i . By appending the first character of s′′ to both
strings (s and s′) we get a collision: h(s ‖ s′′1) = F(h(s),s′′1) = F(h(s′),s′′1) = h(s′ ‖ s′′1).
We can then append the remaining characters of s′′ one by one starting with s′′2 and
finally prove that h(s ‖ s′′) = h(s′ ‖ s′′).

Conversely, suppose the second point is true. Pick h ∈ H . We want to construct
a corresponding compression function F . For any hash value y in the domain of h,
there is at least one string ρy such that h(ρy) = y. Let F(y,a) = h(ρy ‖ a) for all
characters a. By the second point, F is well defined: its definition is independent



of the choice of ρy. We can verify that the iterated hash function with compression
F and initial value H0 = h( /0) agrees with h on all strings which concludes the proof. �

Families of iterated hash functions have limited independence. The next lemma
shows that they are pairwise independent at best. Moreover, almost strong universality
(and thus strong universality) requires a non-fixed initial value.

Lemma 1 Iterated hashing cannot be 3-wise independent, unless we bound the string
length to two characters. Moreover, almost strong universality is impossible with a
fixed initial value unless we bound the string length to one character.

PROOF. We prove the first statement by contradiction. Suppose that an iterated family
H is 3-wise independent. By definition, we must have

P(h(a) = y∧h(ab) = y∧h(abb) = y) =
1

23L

for any hash values y, and any characters a and b. (We allow a = b.) However, the
family is also pairwise independent so that P(h(a) = y∧h(ab) = y) = 1

22L . However, if
h(a)= y and h(ab)= y then the compression function satisfies F(y,b)= y and therefore
h(abb) = y. Hence we conclude that

1
22L = P(h(a) = y∧h(ab) = y)

= P(h(a) = y∧h(ab) = y∧h(abb) = y)

=
1

23L ,

a contradiction when L≥ 1.
For the second statement, suppose that the family is ε-almost universal for

ε < 1. Let the fixed initial value be H0. If the family is pairwise independent
then P(h(a) = H0 ∧ h(aa) = H0) ≤ ε/2L. Moreover, because almost strong uni-
versality implies uniformity, we have that P(h(a) = H0) = 1/2L. Because h is
iterated, we have that h(a) = H0 implies that the compression function satisfies
F(H0,a) = H0. Hence we have that h(a) = H0 implies h(aa) = H0. It follows that
P(h(a) = H0 ∧ h(aa) = H0) = P(h(a) = H0) = 1/2L and therefore the family cannot
be pairwise independent because 1/2L > ε/2L. �

To allow better independence, we consider generalized iterated hash functions
where a new compression function is used for each new character: Hi = Fi(Hi−1,si)
for i = 1,2, . . . ,n. A family of generalized hash functions is such that whenever
h(s) = h(s′) for a pair of strings s,s′ having the same length, then h(s ‖ s′′) = h(s′ ‖ s′′)
for any string s′′.

It includes hashing by multilinear functions over finite fields [4, 28], e.g., hash
functions of the form h(s) = m1+∑i mi+1si with randomly generated values m1,m2, . . .
(henceforth MULTILINEAR). The compression functions are Fi(y,c) = y+mi+1c with
an initial value of m1. The computation is in the finite field Fp: characters are mapped
to elements of Fp. For example, we can choose the field of cardinality p = 2L: the



polynomials with binary coefficients modulo p(x)—where p(x) is an irreducible poly-
nomial of degree L. We write F2L = GF(2)[x]/p(x). That is, integers in [0,2L) are
represented as polynomials of degree L− 1 having binary coefficients. Addition or
subtraction is the bitwise (or term-wise) exclusive OR. Multiplication by x is just
the left shift, unless the left-most bit is 1, in which case the left shift must be fol-
lowed by the addition with p(x). Exhaustive lists of irreducible polynomials are avail-
able online [27]. Otherwise, when p is a prime number, we merely have to compute
Fi(y,c) =mi+1y+c mod p using the usual integer algebra. We might prefer finite fields
that have prime cardinality close to 2L. For example, we can set p to some Mersenne
prime such as 217−1, 231−1 or 261−1, or other convenient prime such as 232−5 or
264−59 [12].

Lemma 2 MULTILINEAR is pairwise independent if we forbid strings ending with the
value zero.

PROOF. We have that h(a0) = h(a) so universality is impossible if we allow strings
to end with the value zero. So let s, s′ be two distinct strings of lengths |s| and |s′|
ending with non-zero values. Assume without loss of generality that |s| ≥ |s′|. Given
h(s′) = y′, we can solve for m1 as a function of y′, s′ and the values m2,m3, . . . ,m|s′|.

If s is longer than s′ (that is |s| > |s′|), then we can solve for m|s| in h(s) = y as a
function of y, s and m1,m3, . . . ,m|s|−1. In turn, if we substitute our solution for m1, we
have m|s| as a function of y, y′, s, s′, and all mi for i 6= 1, |s|.

If s = s′, then there must be some j such that s j 6= s′j. Hence, we can solve for m j in
h(s)−h(s′) = y− y′ as a function of y, y′, s, s′ and all mi for i 6= 1, j after substituting
the solution for m1 from h(s′) = y′.

Thus, in either case, among all possibles values of m1,m2, . . . ,m|s|,
two values are fixed by h(s) = y ∧ h(s′) = y′. Hence, we have that
P(h(s) = y ∧ h(s′) = y′) = p|s|−2/p|s| = 1/p2 where p is the cardinality of the
field. This proves pairwise independence. �

If we choose zero as an initial value m1 = 0, then MULTILINEAR is still XOR
universal when p = 2L. However, it fails to be pairwise independent. Indeed, given
a, b two distinct elements of Fp, we cannot satisfy both h(a) = m1 +m2a = a and
h(b) = m1 +m2b= a unless m1 6= 0.

