Managing Changes to Ontology Versions to Maintain Referencing Integrity on the Semantic Web
Delia Rogozan1,2, Gilbert Paquette1
1LICEF Research Center, Télé-université of Québec

4750, avenue Henri-Julien, Montréal (QC), H2T 3E4, Canada
2PSI Laboratory FRE 2645 CNRS, INSA Rouen,

BP 08 Place Emile Blondel, 76131 Mont Saint Aignan, France
(drogozan, gpaquett @licef.teluq.uquebec.ca(
Abstract

Ontologies are naturally evolve over time. In the context of the Semantic Web, they are used to reference information resources on the Semantic Webso the integrity of referencing is critical for successful applications of ontologies. To preserve this integrity, changes applied to ontology versions must be made accessible to users or software agents. It is the goal of the research reported here, to propose a method and some tools to support the management of changes to ontology version in order to maintain the integrity of ontology-based referencing.
1. Introduction

Our research is part of the LORNET network research program (http://www.lornet.org/eng/index.htm), which aims to create a distributed multi-actor system for e-learning and knowledge management, a system where knowledge and competencies are associated to learning resources (persons, operations, documents and tools) by referencing them using terms from different domain ontologies [1].
These ontologies are continuously evolving in e-learning environments due to the dynamic nature of learning processes [2]. More generally, there are many researchers within the Semantic Web framework [3, 4, 5, 6] who claim that ontology evolution must be one of the next logical steps in the ontology research.

Ontology evolution is the process during which the ontology former version (VN) is timely changed into a new version (VN+1), while preserving their consistency [4] and the ontology roles. By ontology role, we mean the ontology uses or the services that it provides. For example, in the Semantic Web, the ontology roles are multiple. The ontologies provide formal domain conceptualizations that are (re)used and shared by interoperable software agents [7] or that are used to reference Web resources for agents to interpret the resources content and to reason about it [8].
Section 2 will present the framework we propose to preserve the integrity of ontology-based referencing of resources. Seciton 3 will present a method for tracking and representing ontology changes. Section 4 will present a way to analyze the changes in a useful way to help user adapt the referencing descriptors called UKI (Unique Knowledge Identifiers)

2. Ontology Changes Management Framework
The Semantic Web is a decentralized environment, where information concerning the evolution process applied to transform one ontology version into another is not directly available for users or software agents. This is not so bad if the changes applied to ontology versions are only monotonic extensions (e.g. adding ontological entities) [9]. In this case, the ontology roles are preserved (e.g. the indexed Web resources will still be accessible for queries), even if only partial: not all the knowledge is exploited [10].

However, other ontology changes can give rise to side effects where the ontology roles may not be preserved, partially or totally. For example, changes that remove, merge or split ontological entities (i.e. classes, properties. instances) may hinder the access to referenced resources, the interpretation of ontologies or even the behavior of ontology based applications [11, 6].
Although the management of changes and their effects is the key issue in successful application of evolving ontologies on the Semantic Web [12], method and tools to support it are mostly missing [13, 14, 15, 16]. Therefore, we propose a conceptual framework for changes management that is depicted in figure 1.

[image: image1.emf]Ontology

Library

archive V

N+1

Ontology

Workbench

(+ evolution

component)

plug-in

archive

changes

events

Acteur 1 Acteur 1

modifiy V

N

load V

N

Changes

TRACER

Changes

History

MANAGER

Meta-Model

for Changes

Description

Acteur 2 Acteur 2

request

info

read/interpret

changes

request

change info

inform

about

changes

query for

events

OntoAnalyseur

plug-in

UKIs

MODIFICATEUR

request

change info

request UKIs

modification

request UKIs

modification

UKIs

List

Figure 1. Conceptual Framework for Ontology Changes Management
Ontology Library. On the Semantic Web, the ontologies are usually stored in distributed libraries whose basic functionalities are to allow users to archive, identify and download, search and browse ontologies [17].

Ontology Workbench. To support users during the ontology evolution process, ontology editors should be provided with an evolution component having several functionalities:
· semi-automatic identification of potential changes by using heuristics; for example, when a concept has only one sub-concept, they can be merged [18].

