

Building Graphical Knowledge Representation Languages

- From Informal to Interoperable Executable Models

Gilbert Paquette
CICE Research Chair, LICEF Research Center, Télé-université/UQAM, Montréal, Canada

gilbert.paquette@licef.teluq.uqam.ca

Abstract

We summarize the evolution of a Graphic Knowledge
representation language developed at our research
center that has served in many applications
throughout the years and, more recently to help
develop the TELOS system. We first underline the
theoretical research on which the language is built.
Then we address the question of standardizing a
knowledge modeling tool, first designed as an
informal thinking aid. One standard specialization of
the language is embedded in a tool to produce OWL
models totally graphically. Another one enables users
to produce standard IMS-LD multi-actor learning
scenarios or workflows. The most recent evolution is
the TELOS function editor that generalizes both IMS-
LD models and business workflow models. We
conclude by discussing the properties of the
representation language that have benn found most
useful.

1.1. Introduction
 The graphic representation formalism that we
present here [1, 2] has been tested for the last 10
years in a vast array of modeling applications in
various contexts. It is used by trainers for corporate
training. Designers or professors use it to prepare
university courses or to propose modeling exercises
to their students. It has served to model processes for
the introduction of IT in a computer-supported high
school, or to model instructional methods or research
projects processes.
 In the first introductory section we discuss the
basis for the graphic knowledge representation
language. In the second one we present the main
characteristics the MOT1 language. Even at this
informal level, the language constitutes a useful tool
for precise definition and communication. In the third
section we present a specialization of the graphic
language to MOT+OWL, to represent domain
knowledge and competencies as ontologies, thus
bringing the representation language at a formal and
computational level. In the fourth and fifth section,

1 This acronym means “Modeling using Object Types”

we address another specialization, first to enable building
standard learning designs, and its generalization to a
functional aggregation editor, a central core component
of the Telelearning Operating System (TELOS)
developed by the LORNET research network.2

1.2. 1. Basis for a Graphical Knowledge
Representation Language

 It is often said that a picture is worth a thousand
words. That is true of sketches, diagrams, and graphs
used in various fields of knowledge. Conceptual maps
are widely used in education to represent and clarify
complex relationships between concepts. Flowcharts
serve as graphical representations of procedural
knowledge or algorithms. Decision trees are another
form of representation used in various fields, particularly
in decision-making or expert systems.
 All these representation methods are useful at an
informal level, as thinking aids and tools for the
communication of ideas, but they have limitations. One
is the imprecise meaning of the links in the model. Non
typed arrows can mean many things, sometimes within
the same graph. Another one is the ambiguity around the
type of entities. Objects, actions on objects and
statements of properties about them are all mixed-up,
which make graph interpretation a fuzzy and risky
business.
 Another difficulty is to combine more than one
representation in the same model. For example, concepts
used in procedural flowcharts as entry, intermediate or
terminal objects could be given a more precise meaning
by developing them in conceptual maps as sub-models of
the procedure. The same is true of procedures present in
conceptual models that could be developed as procedural
sub-models described by flowcharts, combined or not
with decision trees.
 In software engineering, many graphic representation
formalisms have been or are used such as Entity-
Relationship models [3], Conceptual Graphs [4], Object
modelling technique (OMT) [5], KADS [6], or the
Unified Modeling Language (UML) [7]. These
representation systems have been built for the analysis