MULTILINEAR has a nearly optimal memory-universality trade-off. Indeed, Stin-
son [31] showed that pairwise independent families must have cardinality at least
1+ a(b− 1) where a is the number of strings and b is the number of hash values.
There are pn−1 strings of length at most n in Fp ending with a non-zero value. Thus,
any pairwise independent family from strings in Fp of length bounded by n to elements
in Fp must have at least 1+(pn−1)(p−1) hash functions. That is, its cardinality is in
Ω(pn+1). Meanwhile, there are pn+1 different hash functions in MULTILINEAR when
strings have length at most n.

We can have better universality than MULTILINEAR, at the cost of a higher mem-
ory usage. Consider sequences of 3-wise independent hash functions hi from char-
acters to L-bit integers. The Zobrist [36, 37] family of string hash functions h(s) =
h1(s1)⊕ h2(s2)⊕ ·· · ⊕ hn(sn) is 3-wise independent [4, 14, 34]. It is also an exam-
ple of generalized iterated hashing with the compression function Fi(y,c) = y⊕ hi(c).



Moreover, it has optimal independence since generalized iterated families are 3-wise
independent at best according to the next lemma.

Lemma 3 Generalized iterated hashing cannot be 4-wise independent unless we
bound the string length to one character.

PROOF. Consider any generalized iterated hash function h. If h(s) = h(s′) for any two
strings s and s′ of the same length then h(s ‖ a) = h(s′ ‖ a) for any character a. Hence,
assuming that the family is 4-wise independent, we have that

1
24L = P

(
h(s) = y∧h(s′) = y∧h(s ‖ a) = z∧h(s′ ‖ a) = z′

)
= 0

whenever z 6= z′, a contradiction. �

In the following sections, we consider solely conventional iterated hashing.

4. Pairwise independence requires permuting compression functions

Permuting compression functions F are such that y 7→ F(y,c) is a permutation of
the hash values y ∈ [0,2L) for any character c and any compression function. Hence, if
y 6= y′ then F(y,c) 6= F(y′,c) when F is permuting.

(It is not necessary for F to permute all integer values in [0,2L). For example,
the hash function mapping all strings to a constant (h(s) = z) has a corresponding
compression function F which is defined only as F(z,c) = z for all characters c. It is
trivially permuting over a single hash value z.)

We have that XOR universality or pairwise independence implies a fixed collision
probability of 1/2L between distinct strings. This, in turn, implies permuting compres-
sion functions by the next Lemma.

Lemma 4 An iterated hash family with fixed collision probability (P(h(s) = h(s′)) = ε

for s 6= s′) over strings of length two or more has permuting compression functions.

PROOF. Consider two distinct strings s,s′. Consider any iterated hash family with fixed
collision probability ε. We have

ε = P(h(s ‖ c) = h(s′ ‖ c))
= P(h(s) = h(s′))+P(h(s) 6= h(s′) ∧ h(s ‖ c) = h(s′ ‖ c))
= ε+P(h(s) 6= h(s′) ∧ h(s ‖ c) = h(s′ ‖ c)).

Thus, we have h(s) 6= h(s′)⇒ h(s ‖ c) 6= h(s′ ‖ c) which proves the result. �

Consider the consequences of this lemma for L = 1. Over {0,1}, there are only
two permutations: the identity and an exchange of the two values (0 and 1). Hence, we
have that F(F(y,a),b) = F(F(y,b),a) if F is permuting. Therefore, the strings ab and



Table 2: Universality of some iterated families: n is the maximal string length

family universality

CWPOLY n/2L-almost XOR universal

TABULATED pairwise independent for n≤ L
SHIFTTABULATED pairwise independent on last L−n+1 bits

Pearson on unary strings maxi<n d(i)/2L-almost universal

Table 3: Computational complexity (per character) and memory usage in bits of some
iterated families. There are |Σ| characters in the alphabet.

families complexity memory usage

CWPOLY O(L logL2O(log∗ L)) L

TABULATED and SHIFTTABULATED O(L) |Σ|L
Pearson O(L) log(2L!)≤ L2L

ba always collide (h(ab) = h(ba)). Thus—in general—XOR universality or pairwise
independence over strings longer than L characters is impossible.

However, permuting compression functions have benefits on their own, beside be-
ing a consequence of pairwise independence. Consider any fixed permuting compres-
sion function F and any string s. Consider any two distinct initial values H0 and H ′0.
Then the hash value of s computed with H0 must differ from the hash value computed
with H ′0 by induction on the number of characters in the string s. Thus, we have the
following result. It holds true for strings of arbitrary length.

Lemma 5 An iterated hash family with permuting compression functions and indepen-
dently chosen equiprobable initial values is uniform.

A compression function is strongly permuting if it is permuting and if F(y,c) =
F(y,c′) implies c = c′. Strong permutation means that strings having a Hamming dis-
tance of one never collide. Of course, this precludes pairwise independence.

Lemma 6 Given a strongly permuting iterated hash family, two strings differing by
exactly one character never collide.

5. Iterated hash families over variable-length strings

We are interested in hashing variable-length strings using iterated hash functions.
Let Σ be the set of all characters from which the strings are constructed; the number of
distinct characters is |Σ|. We present a range of iterated families (see Tables 2 and 3).
Other hash families appear in Appendix A.

5.1. Carter-Wegman Polynomial Hashing
Carter and Wegman [4] defined an almost universal family of iterated hash func-

tions (henceforth CWPOLY) using polynomials over a finite field Fp as h(s) = ∑i tn−isi



for t ∈ Fp randomly chosen and where si is the ith character of the string s. In other
words, we use the compression function F(y,c) = ty+ c. Characters are interpreted as
elements of Fp. We are especially interested in binary fields where p = 2L.

