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Abstract 

We summarize the evolution of a Graphic Knowledge 
representation language developed at our research 
center that has served in many applications 
throughout the years and, more recently to help 
develop the TELOS system. We first underline the 
theoretical research on which the language is built. 
Then we address the question of standardizing a 
knowledge modeling tool, first designed as an 
informal thinking aid. One standard specialization of 
the language is embedded in a tool to produce OWL 
models totally graphically. Another one enables users 
to produce standard IMS-LD multi-actor learning 
scenarios or workflows. The most recent evolution is 
the TELOS function editor that generalizes both IMS-
LD models and business workflow models. We 
conclude by discussing the properties of the 
representation language that have benn found most 
useful.  
 

1.1. Introduction 
     The graphic representation formalism that we 
present here [1, 2] has been tested for the last 10 
years in a vast array of modeling applications in 
various contexts. It is used by trainers for corporate 
training. Designers or professors use it to prepare 
university courses or to propose modeling exercises 
to their students. It has served to model processes for 
the introduction of IT in a computer-supported high 
school, or to model instructional methods or research 
projects processes. 
     In the first introductory section we discuss the 
basis for the graphic knowledge representation 
language. In the second one we present the main 
characteristics the MOT1 language. Even at this 
informal level, the language constitutes a useful tool 
for precise definition and communication. In the third 
section we present a specialization of the graphic 
language to MOT+OWL, to represent domain 
knowledge and competencies as ontologies, thus 
bringing the representation language at a formal and 
computational level.  In the fourth and fifth section, 
                                                                                                                     
1 This acronym means “Modeling using Object Types” 

we address another specialization, first to enable building 
standard learning designs, and its generalization to a 
functional aggregation editor, a central core component 
of the Telelearning Operating System (TELOS) 
developed by the LORNET research network.2

1.2. 1. Basis for a Graphical Knowledge 
Representation Language 

     It is often said that a picture is worth a thousand 
words. That is true of sketches, diagrams, and graphs 
used in various fields of knowledge. Conceptual maps 
are widely used in education to represent and clarify 
complex relationships between concepts. Flowcharts 
serve as graphical representations of procedural 
knowledge or algorithms. Decision trees are another 
form of representation used in various fields, particularly 
in decision-making or expert systems.  
     All these representation methods are useful at an 
informal level, as thinking aids and tools for the 
communication of ideas, but they have limitations. One 
is the imprecise meaning of the links in the model. Non 
typed arrows can mean many things, sometimes within 
the same graph. Another one is the ambiguity around the 
type of entities. Objects, actions on objects and 
statements of properties about them are all mixed-up, 
which make graph interpretation a fuzzy and risky 
business. 
     Another difficulty is to combine more than one 
representation in the same model. For example, concepts 
used in procedural flowcharts as entry, intermediate or 
terminal objects could be given a more precise meaning 
by developing them in conceptual maps as sub-models of 
the procedure. The same is true of procedures present in 
conceptual models that could be developed as procedural 
sub-models described by flowcharts, combined or not 
with decision trees. 
     In software engineering, many graphic representation 
formalisms have been or are used such as Entity-
Relationship models [3], Conceptual Graphs [4], Object 
modelling technique (OMT) [5], KADS [6], or the 
Unified Modeling Language (UML) [7].  These 
representation systems have been built for the analysis 