2 See the LORNET Web site at www.lornet.org

 1

mailto:gilbert.paquette@licef.teluq.uqam.ca

and architectural design of complex information
systems. The most recent ones require the use of up
to eight different kinds of model so the links between
them become rapidly hard to follow without
considerable expertise.
 Our initial goals were different. We needed a
graphic representation system that was both simple
enough to be used by educational specialists who are
not in general computer scientists, let general and
powerful enough to represent the components of
computer-based educational environments and their
relationships.
 There is a consensus in educational science to
distinguish four basic types of knowledge entities
(facts, concepts, procedure and principles), despite
some diversity on the terminology and definitions.
See for example, the work of Merrill [8],
Romiszowski [9], Tennyson [10], and West [11].
This categorization is retained as the basis of the
MOT graphic representation language.
 All four types of knowledge are also considered in
the framework of schema theory. The concept of
schema is the essential idea behind the shift from
behaviourism to cognitivism, a now dominant theory
in psychology and other cognitive sciences, based on
the pioneering ideas of Piaget [12] and Bruner [13].
 In the early seventies, Newell and Simon [14] had
developed, on the same basis, a rule-based
representation of the human problem solving activity,
while Minski [15] had defined the concept of "frame"
as the essential element to understand perception, and
also to reconcile the declarative and procedural views
of knowledge.
 Schemas play a central role in knowledge
construction and learning. They guide perception,
defined as an active, constructive and selective
process. They support memorization skills seen as
processes to search, retrieve or create appropriate
schemas to store new knowledge. They make
understanding possible by the comparison of existing
schema with new information. Globally, through all
these processes, learning is seen as a schema
transformation enacted by higher order processes.
Learning is seen as schema construction and
reconstruction through interaction with the physical,
personal or social world, instead of a simple transfer
of information from one individual to another.
 The distinction between conceptual and
procedural schema has been accepted for a long time
in cognitive science. More recently, a third category
called "conditional or strategic schema" has been
proposed [6]. These schemas have a component that
specifies the context and the conditions to trigger a
set of action or procedures, or to assign values to the
attributes of a concept. These categories map very
well on the existing consensus in educational science.

1.3. 2. The MOT Graphic Knowledge
Editor

 We will now present briefly the syntax and semantic
of the MOT graphic modeling language, based on the
notion of schema. Here, we could use graphs similar to
UML object models to represent the attributes that
describe a schema with different formats according to
their type. In the MOT graphic language [1, 17, 18], we
try to improve the readability and the user-friendliness of
graphs by externalizing the internal attributes of a
schema into other schemas, with proper links to the
original schema. For example, the link between the
schemas “Triangle” and the “Rectangle Triangle” is
shown explicitly using a specialization (S) link from the
later to the former concept. Links between the “Triangle”
concept and its sides or angles attributes is externalized
using a composition (C) link. The links from an input
concept to a procedure and from a procedure to one of its
products are both shown by an input/product (IP) link.
The sequencing between actions (procedures) and/or
conditions (principles) in a procedure is represented by a
precedence (P) link. Finally, the relation between a
principle and a concept that it constrains, or between a
principle and a procedure that it controls, will be
represented by a regulation link (R).
 Using these links, this simple example on triangle
concepts becomes the MOT model on figure 1 where
relations between knowledge entities are transparent,
mixing the types of entities and links.

Figure 1 – A simple MOT model

 Concepts (or classes of objects), procedures (or
classes of actions) and principles (or classes of
statements, properties or rules) are the primitive objects
of the MOT graphical language. The type of the object is
represented by geometrical figures as shown on figure 2,
where each class or individual is represented by a name
within the figure.

Figure 2 – Types of knowledge units in MOT

 2

 These objects are different types of schema
whose attributes are all externalized explicitly and
related to the schema using six kinds of typed links
constrained by the following grammar rules:
1. All abstract knowledge entities or classes

(concepts, procedures, principles) can be related
by an instantiation I link to a set of facts
representing individuals called respectively
examples, traces and statements.

2. All abstract knowledge entities (concepts,
procedures, principles) can be specialized or
generalized to other abstract knowledge using
specialization S links.

3. All abstract knowledge entities (concepts,
procedures, principles) can be decomposed,
using C links into other entities, generally of the
same type.

4. Procedures and principles can be sequenced
together using P links.

5. Concept can be inputs to a procedure using an IP
link to the procedure, or products of a procedure
using an IP link from the procedure.

6. Principles can regulate, using an R link, any
procedure to provide an “external” control
structure, to constrain a concept or a set of
concept by a relation between them, or to
regulate a set of other principles, for example to
decide on conditions of their application.

Figure 3 summarizes these grammar rules of the
MOT graphic language in the form of an abstracted
graph where the nodes represent types of MOT
objects and the arrows are valid link between them.

Figure 3 – The MOT metamodel

 There are various possible semantic interpretations
of these graphic symbols. Concepts can be object
classes (country, clothing, vehicles…), types of
documents (forms, booklets, images), tool categories:
(text editors, televisions…), groups of people
(doctors, Europeans…), event classes (floods,
conferences, …). Procedures can be generic
operations (add numbers, assemble an engine…),
tasks categories (complete a report, supervise
aproduction…), activities (take an exam, teach a