Unfortunately, CWPOLY with an initial value of zero is such that h(00) = h(0) = 0.
To fix this problem, we need to choose a non-zero initial value [12] such as 1. Thus,
we have h(00) = t2, h(0) = t and h(223) = t3 + 2t2 + 2t + 3. Therefore, given two
strings s and s′, h(s)− h(s′) is a non-zero polynomial of degree at most max(|s|, |s′|)
where |s| and |s′| are the lengths of strings s and s′. By the Fundamental Theorem of
Algebra, such a polynomial has at most max(|s|, |s′|) solutions. Thus, the probability of
collision between two strings of length at most n is at most n

p . This probability bound
is tight. Indeed, consider the polynomial of degree n over Fp, τ(t) = ∏

n−1
i=0 (t − i).

E.g., τ(t) = t3 + 2t for n = 3 in F3. It has the n distinct roots 0, 1, . . . , n− 1. If s is
the character 0 repeated n times, and s′ is the string corresponding to the coefficients
of the polynomial τ(t), we have that h(s)− h(s′) = τ(t), hence P(h(s) = h(s′)) = n

2L .
Moreover, Nguyen and Roscoe show that CWPOLY has optimal universality given the
size of its family [18]. Sadly, CWPOLY is not uniform, but the probability of any hash
value y is bounded: P(h(s) = y)≤ n

2L for any string s of length n.
When the field size is a power of two (p = 2L), then CWPOLY is n/2L-almost

XOR universal. Indeed, we have that P(h(s)⊕ h(s′) = y) (for any y) is given by the
probability that h(s)+ h(s′) = y as polynomials in GF(2)[x]/p(x). Yet h(s)+ h(s′) is
a non-zero polynomial of degree at most max(|s|, |s′|) in t and the result follows again
by the Fundamental Theorem of Algebra.

Unfortunately, CWPOLY cannot be almost strongly universal over variable-length
strings even if we use a random initial value. Indeed, consider the equations h(aa) = a
and h(a) = 0. They can be written explicitly as H0t2 + at + a = a and H0t + a = 0
where H0 is the initial value. We see that h(a) = 0 implies h(aa) = a. Therefore,
if CWPOLY was ε-almost strongly universal for ε < 1, we would have that ε/2L ≥
P(h(aa) = a∧ h(a) = 0) = P(h(a) = 0) = 1/2L, a contradiction. It is still possible
to modify CWPOLY so that it becomes almost strongly universal. Unfortunately, the
result is not an iterated family by our definition. To get this stronger property, we
append to each string a random character before hashing. We state the general result
over Fp, but it obviously applies when p = 2L.

Lemma 7 Consider the family CWPOLY with the parameter t chosen randomly
among the non-zero values of Fp and an initial value of 1. Moreover, we choose a
random value ζ in Fp and append it to all strings before hashing them:

h(s) = t |s|+1 +
|s|

∑
i=1

t isi +ζ

If we consider strings of length at most n, then this modified CWPOLY is (n+1)/(p−
1)-almost strongly universal.

PROOF.With the random parameter ζ, CWPOLY is clearly uniform.



It remains to show that

P(h(s) = y∧h(s′) = y′)≤ n+1
(p−1)p

for any two distinct strings s,s′ and any hash values y,y′. We have that
h(s)− h(s′)− y− y′ is a non-zero polynomial of degree at most n + 1. (E.g., if
s = ab and s′ = cd then h(s)− h(s′)− y− y′ = t2(a− c)+ t(b− d)− y− y′.) To see
why it must be a non-zero polynomial, consider two cases. If s and s′ have the same
length, let i be such that si 6= s′i then h(s)− h(s′)− y− y′ as a polynomial over the
variable t has (si− s′i)t

i+1 as its i+1th term. If s and s′ have different lengths, assume
without loss of generality that s is longer, then the |s|+ 1th term of the polynomial
is t |s|+1 and therefore the polynomial has degree |s|+ 1 and is non-zero. Hence, the
polynomial has at most n+ 1 roots. Moreover, we have that h(s)− h(s′)− y− y′ is
independent from ζ. Given any t such that h(s)−h(s′)− y− y′ = 0 is satisfied, there is
only one value ζ (dependent on t) such that h(s) = y. Thus there are at most n+1 pairs
of values t,ζ such that t 6= 0, h(s)−h(s′)−y−y′ and h(s) = y are satisfied. Therefore,
the probability that h(s) = y and h(s′) = y′ are both true is bounded by n+1

(p−1)p because
there are p−1 possible non-zero values for t and p possible values for ζ. �

When L bits fit in a processor register, the running time of the compression func-
tion F may be considered independent of L. More formally, however, the mul-
tiplication between two L-bit integers required by the compression function is in
O(L logL2O(log∗ L)) [7].

5.2. Iterated string hashing by tabulation

Hashing by tabulation [4, 5, 14, 34] has good universality, at the expense of the
memory usage. We adapt this strategy to iterated hashing of variable-length strings.

Consider Γ, a randomly chosen function from characters in Σ to L-bit hash val-
ues. There are 2L|Σ| such functions. We consider integers as elements of F2L , that is,
as polynomials with binary coefficients in GF(2)[x]/p(x) where p(x) is an arbitrarily
chosen irreducible polynomial of degree L. Consider the family of iterated hash func-
tions with compression functions of the form F(y,c) = xy+Γ(c) and an initial value
chosen randomly (henceforth TABULATED). The compression function is permuting.
TABULATED is pairwise independent.

Proposition 2 TABULATED is pairwise independent for strings no longer than L char-
acters.

