

Designing and Communicating Ontologies
Visually
Gilbert Paquette1 [0000-0002-2898-3462] and Michel Héon2 [0000-0001-7515-6382]
1 LICEF Research Institute, Université TELUQ, Montreal, Canada, gilbert.paquette@licef.ca
2 Cotechnoe Inc and UQAM Université du Québec à Montréal, Montréal, Canada, heon@cotechnoe.com

Abstract. In this paper we discuss ways to support the Ontology Engineering process by providing a Visual Language for
OWL 2 ontologies. We examine eight proposals for an ontology visual language stemming from Semantic Web research, in-
cluding our own Visual Ontology Language that has evolved from our MOT semi-formal visual language. The MOT-OWL
visual language implements the visual typing of ontology entities and links, and also the use of polysemy between these ele-
ments to increase the readability and manageability of the visual models. Then we compare this visual notation and other Visual
Ontology Languages using principles from the Physics of Notation Theory. This comparison helps us identify improvements
that are being implemented in our more recent visual language, G-OWL, based on a systematic meta-modeling effort.

Keywords: Ontology, OWL-2, Knowledge Representation, Visual Ontology Language, Ontology Engineering, Ontology
Readability.

1. Introduction – Ontology Languages

Ontology languages are central for the implemen-
tation of the Semantic Web, a field of information
technology in which Symbolic Artificial Intelligence
and Web Technologies converge. The Semantic Web
is based on shared formal knowledge representations
that can evolve and on software agents that can ma-
nipulate these representations. “For the semantic web
to function, computers must have access to structured
collections of information and sets of inference rules
that they can use to conduct automated reasoning.”
[2]. Thus, a central purpose of the Semantic Web is to
introduce explicit descriptions about the meaning of
web resources, to increase computer understanding of
the Web’s content.

 The representation of knowledge in the Seman-
tic Web is based on the concept of an ontology. As
defined by the OMG [27], “An ontology defines the
common terms and concepts (meaning) used to de-
scribe and represent an area of knowledge. An ontol-
ogy can range in expressivity from a simple Taxon-
omy (knowledge with minimal hierarchy or a par-

ent/child structure), to a Thesaurus (words and syno-
nyms), to a Conceptual Model with more complex
knowledge, to a Logical Theory with very rich, com-
plex, consistent, and meaningful knowledge”. More
expressive knowledge representation enables more
sophisticated reasoning capabilities and more intelli-
gent behaviors of information agents, humans and
machines. The Web Ontology Language (OWL), on
which we will focus in this article, is at a high level
of expressivity, thus providing a rich reasoning capa-
bility without risking the applications to become un-
computable if higher level languages were used. The
different dialects of OWL are based on Description
Logics, which are subsets of First Order Logic (FOL).
OWL ontologies are schemas that can process Re-
source Description Framework /Schema (RDF/S) tri-
ples. By combining such triples, the instances of the
ontology can be envisioned as a Knowledge graph
that represents a domain of knowledge (meaning and
fact).

 First, we have to make an important distinction
between two main orientations in the use of visual on-
tologies. The first approach aims at the visual repre-
sentation of large sets of data to uncover a set classes

2

organisation and some semantics to organize the data.
The second one is dedicated to model extensively an
area of knowledge providing its semantics and data
organization, which can be used to generate new data
sets. While both approaches are complementary, the
choice of a focus will determine the kinds of visual
symbols in the Visual Ontology Language. Our focus
in this article is on the second top-down approach
from the ontology to its data instantiation.

1.1. Ontology Engineering

Our goal in building Visual Ontology Modeling
Languages is to support content expert and ontology
designers involved in Ontological Engineering. This
discipline groups a set of design principles, develop-
ment processes, tools and systematic methods to fa-
cilitate ontology development and use. According to
Mizoguchi and Kitamura [22], knowledge engineer-
ing for an intelligent system should always include
ontology development tools and methodologies.