course,…), instructions (follow a recipe, assemble a
device…), or scenarios (of a film, of a meeting, of a
learning module. Principles can state properties of
objects (cars have four wheels), constraints on
procedures (the tasks must be completed within 20 days),
cause/effect relationships (if it rains more than 25 days,
the crop will be in jeopardy), laws (any metal sufficiently
heated will stretch out), theories (the laws of the market
economy); rules of decision (advising on an investment),
prescriptions (medicinal treatment, instructional design
principles), etc.
 With this set of primitive graphic symbols, it has been
possible to build graphic models, from simple to
complex representations of structured knowledge. For
example, we can build representations equivalent to
conceptual maps, flowcharts (including iterative
procedures) and decision trees, and also other types of
models useful for educational modeling such as
processes, methods and theories. All these types of
models have been used in a number of projects since the
first publication of the MOT editor in 1999.
 Of particular interest are two of these categories of
models. The class “processes and methods” includes
instructional design methods such as MISA, which we
have totally described graphically using the MOT editor,
but also the learning scenarios in a course module,
represented by multi-actor process graphs. Another
interesting type of model is “laws and theories” where
models are composed of concepts organized in
specialization hierarchies, with principles defining their
properties and relationships. Particular cases are
ontology models that we use to describe knowledge
domains in TELOS application, or to describe the very
structure of the TELOS system.

1.4. 3. MOT+OWL: A Standardized
Ontology Editor

 Many ways can be used to describe a domain of study
including text-based narratives or informal graphic
models,. At the initial stage of design, the informal
nature of representation is useful. The mind must be free
to choose any representation that seems best suited for
the educational or knowledge management project to be
considered. Still, this very freedom does not facilitate the
software processing of the representation.
 Semi-formal modeling languages like MOT go part of
the way in that direction. Unlike informal graphs built
with any graphic editor such as Powerpoint, the MOT
graphic syntax is structured and has a general
unambiguous semantic. Using the MOT editor, models
can be exported in many formats, including a native
XML schema that software agents can use to perform
different kind of processing. Still, some ambiguity
remains. In instructional engineering applications, we
had to constrain the MOT graphic language even more to
enable the delivery of learning scenarios in a digitized

 3

platform like Explor@-2 [19], Even then, part of the
transfer of the design to the delivery platform had to
be done manually, to prevent enforcing unnatural
graphic representations on the users.
 To deliver computer-based learning environments,
beyond the phase where informal graphic design has
cleared up ideas, we need to move from informal or
semi-formal graphs to formal computable graphic
representations.
 Knowledge in a subject domain can be
represented in many ways: taxonomies, thesauri,
topic maps, conceptual graphs and ontologies. We
have selected to use OWL-DL ontologies [20] for
TELOS applications for a number or reasons. It is
one of the three ontology Web languages that are part
of the growing stack of World Wide Web consortium
recommendations related to the Semantic Web. Of
these three languages, OWL-DL has a wide
expressivity and its foundation in descriptive logic
guarantees its computational completeness and
decidability. Descriptive Logic [21] is an important
knowledge representation formalism unifying and
giving a logical basis to the well known traditions of
frame-based systems, semantic networks, object-
Oriented representations, semantic data models, and
formal specification systems. It thus provides an
interesting framework to represent knowledge.
 OWL-DL provides a precise XML schema but no
graphic representation per se. Some ontology editors
like PROTÉGÉ [22], provide interesting graphical
views of an ontology, but the main operations are
essentially form-based. Our goal was to provide a
complete formal graphic representation of OWL-DL
that could combine the virtues of interactive
construction and still yield a standard format that can
be processed by OWL-DL compliant software.
 In the context of the MOT representation system,
ontologies, in particular OWL-DL constructs,
correspond to a category of models called theories.
Ontologies can thus theoretically be modeled
graphically using the MOT syntax. While doing this,
we found out that although the MOT primitive
objects and links were sufficient to represent
ontologies expressed in OWL-DL, the graphs would
become cumbersome unless new symbols were
added. We have thus specialized the MOT language
and its graphic editor.
 Table 1 gives a few examples of MOT+OWL
graphic elements with their interpretation in
descriptive logic. In OWL, each of these primitive
graphic elements correspond to OWL-DL XML
schema components. See [23] for a complete
description of the MOT+OWL graphic language.