PROOF. Consider two distinct strings s,s′ no longer than L characters. We want to
show that P(h(s) = y ∧ h(s′) = y′) = 1/22L for any hash values y,y′.

Consider the equation h(s) = y or

H0x|s|+
|s|

∑
i=1

x|s|−i
Γ(si) = y



where H0 is the initial value. We can solve for the initial value as a function of y and s:

H0 = x−|s|(y−
|s|

∑
i=1

x|s|−i
Γ(si)). (1)

We solve for Γ(s j) for one value of j, in terms that do not depend on H0. This will
allow us to conclude the proof. We consider two cases:

• Suppose that the strings have the same length (|s| = |s′|). From h(s) = y and
h(s′) = y′, we get that h(s)− h(s′) = y− y′. We have that the equation h(s)−
h(s′) = y−y′ is independent from H0 because the terms H0x|s| and H0x|s

′| cancel
out. Because the strings are distinct, there must be an index j ∈ {1,2, . . . , |s|}
such that s j 6= s′j. Let the character s j occur at indexes r1,r2, . . . ,rk in string s
(by definition j ∈ {r1,r2, . . . ,rk}) and at indexes r′1,r

′
2, . . . ,r

′
l in string s′. If we

let q = ∑m x|s|−rm −∑m x|s|−r′m , the equation h(s)− h(s′) = y− y′ can be written
as qΓ(s j) = λ for some value λ ∈ F2L independent from Γ(s j) and H0. Because
j is in {r1,r2, . . . ,rk} but not in {r′1,r′2, . . . ,r′l}, and because all |s|− rm’s and all
|s|− r′m’s are less than L, we have that q 6= 0.

• Suppose that the strings have different lengths. Without loss of generality, as-
sume that |s| > |s′|. From h(s) = y and h(s′) = y′, we get that (h(s)− y)−
x|s|−|s

′|(h(s′)− y′) = 0. The equation (h(s)− y)− x|s|−|s
′|(h(s′)− y′) = 0 is in-

dependent from H0 because terms H0x|s| and H0x|s
′|× x|s|−|s

′| cancel out. Con-
sider the character s|s| and seek all indexes where it appears: write these in-
dexes r1,r2, . . . ,rk for string s (by definition |s| ∈ {r1,r2, . . . ,rk}) and r′1,r

′
2, . . . ,r

′
l

for string s′. We have that q = ∑m x|s|−rm −∑m x|s|−r′m is non-zero because 0 is
in {|s| − r1, |s| − r2, . . . , |s| − rk} but not in {|s| − r′1, |s| − r′2, . . . , |s| − r′l} since
r′m ≤ |s′| < |s| for all m’s, and because the |s| − rm’s and the |s| − r′m’s are less
than L. For the rest of the proof, we set j = 1.

Hence we can solve for Γ(s j) as Γ(s j) = q−1λ whether the two strings have the same
length or not. Equation 1 gives H0 as a function of Γ(si) for i = {1,2, . . . , |s|}. So, our
formula for H0 depends on Γ(s j), but we can substitute Γ(s j) = q−1λ in this formula
(Equation 1) to get an expression for H0 which does not depend on Γ(s j). Thus, from
the equations h(s) = y and h(s′) = y′, we get one and only one value for H0 and Γ(si)
as a function of the other tabulated values and of y and y′. Both values are chosen at
random among 2L values and thus the result is shown. �

For binary strings, TABULATED has nearly optimal memory-universality trade-off.
Indeed, there are 2L+1− 2 binary strings of length at most L. Hence, any pairwise
independent family over such binary strings must contain at least 1+(2L+1−2)(2L−
1) hash functions [31]. Therefore, its cardinality must be in Ω(22L). Meanwhile, TAB-
ULATED has 22L hash functions over binary strings.

5.3. Iterated string hashing by shifted tabulation
While TABULATED is pairwise independent, it requires operations in finite fields

of cardinality 2L. Thankfully some microprocessors have instructions for computations



in such finite fields [8]. Yet it can be expensive on some computers, even with such
instructions. Fortunately, pairwise independence is possible without finite fields [6].

The barrel or circular shift is the invertible operation by which all bits all shifted,
except for the last ones, which are brought back at the beginning. For L-bit values,
the barrel left shift by one can be written as y � 1 = (y� 1)⊕ (y� L−1) where�
and� are the left and right shifts. E.g., 11001 becomes 10011. Barrel shifting can be
implemented efficiently in hardware [1]. The popular x86 and ARM instruction sets
offer the ror instruction for this purpose.

Consider the hash family (henceforth SHIFTTABULATED) with compression func-
tions of the form F(y,c) = (y � 1)⊕Γ(c) where Γ is a randomly chosen function from
characters to L-bit hash values. (Whether we choose the barrel left or right shift is
arbitrary.) We choose the initial value randomly. Because the compression function is
permuting, SHIFTTABULATED is uniform.

The SHIFTTABULATED compression functions can be computed efficiently: one
value to look-up, one barrel shift and one bitwise XOR. Moreover, SHIFTTABULATED
can be described using the same compression function as TABULATED—F(y,c) = xy+
Γ(c)—in GF(2)[x]/(xL + 1). (The polynomial xL + 1 fails to be irreducible and thus,
GF(2)[x]/(xL +1) is merely a ring.)

The proof of the pairwise independence of TABULATED (see Proposition 2) relies
on the fact that any non-zero element of the field GF(2)[x]/p(x) invertible, which in-
cludes any non-zero polynomial of degree at most L− 1 from GF(2)[x]. In turn, this
means that given any polynomial q of degree at most n−1 < L, and any element r of
the field, we have

P(qΓ(si) = r) = 2−L

whenever Γ(si) is picked at random in the field, because the equation is only true when
Γ(si) = q−1r. The same is almost true in GF(2)[x]/(xL +1). We write that two values
are equal modulo the first n−1 bits if we ignore the first n−1 bits in the comparison.
By Corollary 1 from Lemire and Kaser (2010) [14], we have that

P(qΓ(si) = r mod first n−1 bits) = 2−L+n−1.