· formal representation and implementation of elementary and complexes changes [3, 18]. An elementary change specifies fine-grained and non-composite changes (i.e. Add, Delete, Modify_Entity). A complex change specifies course-grained and composite changes (i.e. Merge, Move, Split_Entity).

· verification of change effects on the ontology consistency. In order to guarantee the transition to VN+1 into a consistent state that satisfies all invariants of the ontology model and axioms, the inconsistent changes have to be resolved [4, 18].
· recording the interface events (if possible, translating them in a sequence of changes) in order to facilitate an a posteriori analyze of the evolution process (REFERENCES – Ontology editor, Maedche).
A detailed and complete analysis of requirements for ontologies evolution we proposed in [2].
OntoAnalyseur - Changes TRACER. The main functionalities of this component are: (1) using a meta-model for tracking change events during ontology evolution, (2) representing these events in a specific formalism and (3) archiving them with the aim of allowing later recuperation of changes that led to a specific ontology version.
OntoAnalyseur – Changes History MANAGER. At all times after evolution process, the second component of OntoAnalyser provides users and software agents with: (1) information about changes applied to an ontology version VN to obtain VN+1, (2) analyze of change effects on the semantic indexing of Web resources, and (3) identification of logical relations between entities belonging to VN and those belonging to VN+1.
The Change Tracer and the Change History Manager are components of OntoAnalyseur system, designed as a plug-in structure for an ontology editor. In this article we only present these components and the results of their development.

UKIsModificateur. In order to preserve the access and the interpretation of Web resources by means of their semantic indexation, UKIsModificateur modifies the resources UKIs and allow them to properly refer to the new ontology version.
We define an UKI (Uniform Knowledge Identifier) as a compact sequence of characters that specifies the reference link connecting a resource to one of its semantic references in a knowledge space, this reference being identified explicitly, with certainty and in a unique manner. The UKIs may use the generic URIs syntax (REFERNCE URI) with specific constraints (e.g. the fragment identifier is always the identifier of an ontology class or property).
The UKIs are modified according to results provided by OntoAnalyser. For example, for a change that merged several classes into a new one, UKIsModificateur modifies the version name and the semantic fragment identifier in the UKIs referring to merged classes. More details can be found in [19, 2].
3. Tracking Changes with OntoAnalyseur

Nowadays, there are two approaches regarding the tracking of changes applied to ontology versions. The first one (Maedche, autres!!!), uses logs to track changes during ontology evolution and stores them in specific archives, independently from ontology versions, and consequently, difficult to recuperate on the Semantic Web. The second one (Klein, NOY), compares full content of independent versions, without any supplementary information. However, this approach can identifies only elementary changes (i.e. Add, Delete_Entity), that is an important limitation if we aim to obtain pertinent information about the ontology evolution. In fact, knowing, for example, that two classes were deleted from VN doesn’t tell us that these classes were merged into a new one in VN+1.

Inspired by the strong points of these approaches, we developed one that is hybrid: we collect changes events from logs in a standardized manner; we formalize them; and we introduce these formalized events into the new ontology version. Thus, as we present in the fourth section, this will allow the identification of elementary and complex changes starting from only independents ontology versions.
3.1 Collecting Changes Events

We developed OntoAnalyseur – Changes Tracer as a portable plug-in application that can be grafted on different ontology editors. To respect these features, the question is how to standardize the collection of changes events from ontology editors knowing that each of them may provide o change log in a tool-oriented format.
We propose thus, a XML model for generic changes description, this model being composed of several meta-data that we explain in table 1.

Table 1. Meta-Model for Changes Description
	Meta-data
	Meta-data Explanation

	<ChangeNumber>

(integer)
	Specifies the numeric identifier of a primary change corresponding to its ranck in a change sequences.

	<ChangeNumberSec>

(integer)
	Specifies a sequence of numeric identifiers for the primary change and all additional changes .
 Application of a (primary) change can induce inconsistencies in other parts of the ontology. For example, deleting a class will cause subclasses and some properties to be inconsistent. Resolving that problem can be treated as a request for new additional changes, for example deleting subclasses too [20].
 The <ChangeNumberSec> meta-data allows the specification of each primary change together with its additional changes, if necessary.