Table 1 - OWL-DL graphic equivalents
Class intersection
∀x: Class3(x)
↔ Class1(x) ∧ Class2(x)

Equivalent classes
∀x: Class1(x) ↔ Class2(x)

Equi Class2Class1

Disjoint classes
∀x: Class1(x) ↔ ¬Class2(x)

Disj Class2Class1

Extension of a class
∀x: Class(x)
↔ (x = Ind 1) ∨...∨ (x= Ind N)

Functional property
∀x,∀y,∀z:
Prop(x,y) ∧ Prop(x,z)) →
y=z

Transitive property
∀x,∀y,∀z:
Prop1(x,y) ∧ Prop1(y,z)
→ Prop1(x,z)

Inverse properties
∀x,∀y: Prop1(x,y) ↔
Prop2(y,x)

 Three types of MOT entities are needed to represent
OWL-DL models. Concepts represent classes, principles
represent properties and facts represent individuals. On
these graphic entities, we add little icons or special links
between them. In the standard MOT syntax, these icons
or special links would be replaced by principles with “R”
links to Classes or Properties. For example, in the second
and the two last examples of table 1, the following
standard graphs would have the same precise OWL-DL
interpretation, but they are less readable and more
difficult for human interpretation.

RR

Are
inverse

Property 2Property 1

R

Is
transitive

Property 1

RR

Are
équivalent

Class2Class1
Figure 4 –MOT standard equivalents

 Using a limited set of graphic symbols, we can
describe formally any semi-formal MOT model that is
amenable to a representation in descriptive logic. This is
obviously the case for most conceptual models, laws and
theory models. Less evident in the case of procedural
models, sometimes called task ontologies. Procedural
and process/methods models are important for our
purpose because learning environments are built around
multi-actor processes.
 Figure 5 presents a MOT+OWL graph that translates
conceptual structure of a learning design presented in the
IMS-LD information model [24]. On the figure, “C”

 4

properties are an abbreviation for “is-composed-of”
which has the same meaning as the C link in standard
MOT models, or the aggregation link in UML
models.

Figure 5 – A simple task ontology for multi-actor

 This example illu fact that functional

eoretically sufficient

igns
 Such

first developed

roles are represented by different kinds of

scenarios
strates the

relations between components of multi-actor
processes such as a learning design can be
represented by ontologies. Such ontologies have been
used to test, for example, the conformance of
particular learning designs to the IMD-LD XML
schema [25], and to execute them in the context of an
ontology-driven system.
 Even though ontologies are th
to describe multi-actor processes and learning
designs formally and computationally, we need to
take in consideration usability, implementation and
deployment issues. In other words, we need
alternative representations of task ontologies that are
not only formal but also transparent to user and
useful to support the design and delivery of learning
and knowledge management environments.

1.5. 4. Representing Multi-Actor
Workflows and Learning Des
representations exist in workflows models

such as BPMN, the Business Process Modeling
Notation [25] and in some instructional design
graphic software such as LAMS [26], and our own
MISA scenarios using the standard MOT editor.
Unfortunately, these representations are either
informal like LAMS, semi-formal like MOT, or they
are incomplete for learning design modeling, such as
BPMM Workflow models. BPMM place all the
emphasis on the flow of control in a process, but not

on the resources or the knowledge used or produced
during the learning delivery process.
 To address this problem, we have
another MOT specialization: a graphic modeling editor
for the IMS-LD specification (level A). Many examples
of learning designs have been produced by different
groups using this editor3. Figure 6 shows part of a simple
example of a learning unit on solar astronomy presented
recently at a workshop [27]. We see from this example
that an act and its learning and support activities are
represented as MOT procedures. So are method, plays
and acts in other parts of the model. The kind or sub-type
of each procedure is indicated by little label at the right
lower corner below the ovals representing the
procedures.
 Similarly,
MOT principles. Environments, learning objects,
services and outcomes are represented by different kinds
of MOT concepts. In this case, standard MOT links are
used and C, P, R and I/P links are sufficient to cover all
the components of a standard IMS-LD learning design.

Figure 6 – An example of a MOT+LD learning design

30], we have discussed briefly the strengths and

 The MOT+LD editor is presented with some detail in
[28]. It enables a designer to build graphically a standard
IMS-LD model, which is an instance of the IMS-LD task
ontology presented on figure 5. Afterwards, the graph is
validated and exported as an instance of the IMS-LD
XML schema. This XML file can be read in form-based
editors such as RELOAD [29], if level B and C
conditions or notifications need to be specified. The
XML can then be run by IMS-LD compliant players or
platforms to deliver on-line learning sessions to their
users.
 In [
weaknesses of the IMS-LD educational modeling
specification. One of them is the absence of knowledge
representation, which is central to learning and
knowledge management that seek to support by the
TELOS system. We have proposed to improve that by

3 These examples are available in the IDLD portal, at www.idld.org.

 5

http://www.idld.org/

the semantic annotation of the activities, resources
and roles included in a learning design. A semantic
annotation is a mapping from the ontology to the
learning design that associates knowledge elements
to the components of the design.