Hence, by a proof similar to Proposition 2, we have the following result.

Lemma 8 SHIFTTABULATED is pairwise independent on the last L− n+ 1 bits for
strings no longer than n characters.

5.4. Pearson hashing

We define Pearson hashing by the family of compression functions F(y,c) = Ay⊕c
where A is an array containing a permutation of the values in {0,1, . . . ,2L− 1} [21].
These compression functions are strongly permuting: Ay⊕c = Ay′⊕c implies y = y′,
Ay⊕c = Ay⊕c′ implies c = c′. We pick the initial value uniformly at random. Thus, Pear-
son is uniform. To our knowledge, the exact universality of Pearson remains unknown.
(We know that it can never be strongly universal because its compression function is
strongly permuting.)



For L = 2, Pearson is 5/6-almost universal for strings no longer than four. That is,
it is universal for strings of length 2L unlike CWPOLY. Brute-force numerical investi-
gations for large values of L is difficult.

To simplify the analysis, we focus on unary strings: strings made of a single char-
acter (such as aaaa). The following result is an upper bound on the universality of
Pearson over general strings.

Proposition 3 Pearson is ε-almost universal over unary strings of length at most n for
ε = maxi<n d(i)/2L where d(i) is the divisor function—the number of positive integers
dividing i.

PROOF. Consider strings made of the character a. Let π be the permutation A·⊕a.
Fix the initial value H0. A collision between two unary strings of lengths k,k′ ≤ n is
equivalent to the equation πkH0 = πk′H0 ⇒ πlH0 = H0 for |k− k′| = l < n. Consider
any solution ϖ of this equation (ϖlH0 = H0), then let σ be the smallest integer such
that ϖσH0 = H0. We bound the number of solutions using the fact that σ must divide l.

Given σ, there are (2L−1)! solutions to the equation πσH0 = H0 subject to πiH0 6=
H0 for i < σ. Indeed, we have that πH0 can be any value, except H0—thus we have
2L− 1 possibilities. We have that π2H0 can be any value expect H0 and πH0, hence
we have 2L− 2 possibilities. And so on, up to πσH0 which is predetermined. At that
point, we have enumerated (2L−1)(2L−2) · · ·(2L−σ+1) possibilities. Each one of
these possibilities define how the values H0,πH0, . . . ,π

σ−1H0 are permuted. The other
2L−σ values can be permuted to any available value, generating (2L−σ)! possibilities
for (2L−1)! possibilities.

Thus there is a total of d(l)(2L−1)! solutions and (2L)! different permutations: the
ratio is

d(l)(2L−1)!
(2L)!

=
d(l)
2L .

This is true for any initial value H0. The string length difference l ranges between 1
and n−1: we must keep the maximum value maxi<n d(i)/2L. �

The function maxi<n d(i) grows slowly (see Fig. 2). Formally, we have that
maxi<n d(i) ∈ o(iε) for all ε > 0. For maxi<n d(i) to be equal to 2L—so that Pearson
is no longer almost universal over unary strings—we need n to be larger than the least
common multiple of the integers from 1 to 2L. Thus, Pearson can be almost universal
over unary strings much longer than 2L characters.

To prove that iterated hashing for non-unary strings longer than 2L characters is
possible, we consider the following variation on Pearson hashing (henceforth GENER-
ALIZED PEARSON): we pick compression functions of the form F(y,c) = Ay⊕c where
A is a random array containing values in {0,1, . . . ,2L−1} (not necessarily a permuta-
tion). For L = 1, we have that h(00) = h(11) with probability one. However, for L = 2,
GENERALIZED PEARSON is almost universal for strings longer than 2L (see Table 4).
We computed these probabilities by enumerating all possible compression functions
and all possible pairs of strings with L-bit characters.
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Figure 2: Plot of maxi<n d(i) where d is the divisor function

6. Bounding the universality of iterated hashing by the maximal family size

Given only the number of hashable items, the number of hash values and the num-
ber of hash functions, we can bound the universality. To be ε-almost universal, a family
must have enough hash functions.

There is a limited number of iterated hash functions. Compression functions have
2L|Σ| possible inputs. For each input, there are 2L possible hash values. Thus, there are
no more than 2L2L|Σ| compression functions. Moreover, there are no more than 2L initial
values H0. Thus the number of iterated hash functions |H | is bounded by 2L(2L|Σ|+1):

|H | ≤ 2L(2L|Σ|+1). (2)

There are |Σ|n + |Σ|n−1 + · · ·+ |Σ| possible non-empty strings.
Nguyen and Roscoe derived a bound which is particularly suited for values of ε

larger than 1/2L [18]. Let 2K be the number of hashable items. Pick any hash function.
By the pigeon-hole principle, there must at least 2K/2L hashable items colliding to
the same value. Apply any other hash function to these colliding items, there must
be 2K/22L items colliding on these two hash functions. By repeating this argument,
Nguyen and Roscoe show that ε-almost universal hashing requires dK/L− 1e/ε hash
functions [18].

Corollary 1 (Nguyen and Roscoe) Given at least 2K hashable items, then ε-almost
universal hashing for ε > 0 requires at least dK/L−1e/ε hash functions.