 Several Ontology Engineering methodologies
have been reported in the literature from surveys such
as those in [6, 17, 35] propose a series of precise steps
in the ontology-building process. The Methontology
framework [11] is a pioneering comprehensive meth-
odology that requires the definition and standardiza-
tion of the entire ontology life cycle from the specifi-
cation of the ontology requirements, the identification
of the ontology development process based on evolv-
ing prototypes, the steps, techniques, products and
evaluation procedures for each prototype and the final
deployment and maintenance process of the ontology.
Methontology recognizes the importance of
knowledge acquisition, a long process working with
domain experts, particularly important in the early
phases of specification and conceptualization of the
ontology.

 Considering ontology development methodolo-
gies, one can understand the criticality of an efficient
ontology development environment and the use of
tools to help manage the various versions of the on-
tology, convert them in other formats and languages
and evaluate and link ontologies from various
sources.

 Protégé is the leading ontology development
editor and environment that supports most ontology
engineering tasks and several ontology languages,
such as OWL and RDF(S). Protégé [33], as well as

other ontology development environments such as
TopBraid [36] or Neon Toolkit [14] are basically
form-based editors with a sophisticated user interface
where the user can describe a class-subclass hierarchy
in one view, then moves to other view to edit the clas-
ses and their associated properties. Properties can be
described in still another view and in another one, as-
sertions can be made or inferred by triggering a rea-
soning tool, for example Pellet or HermiT. The infer-
ence mechanisms integrated as plug-ins in Protégé fa-
cilitate the validation of the ontology and the discov-
ery on unexpected discrepancies.

 Building an ontology is a delicate and hard task
and a global visual view of the knowledge graph with
various specialized view is essential. Separating
class, properties, and individuals in different forms
blurs the necessary integrated view of an ontology.
Some plug-ins have been added to Protégé to visual-
ize ontologies, but they provide incomplete visualiza-
tion support. A comparative survey of many other
tools and environment for building ontologies [9] has
also identified the fact that there is a lot of room for
improvement in all these environments.

 As Gasevic [12] pointed out: “Many users
would like friendlier visual/spatial navigation among
concept trees/graphs and relations, more options for
using reasoning facilities to help explore, compose,
and check ontologies, more features for aligning on-
tologies with one another, and tools that would help
integrate ontologies with other data resources such as
enterprise databases. The desirable improvements
also include support for natural-language processing
and collaborative development”.

 The overall sentiment expressed by users of the
various ontology development environments clearly
reflect the need for facilitating the use of such ontol-
ogy tools by domain experts and casual ontology us-
ers, not only by specialized ontologists. Providing a
visual language and editor for designing OWL ontol-
ogies aims at his goal.

1.2. Textual and Visual Ontology Languages

We will now point out some of the attributes that
distinguish a visual language from a textual language.
First, let us underline that all the ontology standards
adopted by World Wide Web Consortium (W3C) are
textual languages. From the beginning, despite its
RDF and RDFS graph basis, the main preoccupation

3

of the W3C has been to enable machine readability
for the use on ontologies in software applications.
Thus far, the formal concrete syntaxes for
OWL recommended by the W3C, such as
OWL/XML, RDF/XML, Turtle, and the Functional
or Manchester syntaxes are all text-based languages.
The linear textual descriptions produced using these
standards blurs the structure of the ontology and
makes it difficult to design new ontologies. Sets of
triples are sometimes represented using limited
graphs for explanation purposes, but there is yet no
W3C standard visual concrete syntax for OWL 2 on-
tology modeling

 Larkin and Simon [19] note that the fundamen-
tal difference between a "graphic" or visual notation
and a textual notation is that a visual notation explic-
itly presents the information on topological and geo-
metric relationships between the components repre-
sented. Moody [23] underlines that visual notations
also differ from the textual notation by the nature of
the symbols that compose the vocabulary as well as
by the rules governing the use and interpretation of
symbols. In a textual notation the symbols are dis-
played following a one-dimensional (linear) layout,
sequentially aligned to form words and words to form
statements. The unidimensional linearity and the se-
quential layout rules are the two important notions
that characterize a textual notation, hiding the struc-
tural nature of an ontology.

 A visual notation uses visual symbols (geomet-
ric shapes, icons, pictograms, etc.) differentiated by a
visual vocabulary using color, size and position of ge-
ometric shapes, together with rules for their visual ar-
rangement, surface rules for a 2D representation or
space rules for 3D representation. Hybrid notation
(visual and textual) uses a vocabulary composed of
both texts and visual symbols that are governed by
rules of textual and visual arrangement.