5. Towards a function editor for resource
aggregation
Another aspect of IMS-LD we need to improve is

t

ss that and provide a basis to build a
f

d the MOT+LD editor

 editor uses four kinds of MOT

he control structure of the workflow, that is actually
covered by level B and C specifications where
properties and conditions can be included in the
design to alter the flow of activities, notify an actor or
present a resource depending on previous actions or
results stored in a user and group file or model. This
aspect may not be that important in open learning
environments where a total or large degree of liberty
is left to the learner and facilitators, but for a business
workflow in an organization, or to aggregate software
components into larger resources, it is an important
dimension.
 To addre
unction editor for the TELOS system, the notion of

function maps has been defined as a central piece of
the TELOS architecture [31, 32]. Then a comparative
analysis has been made between business workflows,
IMS-LD learning designs and function maps [33],
which has lead to the identification of 21 control
situations for workflows encountered in software
engineering literature [34].
 Based on this work an
discussed in section 4, we have designed a new
MOT-based graphic editor. The Function Editor aims
to generalize IMS-LD and capture the main aspects
of business workflows. The graphs produced by this
editor can be used as executable interfaces (or help
define them) for concrete actors to enact the activities
and use/produce resources at delivery time. It will
also to serve to orchestrate actors, activities and other
resources, a fundamental principle built in the
TELOS system.
 The Function
objects with subtypes taken from the TELOS
technical ontology [35]. These are shown on figure 7.
Concept symbols represent all kinds of resources:
documents, tools, semantic resources, environments,
resource-actors, resource-activities and datatypes.
Procedure symbols represent activities, including
function models or commonly used operation
templates to be embedded in other activities. Finally,
principles are used both to represent different types
of actors (as control agents) and control conditions.
These two kinds of control entities are represented
here by different symbols. The actor’s symbols are
active agents representing users, groups, roles or
software agents that enact the activities using and

producing resources as planned by the function model.
Conditions are control element inserted within the basic
flow to decide on the following activities that can be
activated.

Figure 7– Function Editor Symbols

 On figu of these re 8, we see a combination of some
symbols where a coordinator writes the plan of a
document in activity-0. Then three activities are
performed by writers. When these are terminated a Web
site grouping the different parts is built using a Web
editor, and this site is annotated semantically by the
group. The basic control flow is shown by P links and it
is altered by R links. The data flow is shown by IP links.

 Figure 8– A simple function model

 Figure activity-

ition that alters

 8 shows a general split condition after
0. After that, activities 1, 2 and 3 are executed in parallel,
controlled by the properties of the split condition object.
Later on, the flow of activities merges through the merge
condition object before activity M+1 takes control. This
activity will wait for some or all the incoming flows to
be activated before it is executed, again based on the
properties of the merge condition object.
 Figure 9 shows another kind of cond
the flow of execution. In activity-2, if a time-event
condition is met, the flow of control will not move to
activity-3 but to activity-4 and continue, when
completed, to activity-5. Properties of the event
condition symbol will provide the details on the
condition and action parts of the control principle to
provide the execution engine with a clear formal
definition of the processing to take place.

 6

Figure 9– Event-based control

 In the Function Editor, we see a combination of a
control flow and a data flow. The control flow is
modeled using the MOT basic P and R links. P links
are used for the basic line of execution. R links
identify at which activities an event will trigger a
condition to alter the basic flow of control or identify
the activities controlled by an actor.
 IP links from MOT serve to model the data flow,
either from resources to activities where they are
consulted, used or processed, or from activities to
produced resources. This is why we need to
distinguish between actors as active control entities
and resource-actors that will serve as data provider or
be products of an activity (e.g. a new person of
software agent added in a system). A similar
distinction is made for resource-activities that can be
seen as resources to be transformed, for example by
other activities creating or modifying their
description.
 C links from MOT may also be used to show the
composition an entity into other entities A new
unification U link is also necessary to guide the
execution engine when components are aggregated.
 In TELOS, the function editor will enable
engineers to combine resources into larger one,
technologist to built platform workflows for
designers of learning or knowledge management
environments, designers to build courses or work
designs or scenarios.
 Together with an ontology editor that provides
semantic annotations of the components of function
models, the function editor will enable the graphic
definition and execution of the main components of
TELOS systems and applications.