PROOF. We have X = 2r hash functions. Theorem 1 from Nguyen and Roscoe [18]
states that when K is a multiple of L then r ≥ log(ε−1(K

L − 1)) and r ≥ log(ε−1bK
L c)

otherwise. Their result may be rewritten as r ≥ log(ε−1(dK
L −1e)), irrespective of the

value of K. Thus, we have X = 2r ≥ dK
L −1e/ε. It proves the result. �



Table 4: Numerically-derived upper bound on the collision probability between strings
of length at most n under GENERALIZED PEARSON (L = 2, 2L = 4)

n collision probability
2 0.53
3 0.72

4 = 2L 0.84
5 0.88
6 0.89
7 0.95
8 ≥ 0.97
9 ≥ 0.98
10 ≥ 0.99
11 1.00

By combining this last corollary with our bound on the number of iterated hash
functions (see Equation 2), we get the following bound on the universality of iterated
hashing.

Lemma 9 At best, iterated hashing might be ε-almost universal over the strings of
length at most L(ε2L(2L+1+1)+1) for some ε < 1.

PROOF. According to Corollary 1, we have that |H | ≥ dK/L− 1e/ε. Solving for K
in this expression, we get K ≤ L(ε|H |+1). Meanwhile, for string of length at most n
over |Σ| distinct characters, we have |Σ|n ≤ 2K or n log |Σ| ≤ K. Hence, by combining
these two inequalities, we have n log |Σ| ≤ K ≤ L(ε|H |+1) or just

n log |Σ| ≤ L(ε|H |+1).

Moreover, we can bound the size of an iterated family as |H | ≤ 2L(2L|Σ|+1) (see
Equation 2). Hence, by substitution, we have

n log |Σ| ≤ L(ε|H |+1)

≤ L(ε2L(2L|Σ|+1)+1).

Finally, we can solve for n in this inequality. Thus—at best—iterated hashing might
be almost universal over strings of length at most L(ε2L(2L|Σ|+1) + 1)/ log |Σ| where
|Σ| > 1. This bound grows exponentially with |Σ| which is misleading because
universality over a large alphabet (|Σ| large) implies universality over a smaller
alphabet. Indeed, it is always possible to restrict the application of a universal family
to strings using few characters, and this restriction may only increase the universality.
Thus, it is preferable to set |Σ|= 2. (For |Σ|= 1, we get a weaker bound: we have that

2K ≥ n and H ≤ 2L2L
so that the bound becomes n≤ 2Lε2L2L

+1.) �

For bounding universality, that is 1/2L-almost universality, it is preferable to use
bound provided by Stinson [31] to get the following result.



Lemma 10 At best, iterated hashing might be universal over the strings of length at
most 2L+L2L+1. If the family is strongly universal, then it is limited to strings of at
most L+2log2L!− log(2L−1)−1 characters.

PROOF. First, we consider universal hashing. By Equation 2, we have that 2L(2L|Σ|+1)≥
|H |. Stinson [31] proved that the size of universal families must be at least as large as
the number of hash values divided by the number of elements, thus we have |H | ≥
|Σ|n/2L. By combining these two inequalities, we get

2L(2L|Σ|+1) ≥ |H | ≥ |Σ|n/2L

or

2L(2L|Σ|+1) ≥ |Σ|n/2L.

Taking the logarithm on both sides, we get

n≤ L(2L|Σ|+2)
log |Σ|

.

The right-hand-side of this last inequality grows with |Σ|, but a family universal over a
large alphabet must be universal over a smaller alphabet as well. Thus we set |Σ|= 2.
This proves the first part of the lemma.

Consider strongly universal hashing. Recall that Stinson [31] proved that strongly
universal families must have cardinality at least 1+a(b−1) where a is the number of
strings and b is the number of hash values. Hence, we have that |H | ≥ 1+ |Σ|n(2L−1).
As a consequence of Lemma 4, strongly universal hash families must have permuting
compression functions. There are (2L!)|Σ| such functions, and 2L possible initial values
for a total of at most 2L×2L!|Σ| hash functions. Hence, we have 2L×2L!|Σ| ≥ |H |. By
combining these inequalities, we get

2L×2L!|Σ| ≥ 1+ |Σ|n(2L−1).

We can drop the constant term 1 from the right to get

|Σ|n < 2L×2L!|Σ|

2L−1
.

As before, we can set |Σ|= 2 to get

n < L+2log2L!− log(2L−1).

This concludes the proof. �



7. Limitations of iterated hashing over long strings

To characterize the limitations of iterated hashing—irrespective of the family size,
we want to compute a bound on the string length given a desired bound ε on the colli-
sion probability.

Let sr,a be the unary string made of the character a repeated r times. For exam-
ple, we have s3,a = aaa. Because we have at most 2L distinct hash values, we have
that h(s2L+1,a) must be equal to h(sr,a) for some r ∈ {1, . . . ,2L}. Hence, we have the
following lemma.

Lemma 11 For any iterated hash function h and any character a, the values h(sr,a) are
cyclic over r≥ 1 with a period T ∈ {1,2, . . . ,2L} except maybe for the first 2L−T hash
values.

PROOF. In the 2L +1 hash values h(sr,a) for r ∈ {1,2, . . . ,2L,2L +1}, one value must
be repeated because there are at most 2L distinct hash values. Write h(sr1,a) = h(sr2,a),
then by Proposition 1, h(sr1+i,a) = h(sr2+i,a) for any non-zero integer i. Without loss
of generality, assume r2 > r1. This proves that h(sr1+x,a) is cyclic in x with period at
most T = |r1− r2|. We see that 1≤ T ≤ 2L. Only the h(si,a) for i = 1,2, . . . ,r1−1 are
excluded from our analysis. This concludes the proof. �

Let LCMk ≡ LCM({1,2, . . . ,k}) be the least common multiple of the integers from
1 to k, inclusively. For example, we have LCM2 = 2,LCM4 = 12,LCM8 = 840. By
definition, for any T ∈ {1,2, . . . ,k}, we have that T divides LCMk. Thus, the strings
s2L,a and s2L+LCM2L ,a collide with probability one under iterated hashing by Lemma 11.
Using a generalized argument, we have the following proposition.