 Our research goal here is to provide to ontology
designers and content experts a completely visual lan-
guage environment that exports to W3C textual on-
tology languages standards such as RDF/XML or
Turtle so they can be used in software applications
and imported into ontology development environ-
ments such as Protégé for extension and validation
operations.

1.3. Ontology Visual Languages Requirements

We now state essential requirements or principles
for an ontology visual language to support ontology
design and communication in the ontology engineer-
ing process. These requirements are based on the
Physics of Notations Theory (PoNT) a systemic
framework that has been used evaluate, compare, im-
prove and design visual notations in a wide variety of
fields, including Unified Modeling Language (UML)
or Business Process Modeling Notation (BPMN) vis-
ual notations in software engineering [13,24,32].

 PoNT [23] states nine principles as guidelines
to design cognitively effective visual notations opti-
mized for human communication and problem solv-
ing: semiotic clarity, perceptual discriminability, se-
mantic transparency, complexity management, cogni-
tive integration, visual expressiveness, dual coding,
graphic economy, and cognitive fit. These nine prin-
ciples were synthesized from theory and empirical ev-
idence from a wide range of fields and rest on an ex-
plicit theory of visual communication. Here we sepa-
rated or regrouped these principles (mentioned in pa-
rentheses) to account for the specificity of Visual On-
tology Languages:

1 - Completeness: Each semantic OWL 2 object

corresponds to a symbol or an understandable combi-
nation of symbols in the visual language; (part of Se-
miotic Clarity);

2 - Formality: Each visual symbol (or some com-
bination of symbols) correspond to only one semantic
OWL 2 object that can be disambiguated using the
visual context; (part of Semiotic Clarity);

3 - Perceptual Clarity: Symbols should be clearly
distinguishable from one another; notations should
use the full range of the 7 visual variables: position,
size, value, texture, color, orientation and shape;
(grouping Perceptual Discriminability and Visual Ex-
pressiveness);

4 - Semantic Transparency: Notations should
use graphical symbols whose appearance suggests
meaning; graphical symbols can be evaluated from
+1 to -1, from semantic transparent to opposite mean-
ing; (rephrasing Semantic Transparency); the design
of the visual notation is not a simple transposition of
an OWL 2 text-based notation but reflect relations be-
tween its semantic features.

4

5 - Complexity Management: Notations should
include explicit mechanisms for dealing with com-
plexity, keeping the visual models at a reasonable
size, favoring scalability for large ontologies, using
sub-models if necessary or grouping symbols by
types, integrating information between separate dia-
grams; (grouping Complexity management and Cog-
nitive Integration);

6 - Totally visual: Notation should use text to
complement (not replace) graphics; textual annota-
tions should be used alongside graphics so that the
notation remains totally visual; (rephrasing no Dual
Coding);

7 - Parsimony/Polymorphism: The number of
graphical symbols in the notation should be cogni-
tively manageable; a large number of symbols in-
crease complexity, thus reducing understanding; pol-
ymorphism is a way to reduce the number of visual
symbols; (rephrasing Graphic Economy);

8 - Cognitive Fit: Different visual dialects should
be used for different tasks and audiences; visual nota-
tions for OWL should be addressed primarily to con-
tent experts and ontology modelers; computer scien-
tists will in general prefer textual representation of
ontology constructs, using visual equivalents for
overviews (rephrasing Cognitive Fit);

9 - Editing Tool for Computability: There must
exist a tool that edits and translate a visual graph au-
tomatically to an OWL 2 standard text such as RDF-
XML or Turtle so it can be used for computer scien-
tists developing applications; (particularity of OWL
graphs).

 The visual ontology languages or notations to
be presented in the following sections will be dis-
cussed according to these principles. In section2, we
first present our own MOT-OWL ontology visual lan-
guage and its GMOT-OWL editor. Sections 3 will
discuss proposals for using the Unified Modeling
Language (UML) to represent ontologies visually.
Section 4 surveys five non UML proposals for a Vis-
ual Ontology Language, including our new G-OWL
editor. In section 5, we proceed with a comparative
analysis of all these proposals.