Conclusion: Properties of the Knowledge
Representation Paradigm
We now conclude this presentation by discussing the
properties of representation languages that have been
found most useful.
 Graphic. The benefits of graphical cognitive
modelling have been eloquently summarized by
Ausubel, [36], Dansereau [37] and Jonassen [38].
Graphs illustrate relationships among components of
complex phenomena. They uncover the complexity
of actors’ interactions. They facilitate the

communication about the reality studied. They favour the
global comprehension of studied phenomena. They help
grasp the structure of related ideas by minimizing the use
of ambiguous natural language texts. As an example,
entity-relation graphs reduce ambiguity compared to a
natural language description, but some remain on the
interpretation of the terms written on the links or on the
nodes. Ambiguity can be reduced further by the use of
standardized typed objects and typed links.
 User-friendliness. Not all graphic modeling
languages are user-friendly. A good counter-example is
UML. The large number models and symbols require
considerable expertise for the interpretation and for the
construction of the model of a system. Furthermore, each
type of model captures a different viewpoint on the
information and it is impossible to mix them in the same
graph to provide a global view of a subject domain. The
representation system must be easy to use without
technical or scientific mastery after a short period of
initiation. Dansereau and Holley [39] have studied
experimentally the use of different sets of graphic
symbols by learners. Their results show that typed links
are preferred by the majority of learner, as long as there
are not two few nor two many types of links and they are
clearly differentiated with well-defined meanings.
 General. Generality means that the representation
language should have the capacity to represent, with a
relatively small number of objects and link categories,
knowledge in very different subject domains, at various
levels of granularity and precision. It should be possible,
to represent simple models such as a multiplication table,
up to complex models such as multi-actor workflows,
rule-based systems, methods and theories. It should also
be possible to offer equivalent representations to
commonly used graphs such as conceptual maps,
semantic networks, flowcharts, decision trees or
cause/effect diagrams. .
 Formalizable. The graphic language should be
upward compatible from informal graphs, up to semi-
formal and totally unambiguous formal models. At the
informal level, an integrated representation framework
facilitates thought organization and communication
between humans about the knowledge as the graphic
representation model evolves. Here the process is more
important than the result. At the other end, the graphic
language offers more constrained elements to produced
totally unambiguous descriptions that can be exported to
set of symbols, such as an XML file, that can be
processed by computer agents. Here the model is more
important than the process.
 Declarative. Graphic language can be procedural or
declarative. Procedural graphic languages have been
built in the past, extending flowcharts to promote
graphical programming that produces code directly. Our
proposal is to use, as much as possible, a declarative
graphic language, for a number of reasons. Firstly, it is

 7

easier for a person to declare the components of
his/her knowledge than to describe also the way it
should be processed. In expert systems for example,
the execution instructions are not wired-in the
program, but externalized and made visible in a
knowledge base on which a general inference engine
proceeds. Secondly, the same model can be used for
many different applications, not necessarily the one
for which the processing has been planned in a
procedural program. This is done by querying the
model using an inference engine, in a Prolog-like
manner. Thirdly, the processing knowledge itself can
be given declaratively, so that higher order meta-
knowledge, can be also singled-out. This idea is
similar to structural analysis [40] and it is exactly the
way we should see the relation between generic skills
and specific domain knowledge in a competency, as
meta-knowledge given declaratively, applied to
domain knowledge. For example, rules for
diagnosing a component-based system applied to
models describing a car, a software or a learning
environment provide a good way to represent generic
skills and competencies.
 Standardized. Standardization is an important
property to enlarge knowledge communication and
use between persons and/or software agents. At the
informal level, each model constructed by a person
must be interpretable by another person. At the
formal level, the communication capabilities extend
to software agents. The evolution towards graphic
versions of standards like IMS-LD for learning
designs and OWL for ontologies adds wider
communication capabilities between researchers and
educators while at the same time adding formal non-
ambiguous interpretation for machine processing.
 Computable. Computability is a step beyond
standardization. Not only can the graphic model
receive a non-ambiguous formal representation that
can be processed by computer agents, but this formal
representation is complete (all conclusions are
guaranteed to be computable) and decidable (all
computations will finish in finite time). These
considerations have motivated the construction of the
MOT+OWL graphic language that is equivalent to
the OWL-DL XML schema based on descriptive
logic. OWL-DL ontologies are declarative, and
standardized by the W3C.