Proposition 4 We have the following results concerning iterated hashing over
variable-length strings:

• Almost universality over strings of length up to 2L +LCM2L is impossible;

• Universality over strings of length up to 2L +2 is impossible;

• For 1/2L < ε < 1 such that 1/ε is not an integer, ε-almost universality over
strings of length at most 2L +LCM2L+1−b1/εc is impossible.

PROOF. Since the values h(sr+2L−1,a) must have period T ∈ {1, . . . ,2L} as functions
of r, and T must divide LCM2L , we have that h(s2L,a) = h(s2L+LCM2L ,a) for all iterated
hash functions h (see Lemma 11). This proves the first result.

We prove the last result. Suppose that hashing is ε-almost universal. Then the prob-
ability that h(sr+2L−1,a) is cyclic in r with period T is bounded by ε: P(period(h) =
T ) ≤ ε. Thus, we have P(period(h) ∈ {2L− j + 1,2L− j + 2, . . . ,2L}) ≤ jε for any
integer j between 1 and 2L. Because P(period(h) ∈ {1,2, . . . ,2L}) = 1, we have
P(period(h) ≤ 2L− j) ≥ 1− jε. Setting j = b1/εc− 1, we have that P(period(h) ≤
2L − j) ≥ 1− (b1/εc − 1)ε = ε− b1/εcε > ε. Thus, the probability P(h(s2L,a) =
h(sLCM2L+1−b1/εc+2L,a))> ε which concludes the proof of the last item.



Table 5: Comparison of the bounds on universality from Lemma 10 and Proposition 4

L
Lemma 10 Proposition 4

universality strong univer. universality
2 20 8 5
4 136 87 17
8 4 112 3 366 257

16 2 097 184 1 908 072 65 537

The second result follows because universality implies 1/2L + δ-almost univer-
sality for all δ > 0. We can find δ sufficiently small, such that 1/ε is not an integer,
and such that b1/εc= 2L−1. Thus, we have that universality over strings of length at
most 2L +LCM2 = 2L +2 is impossible. This concludes the proof. �

We have that LCM2L divides 2L! so LCM2L ≤ 2L!; moreover, by a standard identity
2L!< (2L)2L

= 2L2L
. Hence, the bound on almost universality from this last proposition

is preferable to the cardinality-based bound (see Lemma 9). Similarly, we compare the
bounds on universality in Table 5: the new bound of 2L +1 characters is much smaller.

At least for unary strings, the next lemma shows that the almost universality bound
of Proposition 4 is tight (up to one character).

Lemma 12 There exists an almost universal iterated family over unary strings of
length at most 2L +LCM2L −2.

PROOF. For T ∈ {1,2, . . . ,2L}, define

hT (sr,a) =

{
r if 0≤ r < 2L

2L−T − (r−2L mod T ) otherwise

Effectively, hT goes from 0 to 2L − 1 for strings of length 0 to 2L − 1, and then it
becomes cyclic with period T (see Fig. 3). This family is iterated.

We want to show that there is no pair of strings sr,a,sr′,a for r,r′ ≤ LCM2L +2L−1
such that hT (sr,a) = hT (sr′,a) for all T ∈ {1,2, . . . ,2L}. Suppose that it is false. It
cannot happen if r,r′ < 2L since hT (sr,a) = hT (sr′,a) would imply r = r′. Suppose that
hT (sr,a)= hT (sr′,a) for all T ∈{1,2, . . . ,2L}, and for some 2L≤ r≤ LCM2L +2L−2 and
some r′ < 2L. Then hT (sr′,a) = r′− 1. This would imply that hT (sr,a) is independent
of T which is not possible for 2L < r < LCM2L + 2L because hT (sr,a) is cyclic with
period T . Similarly, for 2L ≤ r,r′ < LCM2L +2L−1, the equality hT (sr,a) = hT (sr′,a) is
possible only when T ∈ {1,2, . . . ,2L} divides |r− r′|. But since |r− r′|< LCM2L , this
is not possible for all T ≤ 2L.

The result is shown. �

Finally, we show that the universality bound of Proposition 4 is tight for unary
strings (up to two characters). To prove the result, we build a perfect (collision-free)
hash function over unary strings of length at most 2L. Consider strings made of the
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Figure 3: Functions r→ hT (sr,a) for L = 2 and T = 1,2,3,4

character a. Let π be a cycle of length 2L over the integers {1,2, . . . ,2L}. For example,
let π be the permutation that takes k to k+ 1 for k < 2L and 2L to 1. We choose the
hash function h(sr,a) = πr1. A collision between any two strings of length at most 2L

implies that πlH0 = H0 for some l < 2L which is impossible because π is a cycle of
length 2L. Thus, no two unary strings of length at most 2L may collide under this hash
function.

8. Conclusion

We have shown that iterated hashing can be pairwise independent over short strings.
Moreover, iterated hashing can be almost universal over strings longer than the number
of hash values. Motivated by this result, we have derived bounds on the universality
of iterated hashing. We can construct large iterated hashing families: this might sug-
gest that a very high degree of universality is possible. Alas we have shown that this
expectation would be misguided

We have identified two open problems which we find interesting. On the one hand,
we lack a bound on the universality of iterated hashing given the size of the family.
Our bounds assume arbitrarily large families. On the other hand, we are still missing
provably optimal iterated families. For example, is it possible to construct a family
which pairwise independent for strings longer than L for some values of L > 1? Future
work might consider the specific limitations of other hashing strategies [29, 31].
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A. Other popular iterated hash functions

For completeness, we review some popular iterated hash families and functions.
We show that many of these families have permuting compression functions.