	<ChangeType>

(string)
	Specifies the meta change-operation (e.g. Add, Delete Modify, Move, Merge, Split).

	<ChangeOrder>

(string)
	Specifies if the change is a primary or an additional one.

	<ChangeOperation>

(string)
	Specifies the change-operation according to the specific entity (e.g. class, property) on which is applied.
 The possible change-operations set depends on the conceptual ontology model and on the language used to formalize it. Because we are mainly interested in Web ontologies, we consider that change-operations respect the OWL-DL (Ontology Web Language) model and syntax [21].

	<ArgumentX>

(linkedList)
	A change-operation specifies a transformation function whose domain is a list of variables from VN (<ArgumentX>) and whose range is a list of variables from VN+1 (<ArgumentY>).
 The values of <ArgumentX> and respectively of <ArgumentY> are single entities belonging to VN and respectively to VN+1. Within a change description, we can have one or more variable declarations that are linked one to each other according specific relations (e.g. subsumption relation).

	<ArgumentY>

(linkedList)
	

	<Comments>

(string)
	Comments in natural language or other formalisms.

Each ontology editor will need a parser translating change events into the format we propose for changes gathering. Presently, we work on a parser that will translate the interface events of changes within MOT+ONTO graphic tool
for Ontology Engineering in the LORNET project (REFERENCE MOT OWL???).
The parsing results will take the form presented in Figure 2 (left side), each change being described using the XML meta-model for changes description presented in table 1. These results are next formalized using a set of specific statements that we group together into a simple formalism, which we denote OntologyChange (OC).
3.2 Formalizing Changes Events
The OC (OntologyChange) formalism, which we have developed proposes a set of statements for the change events formalization:
· oc:Add, oc:Delete, oc:Modify, oc:Move, oc:Merge, oc:Split (Class, Property, Instance), etcetera, statements for specifying change operations. All these statements are the low-level classes of a taxonomy describing the possible changes in OWL-DL ontologies (REFERENCE research note????).
· oc:from statement contains the VN version of a class, property or instance definition (i.e. all <ArgumentX> declarations).

· oc:to statement refers to the transformation of the above definition in the VN+1 ontology version (i.e. all <ArgumentY> declarations).

· [image: image2.png]Change Win...

oc:additionalChanges statement contains the declarations of additional changes that are specified using OC formalism, inside the declaration of their primary change.
Figure 2 – Example of a Change Formalization
To append a change formalization to VN+1, the OC statements have to be integrated within OWL statements. The example provided in Figure 2 (right side), shows the representation of a change oc:MergeClasses that merges two classes (CLASSES ID)
into one (CLASS ID) and specifies its super-class in VN+1. The related additional changes (e.g. oc:MoveDisjointClass from one of the merged classes) are also specified inside the oc:MergeClasses declaration.
3.3 Storing Formalized Change Events

Given the Web decentralized environment, the main advantage of an approach that require access only to an ontology version for changes identification, eliminate the need of a mechanism for logs storage, identification and retrieval.

Accordingly, the OntoAnalyseur - Changes Tracer reads changes from XML files formalizes them using OC and OWL statements and, finally, introduces the formalized changes inside the VN+1 ontology version. In this manner, we obtain the new ontology version that contains, aside the underlying domain conceptualization, all information regarding its evolution process.

Nevertheless, the question here is how to preserve the interoperability of the OWL ontology with changes tracer, knowing that it must remain interpretable by all OWL-compatible tools. The solution we found is to represent changes as comments inside a owl:versionInfo statement, in the ontology header (Figure 2, right side). In this manner, the VN+1 ontology versions remains OWL well-formed but OntoAnalyseur may also read and interpret changes, as we present in the next chapter.