 The team involved in the construction of TELOS4
is in the process of building a system to assemble
learning environments guided by the semantic

4 The TEleLearning Operating System is an assembly workbench
to build on-line learning and knowledge management platform,
develop in the Canadian LORNET research network, led by the
author.

annotation of resources, including the resources used as
system component. TELOS is ontology-driven which
means that its blueprint is defined declaratively as a
technical ontology, and its execution will proceed by
requests to the ontology. The challenge here is to reduce
the need for the traditional trade-off between power and
simplicity, two conditions that should be present for
better computer-supported educational environments.

References

[1] Paquette G. (1996) La modélisation par objets typés: une
méthode de représentation pour les systèmes d’apprentissage et
d’aide à la tâche. Sciences et techniques éducatives, pp. 9-42,
avril 1996

[2] Paquette G. (2002) TeleLearning Systems Engineering –
Towards a new ISD model. Journal of Structural Learning 14,
pp. 1-35

[3] Chen, P.P.S (1976) The Entity-Relationship model - toward
a unified view of data. ACM Transactions on Database
Systems I, 1

[4] Sowa, J.F. (1984) Conceptual Structures, Information
Processing in Mind and Machine, Addison-Wesley Pubilishing
Co, Reading, Mass, 481 pages

[5] Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen
W. (1991). Object-Oriented Modelling and Design. Prentice
Hall, Englewood Cliffs, New Jersey,

[6] Schreiber G., Wielinga B., Breuker J. (1993) KADS – A
Principled Approach to Knowledge-based System
Development. San Diego : Academic Press. 457 pp, 1993Sowa,
J. (1984)

[7] Booch.G., Jacobson, J. & Rumbaugh, I. (1999) The Unified
Modeling Language User Guide. Addison-Wesley, 512 pages.

[8] Merrill M.D (1994). Principles of Instructional Design.
Educational Technology Publications, Englewood Cliffs, New
Jersey, 465 pages.

[9] Romiszowski A. J. (1981) Designing Instructional Systems.
Kogan Page London/Nichols Publising, New York, 415 pages.

[10] Tennyson, R. & Rasch, M. (1988) Linking cognitive
learning theory to instructional prescriptions. Instructional
Science, 17, pp. 369-385
[11] West West C. K., Farmer J. A., Wolff P. M.. Instructional
Design, Implications from Cognitive Science. Allyn and
Bacon, Boston, 271 pages, 1991
[12] Inhelder, B & J. Piaget. (1958) The growth of logical
thinking from childhood to adolescence. New York: Basic
Books

[13] Bruner, J.S. (1973) Beyond the information given. New
York, Norton.

[14] Newell A & Simon H. Human problem solving. (1972)
Englewood Cliffs, NF: Prentice-Hall.

 8

[15] Minski M.. A framework for reprsenting knowledge
(1975). In P. H. Winston (ED.), The psychology of
computer vision. New York: McGraw-Hill

[16] Paris S., Lipson M.Y., & Wixson K.K. (1983)
Becoming a strategic reader. Contemporary Educational
Psychology, 8, 293-31Pitrat 1990)

[17] Paquette, G. (1999) Meta-knowledge Representation
for Learning Scenarios Engineering. Proceedings of AI-
Ed’99 in AI and Education, open learning environments, S.
Lajoie et M. Vivet (Eds), IOS Press, 1999.

[18] Paquette (2003) Paquette, G. Instructional
Engineering for Network-Based Learning. Pfeiffer/Wiley
Publishing Co, 262 pages.

[19] Paquette G. (2001). Designing Virtual Learning
Centers. In H. Adelsberger, B. Collis, J. Pawlowski (Eds)
Handbook on Information Technologies for Education &
Training within the Springer-Verlag series "International
Handbook on Information Systems", (pp. 249-272).

[20] W3C (2004) OWL Overview Document
(http://www.w3.org/TR/2004/REC-owl-features-
20040210/)

[21] Baader, F., D. Calvanese, D.McGuinness, D. Nardi,
P,Patel-Schneider, editors (2003) The Description Logic
Handbook. Cambridge University Press.

[22] PROTÉGÉ, description and download available at :
http://protege.stanford.edu/

 [23] Paquette G. and Rogozan D. Primitives de
représentation OWL-DL - Correspondance avec le langage
graphique MOT+OWL et le langage des prédicats du
premier ordre. TELOS documentation. LICEF Research
Center. Montreal, Québec.