 
2 See the LORNET Web site at www.lornet.org 
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and architectural design of complex information 
systems. The most recent ones require the use of up 
to eight different kinds of model so the links between 
them become rapidly hard to follow without 
considerable expertise. 
    Our initial goals were different. We needed a 
graphic representation system that was both simple 
enough to be used by educational specialists who are 
not in general computer scientists, let general and 
powerful enough to represent the components of  
computer-based educational environments and their 
relationships. 
     There is a consensus in educational science to 
distinguish four basic types of knowledge entities 
(facts, concepts, procedure and principles), despite 
some diversity on the terminology and definitions. 
See for example, the work of Merrill [8], 
Romiszowski [9], Tennyson [10], and West [11]. 
This categorization is retained as the basis of the 
MOT graphic representation language.  
     All four types of knowledge are also considered in 
the framework of schema theory. The concept of 
schema is the essential idea behind the shift from 
behaviourism to cognitivism, a now dominant theory 
in psychology and other cognitive sciences, based on 
the pioneering ideas of Piaget [12] and Bruner [13]. 
     In the early seventies, Newell and Simon [14] had 
developed, on the same basis, a rule-based 
representation of the human problem solving activity, 
while Minski [15] had defined the concept of "frame" 
as the essential element to understand perception, and 
also to reconcile the declarative and procedural views 
of knowledge. 
     Schemas play a central role in knowledge 
construction and learning. They guide perception, 
defined as an active, constructive and selective 
process.  They support memorization skills seen as 
processes to search, retrieve or create appropriate 
schemas to store new knowledge. They make 
understanding possible by the comparison of existing 
schema with new information. Globally, through all 
these processes, learning is seen as a schema 
transformation enacted by higher order processes. 
Learning is seen as schema construction and 
reconstruction through interaction with the physical, 
personal or social world, instead of a simple transfer 
of information from one individual to another. 
     The distinction between conceptual and 
procedural schema has been accepted for a long time 
in cognitive science. More recently, a third category 
called "conditional or strategic schema" has been 
proposed [6]. These schemas have a component that 
specifies the context and the conditions to trigger a 
set of action or procedures, or to assign values to the 
attributes of a concept. These categories map very 
well on the existing consensus in educational science. 

1.3. 2. The MOT Graphic  Knowledge 
Editor 

     We will now present briefly the syntax and semantic 
of the MOT graphic modeling language, based on the 
notion of schema. Here, we could use graphs similar to 
UML object models to represent the attributes that 
describe a schema with different formats according to 
their type. In the MOT graphic language [1, 17, 18], we 
try to improve the readability and the user-friendliness of 
graphs by externalizing the internal attributes of a 
schema into other schemas, with proper links to the 
original schema. For example, the link between the 
schemas “Triangle” and the “Rectangle Triangle” is 
shown explicitly using a specialization (S) link from the 
later to the former concept. Links between the “Triangle” 
concept and its sides or angles attributes is externalized 
using a composition (C) link. The links from an input 
concept to a procedure and from a procedure to one of its 
products are both shown by an input/product (IP) link. 
The sequencing between actions (procedures) and/or 
conditions (principles) in a procedure is represented by a 
precedence (P) link. Finally, the relation between a 
principle and a concept that it constrains, or between a 
principle and a procedure that it controls, will be 
represented by a regulation link (R).  
     Using these links, this simple example on triangle 
concepts becomes the MOT model on figure 1 where 
relations between knowledge entities are transparent, 
mixing the types of entities and links. 

 
Figure 1 – A simple MOT model 

     Concepts (or classes of objects), procedures (or 
classes of actions) and principles (or classes of 
statements, properties or rules) are the primitive objects 
of the MOT graphical language. The type of the object is 
represented by geometrical figures as shown on figure 2, 
where each class or individual is represented by a name 
within the figure.  

 
Figure 2 – Types of knowledge units in MOT 
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      These objects are different types of schema 
whose attributes are all externalized explicitly and 
related to the schema using six kinds of typed links 
constrained by the following grammar rules:  
1. All abstract knowledge entities or classes 

(concepts, procedures, principles) can be related 
by an instantiation I link to a set of facts 
representing individuals called respectively 
examples, traces and statements. 

2. All abstract knowledge entities (concepts, 
procedures, principles) can be specialized or 
generalized to other abstract knowledge using 
specialization S links. 

3. All abstract knowledge entities (concepts, 
procedures, principles) can be decomposed, 
using C links into other entities, generally of the 
same type. 

4. Procedures and principles can be sequenced 
together using P links. 

5. Concept can be inputs to a procedure using an IP 
link to the procedure, or products of a procedure 
using an IP link from the procedure. 

6. Principles can regulate, using an R link, any 
procedure to provide an “external” control 
structure, to constrain a concept or a set of 
concept by a relation between them, or to 
regulate a set of other principles, for example to 
decide on conditions of their application. 