4. Identifying and Analyzing Changes

The change traces integrated to VN+1 formally explicit the purpose of ontology developers and, consequently, they allow the pertinent identification and analysis of elementary and complexes changes based only form Web ontology versions.
4.1 Identifying Changes

We designed OntoAnalyseur - Changes History Manager as an independent module that can be used either by human or software agents wishing to identify changes applied to ontology versions. The Changes History Manager reads the formalized changes, which are represented inside ontology versions, and it generates both a visualization interface for users and a file for software agents (e.g. for the UKIsModificateur module that will help manage the adaptation of resource references).
Figure 3 (left side) shows how changes, applied to an ontology version VN to obtain VN+1, are presented to users:

· URIs of VN and VN+1 (e.g. URL, path and file name) are displayed on top of the window;
· changes are presented in a tree mode, according to change event sequences and according to the relation primary-additional that may exist among changes. Thus, all primary changes are represented on the tree first-level, each of them having the related additional changes represented on a second-level.

· both elementary (i.e. add, delete, modify) and complexes changes (i.e. move, merge, split) are identified, that is a great advantage since will provide [image: image3.png]E) oy ol Wusdad

Flo Edt Vew Insert Format Help

<owl:Ontology rdf:about=rhtep://fo0d/v2">

<owl:priorversion raf:resource

<owl:versionInfo>

Betp:/ /food/vin/>

<1-- Formalization of changes -->

<oc:MergeClasses>

<oc:from rdf:parseTyp
<owl:Class rdf:shour
<owl:iClass rdf:shour

"Colection®>
"eold; §IDCLass"/>
"sold; §1DC1ass"/>

</oc:from>
<oc:to>
<owl:Class rdf:about=renew;§IDClass”>

"enew; §IDCLass"/>

<0c:additionalChanges>
<oc:MoveDisjointClass>
<ac: from>
<owl:Class rdf:about=rcold;#IDClass">
<owl:disjointVith rdf:resource=cold;§IDClass"/>
</ovliClass>

"enew; §10C1ass ">
<owl:disjointVith rdf:resource=cold;§#IDClass"/>
</ovliClass>
</ocito>
</oc:MoveDisjointClass>
<!--Declarations of all
</0c:additionalChanges>

additional changes-->

For Help, press F1

users and software agents with a very complete and relevant information about an evolution process.
4.2 Analyzing Changes
The OntoAnalyseur – Changes History Manager has another important functionality; it analyzes the possible effects of identified changes and presents them to users or software agents. This is an important issue on the Semantic Web since “both compatible and incompatible revisions should be allowed, but it should be possible to distinguish between the two” [15] and to identify their impact on resources semantic indexing (Klein, other references).
Consequently, the first analysis provided by the Manager component concerns the effects of changes on the access to indexed resources. To visualize it, the users have only to click on a change. An analysis example for a change that merges several classes into one is depicted in Figure 3 (right side).
The logical relations among entities belonging to VN and those belonging to VN+1 have to be taking into account in the analysis of ontology evolution effects [22, 13]. Thus, the Manager also identifies relations that exist among these entities according to criteria as null, identity, equivalence, inclusion, generalization, etcetera. As exemplified in Figure 3 (right side), the users are informed that the resulting class includes the significance of merged classes.
Conclusion

 We have currently completed most of the development of the OntoAnalyseur modules presented here.

The ontology evolution is a new and essential issue in the ontology research domain, one of its main topics being the development of methods and tools to support changes management after evolution process. While this topic is essential to maintain ontology interoperability and roles, nowadays only few researches propose some results related to it.

The Concordia model (Oliver et all REFERENCE) propose a simple framework for managing changes that may occur in medical domains by keeping a log of all retired concepts. Regarding the context of KAON suite tool, several researchers (Maedche, Stojanovic) develop the idea of a log that traces changes during ontology evolution. These changes are described using an o:ChangeLog ontology, which specifies only elementary changes as o:AddEntity, o:DeleteEntity and o:ModifyEntity. However, in order to preserve the ontology roles after the evolution process, we need to know more about users’ intention and consequently, to log also complex changes (e.g. Merge, Split)

 While these approaches use kinds of logs to trace changes, there are other researches that rely on a comparison between ontology versions to identify changes. The OntoView system (REFERNCE Klein) compares the RDF definitions of classes and properties, identifies those that are modified form one version to another and produces a list of necessary changes. Nevertheless, this system identifies only the changes that delete or add entities, which is not sufficient for a complete view of ontology evolution.
Regarding the changes analysis, only a few studies consider this issue. The authors of [23, 24] analyze the effects of elementary changes on the ontology’ concepts hierarchy (i.e. the concepts become more generalize or specialized). With regard to analysis provided by [9, 6], these authors prove only that changes that add entities to an ontology doesn’t affect the access to indexed data, while the changes that delete entities hamper it.
7. References

1.
G. Paquette and I. Rosca, Ontology-based indexing for selecting actors, operations and resources in an on-line learning system, SW-EL'04: Semantic Web for E-Learning, 2004, p.^pp.