[24] IMS-LD (2003). IMS Learning Design. Information
Model, Best Practice and Implementation Guide, Binding
document, Schemas. Retrieved October 3, 2003, from
http://www.imsglobal.org/learningdesign/index.cfm

[25] Amorim R., Lama, M. and Sanchez, E (2006) Using
Ontologies to model and execute IMS Learning Design
Documents, Proceedings othe the 6th IEE International
Conference on Adavance Learning Technologies, pp.115-
116, Kerkrade, The Netherlands, July 5-7, 2006.

[26] Dalziel, J.R. (2005) LAMS. Learning Activity
Management System 2.0.
http://wiki.oamsfoundation.org/display/lams/Home.

[26] OMG (2006) Business Process Modeling Notation
(BPMM). http://www.bpmn.org/ last retrieve, July 24, 2006

[27] Paquette and Léonard (2006) The Educational
Modeling of a Collaborative Game using MOT+LD.
Proceedings othe the 6th IEE International Conference on
Advanced Learning Technologies, pp.115-116, Kerkrade,
The Netherlands, July 5-7, 2006

[28] Paquette, G. M.Léonard, K. Lundgren-Cayrol, S.
Mihaila and D. Gareau. (2006) Learning Design based on

Graphical Knowledge-Modeling , Journal of Educational
technology and Society ET&S , Special issue on Learning
Design, January 2006 and Proceedings of the UNFOLD-
PROLEARN Joint Workshop, Valkenburh, The Netherlands,
September 2005 on Current Research on IMS Learning Design.

[29] RELOAD (2005) RELOAD editor and player,
http://www.reload.ac.uk/ last retrieved July 24, 2006

[30] Paquette G. and O. Marino (2005), “Learning Objects,
Collaborative Learning Designs and Knowledge
Representation”, in Technology, Instruction., Cognition and
Learning , Vol. 3, p.85-108, Old City Publishing, Inc.

[31] Rosca I (2005) TELOS Conceptual Architecture, version
0.5. LORNET Technical Documents, LICEF research centrer,
Télé-université, Montreal.

[32] Paquette, G., Rosca. I, Mihaila S. and Masmoudi A. (2006
in press) TELOS, a Service-Oriented Framework to Support
Learning and Knowledge Management, in S. Pierre (Ed) E-
Learning Networked Environments and Architectures: a
Knowledge Processing Perspective, Springer-Verlag

 [33] Marino O. et al., Bridging the Gap between e-learning
Modeling and Delivery through the Transformation of
Learnflows into Workflows , in S. Pierre (Ed) E-Learning
Networked Environments and Architectures: a Knowledge
Processing Perspective, Springer-Verlag.

[34] Correal. D., Marino O., Software Requirements
Specification Document for General Purpose Function’s Editor
(V0.4), LORNET Technical Documents, LICEF research
centrer, Télé-université, Montreal.

[35] Magnan, F. and Paquette, G. (2006) TELOS: An ontology
driven eLearning OS, SOA/AIS-06 Workshop, Dublin, Ireland,
June 2006

[36] Ausubel, D. P. (1968) Educational Psychology; A
cognitive view. New York, Rhinehart & Winston.

[37] Dansereau D.F. (1978) The development of a learning
strategies curriculum. In H. F. O’Neil Jr., (ED.) Learning
strategies. New York: Academic Press. Davies,

[38] Jonassen D.H., Beissner K., & Yacci M. (1993) Structural
Knowledge – Techniques for Representing, Conveying and
Acquiring Structural Knowledge. Laurence Earlbaum
Associates, New Jersey, 265 pages.

[39] Dansereau D.F. & Holley, C.D. (1982) Development and
evaluation of a text mapping strategy. In A. Flammer & W
Kintsch (eds.), Discourse Processing. Amsterdam: North
Holland.

[40] Scandura, J.M. (1973) Strutural Learning I: Theory and
research. London/New York: Gordon & Breach science
Publishers

 9

http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://books.cambridge.org/0521781760.htm
http://books.cambridge.org/0521781760.htm
http://protege.stanford.edu/
http://www.imsglobal.org/learningdesign/index.cfm
http://wiki.oamsfoundation.org/display/lams/Home
http://www.bpmn.org/
http://www.reload.ac.uk/