Figure 3 summarizes these grammar rules of the 
MOT graphic language in the form of an abstracted 
graph where the nodes represent types of MOT 
objects and the arrows are valid link between them. 

 
Figure 3 – The MOT metamodel 

    There are various possible semantic interpretations 
of these graphic symbols. Concepts can be object 
classes (country, clothing, vehicles…), types of 
documents (forms, booklets, images), tool categories: 
(text editors, televisions…), groups of people 
(doctors, Europeans…), event classes (floods, 
conferences, …). Procedures can be generic 
operations (add numbers, assemble an engine…), 
tasks categories (complete a report, supervise 
aproduction…), activities (take an exam, teach a 

course,…), instructions (follow a recipe, assemble a 
device…), or scenarios (of a film, of a meeting, of a 
learning module.  Principles can state properties of  
objects (cars have four wheels), constraints on 
procedures (the tasks must be completed within 20 days), 
cause/effect relationships (if it rains more than 25 days, 
the crop will be in jeopardy), laws (any metal sufficiently 
heated will stretch out), theories (the laws of the market 
economy); rules of decision (advising on an investment), 
prescriptions (medicinal treatment, instructional design 
principles), etc. 
     With this set of primitive graphic symbols, it has been 
possible to build graphic models, from simple to 
complex representations of structured knowledge. For 
example, we can build representations equivalent to 
conceptual maps, flowcharts (including iterative 
procedures) and decision trees, and also other types of 
models useful for educational modeling such as 
processes, methods and theories. All these types of 
models have been used in a number of projects since the 
first publication of the MOT editor in 1999. 
     Of particular interest are two of these categories of 
models. The class “processes and methods” includes 
instructional design methods such as MISA, which we 
have totally described graphically using the MOT editor, 
but also the learning scenarios in a course module, 
represented by multi-actor process graphs. Another 
interesting type of model is “laws and theories” where 
models are composed of concepts organized in 
specialization hierarchies, with principles defining their 
properties and relationships. Particular cases are 
ontology models that we use to describe knowledge 
domains in TELOS application, or to describe the very 
structure of the TELOS system. 

1.4. 3.  MOT+OWL: A Standardized 
Ontology Editor 

    Many ways can be used to describe a domain of study 
including text-based narratives or informal graphic 
models,. At the initial stage of design, the informal 
nature of representation is useful. The mind must be free 
to choose any representation that seems best suited for 
the educational or knowledge management project to be 
considered. Still, this very freedom does not facilitate the 
software processing of the representation.  
     Semi-formal modeling languages like MOT go part of 
the way in that direction. Unlike informal graphs built 
with any graphic editor such as Powerpoint, the MOT 
graphic syntax is structured and has a general 
unambiguous semantic. Using the MOT editor, models 
can be exported in many formats, including a native 
XML schema that software agents can use to perform 
different kind of processing. Still, some ambiguity 
remains. In instructional engineering applications, we 
had to constrain the MOT graphic language even more to 
enable the delivery of learning scenarios in a digitized 
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platform like Explor@-2 [19], Even then, part of the 
transfer of the design to the delivery platform had to 
be done manually, to prevent enforcing unnatural 
graphic representations on the users. 
     To deliver computer-based learning environments, 
beyond the phase where informal graphic design has 
cleared up ideas, we need to move from informal or 
semi-formal graphs to formal computable graphic 
representations.   
      Knowledge in a subject domain can be 
represented in many ways: taxonomies, thesauri, 
topic maps, conceptual graphs and ontologies. We 
have selected to use OWL-DL ontologies [20] for 
TELOS applications for a number or reasons. It is 
one of the three ontology Web languages that are part 
of the growing stack of World Wide Web consortium 
recommendations related to the Semantic Web. Of 
these three languages, OWL-DL has a wide 
expressivity and its foundation in descriptive logic 
guarantees its computational completeness and 
decidability. Descriptive Logic [21] is an important 
knowledge representation formalism unifying and 
giving a logical basis to the well known traditions of 
frame-based systems, semantic networks, object-
Oriented representations, semantic data models, and 
formal specification systems. It thus provides an 
interesting framework to represent knowledge. 
     OWL-DL provides a precise XML schema but no 
graphic representation per se. Some ontology editors 
like PROTÉGÉ [22], provide interesting graphical 
views of an ontology, but the main operations are 
essentially form-based. Our goal was to provide a 
complete formal graphic representation of OWL-DL 
that could combine the virtues of interactive 
construction and still yield a standard format that can 
be processed by OWL-DL compliant software. 
     In the context of the MOT representation system, 
ontologies, in particular OWL-DL constructs, 
correspond to a category of models called theories. 
Ontologies can thus theoretically be modeled 
graphically using the MOT syntax. While doing this, 
we found out that although the MOT primitive 
objects and links were sufficient to represent 
ontologies expressed in OWL-DL, the graphs would 
become cumbersome unless new symbols were 
added. We have thus specialized the MOT language 
and its graphic editor.  
     Table 1 gives a few examples of MOT+OWL 
graphic elements with their interpretation in 
descriptive logic. In OWL, each of these primitive 
graphic elements correspond to OWL-DL XML 
schema components.  See [23] for a complete 
description of the MOT+OWL graphic language. 