2.
D. Rogozan, G. Paquette and I. Rosca, Gestion de l'évolution de l'ontologie utilisée comme référentiel sémantique dans un environnement de téléapprentissage, TICE International Symposium, 2004, p.^pp. 245-252.

3.
M. Klein and N. Noy, A component-based framework for the ontology evolution, Workshop on Ontologies and Distributed Systems, IJCAI-2003, 2003, p.^pp.

4.
A. Maedche, B. Motik and L. Stojanovic, Managing multiple and distributed ontologies in the semantic web, VLDB Journal - Special Issue on Semantic Web 12 (2003), 286-302.

5.
OntoWeb, "A survey on methodologies for developing, maintaining, evaluating and reengineering ontologies," 2002.

6.
J. Heflin and J. Hendler, Dynamic ontology on the web, AAAI, 17th National Conference on artificial Intelligence, 2000, p.^pp.

7.
J. Hendler, Agents and the semantic web, IEEE Intelligent systems March/April 2001 (2001), 30-37.

8.
T. Berners-Lee, J. Hendler and O. Lasilla, The semantic web, Scientific American 284 (5) (2001).

9.
J. Heflin, J. Hendler and S. Luke, Coping with changing ontologies in a distributed environment, Ontology Management. Papers from the AAAI Workshop (1999), 74-79.

10.
M. Klein and D. Fensel, Ontology versioning for the semantic web, International Semantic Web Working Symposium (SWWS), 2001, p.^pp.

11.
M. Klein, Supporting evolving ontologies on the internet, Proceedings of the EDBT 2002 PhD Workshop, 2002, p.^pp. 597-606.

12.
Y. Ding, D. Fensel, M. Klein, B. Omelayenko and E. Schulten, "The role of ontologies in ecommerce," Handbook on ontologies, S. Staab and R. Studer (Editors), Springer Verlag, 2004, pp. 593-616.

13.
M. Klein, Y. Ding, D. Fensel and B. Omelayenko, "Ontology management - storing, aligning and maintaining ontologies," Towards the semantic web: Ontology-driven knowledge management, J. Davids, D. Fensel and F. vanHarmele (Editors), Wiley, 2002, pp. 47-69.

14.
N. Noy and M. Musen, Ontology versioning as an element of an ontology-management framework, IEEE Intelligent Systems, in press (2003).

15.
WebOnt, "Owl web ontology language use cases and requirements," 2004.

16.
Web_sémantique, "Action spécifique 32 cnrs / stic," 2001.

17.
Y. Ding and D. Fensel, Ontology library systems: The key for successful ontology reuse, First Semantic Web Working Symposium (SWWS'1), 2001, p.^pp.

18.
L. Stojanovic and B. Motik, Ontology evolution within ontology editors, Knowledge Acquisition, Modeling and Management (EKAW), 2002, p.^pp.

19.
D. Rogozan, "Modifying semantic annotations according to the evolution of the ontology," First prize to the Annual Scientific Conference of the LORNET Research Network (I2LOR-04), Montréal, 2004.

20.
L. Stojanovic, A. Maedche, B. Motik and N. Stojanovic, User-driven ontology evolution management, 13th International Conference on Knowledge Engineering and Knowledge Management (EKAW02), 2002, p.^pp.

21.
Web-Ontology_(WebOnt)_WorkingGroup, "Owl web ontology language guide and reference," 10 February 2004.

22.
J. Charlet, B. Bachimont and R. Troncy, "Ontologies pour le web sémantique," Web sémantique, J. Charlet, P. Laublet and C. Reynaud (Editors), Action_spécifique_32_CNRS/STIC, 2003.