2. The MOT-OWL Ontology Visual Language

The MOT (Modeling with Object Types) Visual
Language enables users to build a visual representa-
tion of knowledge from informal conceptual maps, to

semi-formal knowledge graphs, up to RDFS or OWL-
DL ontologies. Rooted in cognitive science, MOT has
served in numerous Knowledge Management and In-
structional Engineering projects in some large organ-
izations for the last 20 years, thus providing experi-
mental validation [29]. This experimental work pro-
vides a basis for the GMOT-OWL and G-OWL on-
tology visual languages to be discussed in this section
and section 5.

 The actual GMOT-OWL [30] visual editor has
been specialized from the MOT previous editors to
build RDFS and OWL-DL ontologies. The visual on-
tology models can be exported to W3C textual stand-
ard formats such as RDF-XML and Turtle, so they
can be integrated in ontology development systems
such as Protégé. GMOT-OWL ontologies have been
used in the model-driven development of the TELOS
platform [31] and also to build a Competency Ontol-
ogy (Paquette et al., actually in publication)

2.1. Symbols of the MOT-OWL Visual Ontology
Language

 Figure 1 gives an overview of the visual vocab-
ulary of the MOT-OWL language. The editor dis-
plays four kinds of graphic objects with different
shapes and colors to represent classes (pink rectan-
gles), properties (green hexagons) and individuals
(blue rectangles with cut corners) plus icons for
datatypes. These colors and the terms in the boxes are
chosen by users. Special symbols are also used to rep-
resent data types, assert multiple disjoints or equiva-
lents, combine classes or represent various property
restrictions.

 The use of various shapes and colors, and the
names and direction of the links aim to satisfy the
principle of Perceptual clarity (3). Although Object
Property and Data Property symbols are the same,
they can be distinguished by the Data symbol that
serves as output of a Data Property, while a Class or
Individual output signifies that it is an Object prop-
erty. This is one way to implement the Parsimony
principle (7). Another way to satisfy this principle is
to use the same class or property symbols for sub-
types with an annotation added. In the case of proper-
ties, as shown in lower right end of figure 3, a menu
in the editor enables to add one to four symbols, F, I,
T and S, to respectively state that the property is
Functional, Inverse Functional, Transitive or Sym-
metric.

5

Fig. 1. The MOT-OWL visual vocabulary.

 Classes can be declared simply by stating a
name like “Class”, as an anonymous class (with no
name), as an enumeration of its members. Classes can
also be declared as an intersection, union or comple-
ment of other classes.

One of the group of symbols presents the case of a
class by enumeration using the I instance link (a fun-
damental of the general MOT language). The multi-
ple Distinct link and the multiple Identical link ap-
plied to the three individuals are options. In the first
case, it defines the class as a set with members that
are All Different. In the other case, Identical individ-
uals means that the class is a Bag where some or all
of the individual are pairwise identical.

 The use of the logic symbols " (for all) and $
(exist), Boolean symbols È (union) and Ç (intersec-
tion) or cardinality symbols ¹, =, ³ and £ are ways to
provide some Semantic Transparency (4) since they
refer to well-known mathematical or logic notions.
The group of visual symbols on the lower left of fig-
ure 1 are restrictions on Property for class definition.
They are to be used separately, one and only one with
R (“ruled by”) link to the property. The two upper
symbols express universal or existential restriction on
a property. The lower symbols express cardinality re-
strictions on the property, a minimum, exactly or a
maximum of a an integer chosen by the user.

 Figure 2 provides one example for a class de-
fined by an existential restriction owl:someVal-
uesFrom. This graph declares that a class named
“Parent” groups members that have at least one value
in class “Person” by the property “hasChild”. The
corresponding First Order Logic semantics and the
Turtle translation are set alongside the visual MOT-
OWL expression. The direction of the R links show
“Parent” as a domain of “Property1” and “Person” as
its range. This is another implementation of the Se-
mantic Transparency (4) principle.

 Parent owl:equivalentclass

[a <owl:Restriction>;
 <owl:onProperty hasChild;
 <owl:someValuesFrom Person]

("x) (Parent (x) º ($y)(hasChild (x , y) Ù Person (y)))

Fig. 2. A visual existential restriction with a Turtle and
FOL translations.