Table 1 -  OWL-DL graphic equivalents 
Class intersection  
∀x: Class3(x)  
↔ Class1(x) ∧ Class2(x) 
  
Equivalent classes   
∀x: Class1(x) ↔ Class2(x) 

Equi Class2Class1
 

Disjoint classes 
∀x: Class1(x) ↔ ¬Class2(x) 

Disj Class2Class1
 

Extension of a class 
∀x: Class(x)  
↔ (x = Ind 1) ∨...∨ (x= Ind N) 
 

 
Functional property 
∀x,∀y,∀z:   
Prop(x,y) ∧ Prop(x,z)) → 
y=z 

 

 

Transitive property 
∀x,∀y,∀z:   
Prop1(x,y) ∧ Prop1(y,z) 
→ Prop1(x,z) 

 

 

Inverse properties 
∀x,∀y: Prop1(x,y) ↔ 
Prop2(y,x) 

 

      
     Three types of MOT entities are needed to represent 
OWL-DL models. Concepts represent classes, principles 
represent properties and facts represent individuals. On 
these graphic entities, we add little icons or special links 
between them. In the standard MOT syntax, these icons 
or special links would be replaced by principles with “R” 
links to Classes or Properties. For example, in the second 
and the two last examples of table 1, the following 
standard graphs would have the same precise OWL-DL 
interpretation, but they are less readable and more 
difficult for human interpretation. 
 

RR

Are
inverse

Property 2Property 1

R

Is
transitive

Property 1

RR

Are
équivalent

Class2Class1  
Figure 4 –MOT standard equivalents 

     Using a limited set of graphic symbols, we can 
describe formally any semi-formal MOT model that is 
amenable to a representation in descriptive logic. This is 
obviously the case for most conceptual models, laws and 
theory models. Less evident in the case of procedural 
models, sometimes called task ontologies. Procedural 
and process/methods models are important for our 
purpose because learning environments are built around 
multi-actor processes.  
     Figure 5 presents a MOT+OWL graph that translates 
conceptual structure of a learning design presented in the 
IMS-LD information model [24]. On the figure, “C” 
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properties are an abbreviation for “is-composed-of” 
which has the same meaning as the C link in standard 
MOT models, or the aggregation link in UML 
models. 

 
Figure 5 – A simple task ontology for multi-actor 

     This example illu fact that functional 

eoretically sufficient 

igns 
     Such  

first developed 

roles are represented by different kinds of 

scenarios 
strates the 

relations between components of multi-actor 
processes such as a learning design can be 
represented by ontologies. Such ontologies have been 
used to test, for example, the conformance of 
particular learning designs to the IMD-LD XML 
schema [25], and to execute them in the context of an 
ontology-driven system. 
     Even though ontologies are th
to describe multi-actor processes and learning 
designs formally and computationally, we need to 
take in consideration usability, implementation and 
deployment issues. In other words, we need 
alternative representations of task ontologies that are 
not only formal but also transparent to user and 
useful to support the design and delivery of learning 
and knowledge management environments.  