23.
H. Stuckenschmidt and M. Klein, Integrity and change in modular ontologies., 18th International Joint Conference on Artificial Intelligence, 2003, p.^pp.

24.
---, Evolution management for interconnected ontologies, Workshop on Semantic Integration at ISWC 2003, 2003, p.^pp.

�Je ne suis pas sur de cette formulation, mais ce n’était vraiment pas clair

�Il faudrait qu’on s’en reparle. Ca me semble très difficile à réaliser

�Sur la figure, l’identification des deux classes dans le oc: from est identique. Ils devaient y avoir une distinction entre les deux : old1 et old2

�Je n’ai pas compris ce paragraphe.Est-ce nécessaire?

�Identifier la figure 3

[image: image4.png]E) Pl Fuvthl i Fuu el - s
Flo Edt Vew Insert Format Help

al

<ChangeOrder>Additional</Changeorder>
<ChangeOperation>De LetaClass</ChangeOperat ion>
<ArgunentX>PastaliithhiteSousecourse</ Argunent >
<ArgunentX>PastallithihiteSouce</ A gumentL>
<Comments>This is a Nerge Class add</Comments>

</Change>

<Change>
<ChangeNumber>2</Changeliurber>
<ChangeNumberSec>0</ChangeNunbersec>
<ChangeType>HergeEnt it ies</ChangeType>
<ChangeOrder>Pr inary</ChangeOrder>
<ChangeOperation>HergeClasses</ChangeOperat ion>
<ArgumentX>ClassID</ krgument >
<ArgumentX>ClassID</ krgument >
<Argument¥>ClassID</ krgument >
<Argument¥>ClassID</ krgument¥>
<Comments>This iz a Nerge Class</Comuents>

</Change>

<Change>
<ChangeNunber>2</Changeliuber>
<ChangeNurberSec>1</ChangeNunbersec>
<ChangeType>NoveEnt ity</ChangeType>
<ChangeOrder>Additional</ChangeOrder> 1
<ChangeOperat ion>HoveEquivalentC lass</Changeoperaitd

31

For Help, press F1 [

[image: image5.png]@ EE]x)]

Change Operations appliedto “http:/iwwww.w3.0r/TRI2003/PR-0wl-guide-20031209 00t ™
to obtain “hittp:/iwwwwew3.0rg TRIZ003MD-owl guide- 2003033 wine”s

[changes
© [DeleteClass PastaWithiteSouce from SubClasses Of Pasta
[ModifySuperClass of PastawithLightCreamSouce, from PastawithihiteSouce to Pasta
[MoveDisiointClass PastaWithRedSouce, from PastaMitAhiteSace to PastawithLighiCreamSouceD
[DeleteClass PastawitrihiteSoucaCourse from SubClasses Of PastawitnhiteSouce
@ [MergeClasses PastaiiithSpicyRedSouceCourse PastawithNonSpicyRedSouceCourse into PastaWithRedSouceCourse, a SubClass
[} MoveEquivaleniClass PastawithSpicyRedSouce, rom PastaiMfihSpicyRedSouceCourse to PastaWithSpicyRedSouce

& Popupintow Sorihechiange

Ontology Evluon. [arSrgTRZ003 P owlquide 2005 209Ta0] 1o

Effects of MergeClasses [Pastai¥ithspicyRedSou into inRedSouceCourse] aSunClassOf [stawithRedSouce|
(<[o]

Change Compatibilty [lnompatible Change

the access and the interpretation of objects refereced by the merged classes PastaWithsp
Change Effect fcyRedSouceCourse, PastaWithHonSpicyRedSouceCourse are not possible via "httpiwww
w3.0rg/TR2003WD-owl-guide-20030331 wine™

the class PastawithRedSouceCourse belonging to "htp:/iwwvw.w3.0rg/TRZ03MWD-owl.guid
©-20030331/wine"includes the significance of merged classes PastaWithSpicyRedSouceCo

Logical Relations yyse, pastawithtonSpicyRedSouceCourse belonging to "hittp:/iwww.w3.orgiTR2003/PR-owl
~guide-20031209foodut