A.1. Hashing by random irreducible polynomials

Instead of using a fixed irreducible polynomial, as in CWPOLY, we can pick the
irreducible polynomial at random [10, 30] (henceforth DIVISION). Considering L-bit
characters as polynomials having binary coefficients (GF(2)[x]), we use the compres-
sion function F(y,c) = yxL+c. As in CWPOLY, we specify an initial value of 1. Thus,
given a string s, the hash value is xnL + s1x(n−1)L + · · ·+ sn mod p(x). Consider two
strings of length at most n. The equation h(s) = h(s′) is true in GF(2)[x]/p(x) only if
the non-zero polynomial of degree at most nL formed by h(s)− h(s′) is divisible by
p(x). The polynomials of degree nL have at most n irreducible factors of degree L.
Meanwhile, there are at least (2L− 2L/2+1)/L irreducible polynomials p(x) of degree
L [22]. Thus, the probability of a collision is no larger than nL

2L−2L/2+1 .
We can extend this analysis to show almost XOR universality with the same bound

( nL
2L−2L/2+1 ). Pick any value y, then the probability P(h(s)⊕ h(s′) = y) is given by the

probability that h(s)+h(s′)−y = 0 in GF(2)[x]/p(x). The polynomial h(s)+h(s′)−y
in GF(2)[x] has degree at most nL but at least L, and the result follows.

The compression function of DIVISION is (strongly) permuting: F(y,c) = F(y′,c)
implies xLy= xLy′ mod p(x) which implies y= y′. Moreover, if we forbid the character
value zero at the beginning of strings, and pick the initial value randomly, we have that
DIVISION is uniform and thus, nL

2L−2L/2+1 -almost strongly universal.
We might be able to compute DIVISION faster than CWPOLY. However, selecting

a random irreducible polynomial might be slow. To cope with this problem, Shoup
introduced a generalized DIVISION [30] with compression function F(y,c) = yxL/k +c
and p(x) chosen as a monic irreducible polynomial of degree L/k.

A.2. Bernstein hashing

Bernstein proposed a computationally efficient compression function [2]: F(y,c) =
((y� l)+ y)⊕ c where y� l is the left shift by l bits. For all l > 0, this compression
function is strongly permuting. Hence, given randomly chosen initial values, we have
uniform hashing.
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A.3. Fowler-Noll-Vo hashing

There are two types of Fowler-Noll-Vo hash functions [19]. The FNV-1 compres-
sion functions takes the form F(y,c) = (yp)⊕ c where p is a prime number. It is a
generalization of Bernstein hashing. The FNV-1a compression functions are of the
form F(y,c) = (y⊕ c)p for some prime p. Both FNV-1 and FNV-1a are strongly per-
muting.

A.4. SAX and SXX

The shift-add-xor (SAX) scheme [25] is defined by the compression function
F(y,c) = y⊕((y� l)+(y� r)+c) where y� r is the right shift by r bits. For L = 32
and 7-bit characters, Ramakrishna and Zobel [25] reported that SAX is empirically
universal for 4≤ l ≤ 7 and 1≤ r≤ 3, and a randomly chosen 32-bit initial value. They
found that the alternative, shift-xor-xor (SXX), F(y,c) = y⊕ ((y� l)⊕ (y� r)⊕ c),
is not competitive.

A.5. String hashing functions in common programming languages

Strings are commonly used as keys in hash tables. Thus, most programming lan-
guages include string hashing functions. We consider C++ and Java.

ISO added support for hash tables to the C++ language (unordered map) [35].
Implementations of the language are required to provide a string hashing function,
but the exact function is unspecified. However, a popular compiler (GNU GCC, ver-
sion 4.1.1) implemented it as an iterated hash function with the compression function
F(y,c) = 5y+ c mod 232 and an initial value of zero. For example, the hash value of
the one-character string z is 122, the decimal value corresponding to the character z.

The Java String class has a specified hashCode method. As of version 1.3 of the
language, it is an iterated hash function with compression function F(y,c) = 31y+
c—using int arithmetic—and an initial value of zero. Because Java lacks unsigned
integers as a native type, the hash value of a sufficiently long string (e.g., zzzzzz)
can be a negative integer. (Java uses the Two’s complement binary representation, so
that signed integers are interchangeable with unsigned integers as long as we only use
addition, subtraction and multiplication.)

A.6. POWEROFTWO hashing

In light of the hash functions used in Java and C++, consider the family given
by the compression function F(y,c) = By+ c mod 2L (henceforth POWEROFTWO).
If the initial value is zero, then h(00) = h(0) = 0, but we can fix this problem by
using a non-zero initial value. However, suppose that B is even and consider any two
strings s and s′ of length greater than L and differing only in the first character, then
h(s) = h(s′) because BL mod 2L = 0. Thus—unsurprisingly—both the C++ and Java
implementations set B to an odd integer.

Suppose that B is odd. The compression function is then strongly permuting. Thus,
by choosing the initial value at random, we have uniform hashing.

When B is odd, we have that B+ 1 is even, so that (B+ 1)L mod 2L = 0. By
the binomial theorem, we have that 0 = (B + 1)L mod 2L = ∑

L
k=0 Bk(

(L
k

)
mod 2L)

mod 2L. Thus—irrespective of the initial value—the two strings of length L+1 given



by the characters
(L

k

)
mod 2L for k = 0,1, . . . ,L and 00 · · ·0 collide when B is odd.

By this construction, POWEROFTWO cannot be almost universal unless we limit the
length of the strings to at most L characters.
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