1.5. 4. Representing Multi-Actor 
Workflows and Learning Des
representations exist in workflows models

such as BPMN, the Business Process Modeling 
Notation [25] and in some instructional design 
graphic software such as LAMS [26], and our own 
MISA scenarios using the standard MOT editor. 
Unfortunately, these representations are either 
informal like LAMS, semi-formal like MOT, or they 
are incomplete for learning design modeling, such as 
BPMM Workflow models. BPMM place all the 
emphasis on the flow of control in a process, but not 

on the resources or the knowledge used or produced 
during the learning delivery process. 
     To address this problem, we have 
another MOT specialization: a graphic modeling editor 
for the IMS-LD specification (level A). Many examples 
of learning designs have been produced by different 
groups using this editor3. Figure 6 shows part of a simple 
example of a learning unit on solar astronomy presented 
recently at a workshop [27]. We see from this example 
that an act and its learning and support activities are 
represented as MOT procedures. So are method, plays 
and acts in other parts of the model. The kind or sub-type 
of each procedure is indicated by little label at the right 
lower corner below the ovals representing the 
procedures.  
     Similarly, 
MOT principles. Environments, learning objects, 
services and outcomes are represented by different kinds 
of MOT concepts. In this case, standard MOT links are 
used and C, P, R and I/P links are sufficient to cover all 
the components of a standard IMS-LD learning design. 

 
Figure 6 – An example of a MOT+LD learning design  

   

30], we have discussed briefly the strengths and 

                                                          

   The MOT+LD editor is presented with some detail in
[28]. It enables a designer to build graphically a standard 
IMS-LD model, which is an instance of the IMS-LD task 
ontology presented on figure 5. Afterwards, the graph is 
validated and exported as an instance of the IMS-LD 
XML schema. This XML file can be read in form-based 
editors such as RELOAD [29], if level B and C 
conditions or notifications need to be specified. The 
XML can then be run by IMS-LD compliant players or 
platforms to deliver on-line learning sessions to their 
users. 
     In [
weaknesses of the IMS-LD educational modeling 
specification. One of them is the absence of knowledge 
representation, which is central to learning and 
knowledge management that seek to support by the 
TELOS system. We have proposed to improve that by 

 
3 These examples are available in the IDLD portal, at www.idld.org.  
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the semantic annotation of the activities, resources 
and roles included in a learning design. A semantic 
annotation is a mapping from the ontology to the 
learning design that associates knowledge elements 
to the components of the design.  

5. Towards a function editor for resource 
aggregation 
Another aspect of IMS-LD we need to improve is 

t

ss that and provide a basis to build a 
f

d the MOT+LD editor 

 editor uses four kinds of MOT 

he control structure of the workflow, that is actually 
covered by level B and C specifications where 
properties and conditions can be included in the 
design to alter the flow of activities, notify an actor or 
present a resource depending on previous actions or 
results stored in a user and group file or model. This 
aspect may not be that important in open learning 
environments where a total or large degree of liberty 
is left to the learner and facilitators, but for a business 
workflow in an organization, or to aggregate software 
components into larger resources, it is an important 
dimension.  
     To addre
unction editor for the TELOS system, the notion of 

function maps has been defined as a central piece of 
the TELOS architecture [31, 32]. Then a comparative 
analysis has been made between business workflows, 
IMS-LD learning designs and function maps [33], 
which has lead to the identification of 21 control 
situations for workflows encountered in software 
engineering literature [34].  
      Based on this work an
discussed in section 4, we have designed a new 
MOT-based graphic editor. The Function Editor aims 
to generalize IMS-LD and capture the main aspects 
of business workflows. The graphs produced by this 
editor can be used as executable interfaces (or help 
define them) for concrete actors to enact the activities 
and use/produce resources at delivery time. It will 
also to serve to orchestrate actors, activities and other 
resources, a fundamental principle built in the 
TELOS system. 
     The Function
objects with subtypes taken from the TELOS 
technical ontology [35]. These are shown on figure 7. 
Concept symbols represent all kinds of resources: 
documents, tools, semantic resources, environments, 
resource-actors, resource-activities and datatypes. 
Procedure symbols represent activities, including 
function models or commonly used operation 
templates to be embedded in other activities. Finally, 
principles are used both to represent different types 
of actors (as control agents) and control conditions. 
These two kinds of control entities are represented 
here by different symbols. The actor’s symbols are 
active agents representing users, groups, roles or 
software agents that enact the activities using and 

producing resources as planned by the function model. 
Conditions are control element inserted within the basic 
flow to decide on the following activities that can be 
activated.    
 

 
Figure 7– Function Editor Symbols 

    On figu  of these re 8, we see a combination of some
symbols where a coordinator writes the plan of a 
document in activity-0. Then three activities are 
performed by writers. When these are terminated a Web 
site grouping the different parts is built using a Web 
editor, and this site is annotated semantically by the 
group. The basic control flow is shown by P links and it 
is altered by R links. The data flow is shown by IP links. 
 

 
    Figure 8– A simple function model 

    Figure activity-

ition that alters 

 8 shows a general split condition after 
0. After that, activities 1, 2 and 3 are executed in parallel, 
controlled by the properties of the split condition object. 
Later on, the flow of activities merges through the merge 
condition object before activity M+1 takes control. This 
activity will wait for some or all the incoming flows to 
be activated before it is executed, again based on the 
properties of the merge condition object. 
     Figure 9 shows another kind of cond
the flow of execution. In activity-2, if a time-event 
condition is met, the flow of control will not move to 
activity-3 but to activity-4 and continue, when 
completed, to activity-5. Properties of the event 
condition symbol will provide the details on the 
condition and action parts of the control principle to 
provide the execution engine with a clear formal 
definition of the processing to take place. 
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Figure 9– Event-based control 

     In the Function Editor, we see a combination of a 
control flow and a data flow. The control flow is 
modeled using the MOT basic P and R links. P links 
are used for the basic line of execution. R links 
identify at which activities an event will trigger a 
condition to alter the basic flow of control or identify 
the activities controlled by an actor. 
     IP links from MOT serve to model the data flow, 
either from resources to activities where they are 
consulted, used or processed, or from activities to 
produced resources. This is why we need to 
distinguish between actors as active control entities 
and resource-actors that will serve as data provider or 
be products of an activity (e.g. a new person of 
software agent added in a system). A similar 
distinction is made for resource-activities that can be 
seen as resources to be transformed, for example by 
other activities creating or modifying their 
description. 
     C links from MOT may also be used to show the 
composition an entity into other entities A new 
unification U link is also necessary to guide the 
execution engine when components are aggregated.  
     In TELOS, the function editor will enable 
engineers to combine resources into larger one, 
technologist to built platform workflows for 
designers of learning or knowledge management 
environments, designers to build courses or work 
designs or scenarios. 
    Together with an ontology editor that provides 
semantic annotations of the components of function 
models, the function editor will enable the graphic 
definition and execution of the main components of 
TELOS systems and applications.   

Conclusion: Properties of the Knowledge 
Representation Paradigm 
We now conclude this presentation by discussing the 
properties of  representation languages that have been 
found most useful. 
     Graphic. The benefits of graphical cognitive 
modelling have been eloquently summarized by 
Ausubel, [36], Dansereau [37]  and Jonassen [38]. 
Graphs illustrate relationships among components of 
complex phenomena. They uncover the complexity 
of actors’ interactions. They facilitate the 

communication about the reality studied. They favour the 
global comprehension of studied phenomena. They help 
grasp the structure of related ideas by minimizing the use 
of ambiguous natural language texts. As an example, 
entity-relation graphs reduce ambiguity compared to a 
natural language description, but some remain on the 
interpretation of the terms written on the links or on the 
nodes. Ambiguity can be reduced further by the use of 
standardized typed objects and typed links. 
     User-friendliness. Not all graphic modeling 
languages are user-friendly. A good counter-example is 
UML. The large number models and symbols require 
considerable expertise for the interpretation and for the 
construction of the model of a system. Furthermore, each 
type of model captures a different viewpoint on the 
information and it is impossible to mix them in the same 
graph to provide a global view of a subject domain. The 
representation system must be easy to use without 
technical or scientific mastery after a short period of 
initiation. Dansereau and Holley [39] have studied 
experimentally the use of different sets of graphic 
symbols by learners. Their results show that typed links 
are preferred by the majority of learner, as long as there 
are not two few nor two many types of links and they are 
clearly differentiated with well-defined meanings. 
     General. Generality means that the representation 
language should have the capacity to represent, with a 
relatively small number of objects and link categories, 
knowledge in very different subject domains, at various 
levels of granularity and precision. It should be possible, 
to represent simple models such as a multiplication table, 
up to complex models such as multi-actor workflows, 
rule-based systems, methods and theories. It should also 
be possible to offer equivalent representations to 
commonly used graphs such as conceptual maps, 
semantic networks, flowcharts, decision trees or 
cause/effect diagrams.  .  
     Formalizable. The graphic language should be 
upward compatible from informal graphs, up to semi-
formal and totally unambiguous formal models. At the 
informal level, an integrated representation framework 
facilitates thought organization and communication 
between humans about the knowledge as the graphic 
representation model evolves. Here the process is more 
important than the result. At the other end, the graphic 
language offers more constrained elements to produced 
totally unambiguous descriptions that can be exported to 
set of symbols, such as an XML file, that can be 
processed by computer agents. Here the model is more 
important than the process.  
     Declarative. Graphic language can be procedural or 
declarative. Procedural graphic languages have been 
built in the past, extending flowcharts to promote 
graphical programming that produces code directly. Our 
proposal is to use, as much as possible, a declarative 
graphic language, for a number of reasons. Firstly, it is 
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easier for a person to declare the components of 
his/her knowledge than to describe also the way it 
should be processed. In expert systems for example, 
the execution instructions are not wired-in the 
program, but externalized and made visible in a 
knowledge base on which a general inference engine 
proceeds. Secondly, the same model can be used for 
many different applications, not necessarily the one 
for which the processing has been planned in a 
procedural program. This is done by querying the 
model using an inference engine, in a Prolog-like 
manner. Thirdly, the processing knowledge itself can 
be given declaratively, so that higher order meta-
knowledge, can be also singled-out. This idea is 
similar to structural analysis [40] and it is exactly the 
way we should see the relation between generic skills 
and specific domain knowledge in a competency, as 
meta-knowledge given declaratively, applied to 
domain knowledge. For example, rules for 
diagnosing a component-based system applied to 
models describing a car, a software or a learning 
environment provide a good way to represent generic 
skills and competencies. 
     Standardized. Standardization is an important 
property to enlarge knowledge communication and 
use between persons and/or software agents. At the 
informal level, each model constructed by a person 
must be interpretable by another person. At the 
formal level, the communication capabilities extend 
to software agents. The evolution towards graphic 
versions of standards like IMS-LD for learning 
designs and OWL for ontologies adds wider 
communication capabilities between researchers and 
educators while at the same time adding formal non-
ambiguous interpretation for machine processing. 
     Computable. Computability is a step beyond 
standardization. Not only can the graphic model 
receive a non-ambiguous formal representation that 
can be processed by computer agents, but this formal 
representation is complete (all conclusions are 
guaranteed to be computable) and decidable (all 
computations will finish in finite time). These 
considerations have motivated the construction of the 
MOT+OWL graphic language that is equivalent to 
the OWL-DL XML schema based on descriptive 
logic. OWL-DL ontologies are declarative, and 
standardized by the W3C.  
      
     The team involved in the construction of TELOS4 
is in the process of building a system to assemble 
learning environments guided by the semantic 

                                                           
4 The TEleLearning Operating System is an assembly workbench 
to build on-line learning and knowledge management platform, 
develop in the Canadian LORNET research network, led by the 
author. 

annotation of resources, including the resources used as 
system component. TELOS is ontology-driven which 
means that its blueprint is defined declaratively as a 
technical ontology, and its execution will proceed by 
requests to the ontology. The challenge here is to reduce 
the need for the traditional trade-off between power and 
simplicity, two conditions that should be present for 
better computer-supported educational environments. 
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