 Relations between classes, between properties
or between individuals, use whenever possible the
same links to respect the Parsimony principle (7)
without affecting the Perceptual Clarity (3) of each
notion that are disambiguated by their context. For
example, the specialisation S link and the equivalence
Equi links are the same for classes and properties, but
they have of course different meanings that are dis-
ambiguated in the OWL-XML or Turtle translations
by looking if they are set between Class symbols or
between Property symbols.

2.2. Visual Language Requirements and the GMOT-
OWL Editor.

 We will now look at the other PoNT require-
ments besides principles 3, 4 and 7. We can first as-
sert that GMOT-OWL is Totally Visual (6) since no
text is used within the boxes except their identifiers
or subtype marks such as “È“or “…” for classes, or
F, I, R, S for properties. Textual descriptions can be

6

added for some visual objects in a companion win-
dow or by adding comments on the graph display, but
they are complementary to the visual notation.

 As for the Cognitive Fit (8) GMOT-OWL aims
at a visual language for content expert or modelers, so
a single profile of the editor was produced. We be-
lieve that computer scientists will prefer to use or de-
velop ontology in one of the familiar textual formats
like OWL-XML. These users will refer to the visual
syntax from time to time to check overviews of their
ongoing design. For this, the GMOT-OWL provides
translation back and forth to the textual OWL stand-
ard (Computability (9)).

 The first two principles of the introduction are
part of the Semiotic Clarity principle in PoNT that re-
quires a one-to-one correspondence between the vis-
ual symbols and their semantic meaning in the ontol-
ogy. A more detailed presentation of GMOT-
OWL [30] has demonstrated the Completeness (1) of
GMOT-OWL: every OWL-DL object corresponds to
a visual symbol (or a group of symbols). For some of
the more complex semantic objects, such as re-
strictions on properties, class enumeration or multiple
disjoints, a group of visual symbols is needed.

 Conversely, not all visual symbols correspond
to a semantic object. The visual notation in in over-
load, because the " and $ symbols for example are
not stand-alone semantic objects. But grouped with
other visual signs as in figure 3, all the MOT-OWL
symbols have clear semantic meaning.

2.3. Complexity Management in the GMOT-OWL
Editor.

Complexity Management (5) aims to keep visual
models at a reasonable size, to facilitate their under-
standing and their management. All the proposals for
ontology visualisation mention the problem to repre-
sent large ontologies: soon the graph will look like a
spaghetti of overcrossing links and overlapping ob-
jects too small to be well perceived cognitively.

 The GMOT-OWL editor tries to avoid this situa-
tion by features like reducing the number of links, fil-
tering a model to display only certain kinds of entities
or links, and enabling decomposition of a large model
into sub-models by copying entities with reference (as
an alias) to avoid the overcrossing of links.

 One example is given in figure 3 and 4 for a learn-
ing design ontology grouping a total of 38 classes, 47

properties, 101 individuals, 20 cardinality restrictions
and 24 different relational links.

Fig. 3. A GMOT visual ontology for the Learning De-
sign concept.

Fig. 4. A GMOT-OWL sub-model for the LD ontology

Each of the main classes in figure 3 has a sign (a
little model) in the upper left corner that indicates that
it has a sub-model giving more details on the class.
One of them is displayed on figure 4) by clicking on
the Evaluation Mode class.

This sub-model shows that an evaluation mode has
exactly one subject that is evaluated; it can be an in-
dividual, a team or a class; these concepts are dis-
joints. The Evaluation Mode also has one or more

7

agent evaluator, using one or more evaluation instru-
ments. It also has exactly one of six possible distinct
goals, and one of four distinct evaluation types: form-
ative pretest, formative post-test, formative continu-
ous or summative evaluation.

 The integration between a main model and its sub-
models is assured by copying with reference an object
(e.g. Evaluation Mode indicated by a red dot). This
object is pasted from the main model on figure 4 to
the sub-model of figure 5 to which related OWL en-
tities and links can be added. Note that this sub-model
can be detailed further on any number of levels, for
example adding to Exam_Test a sub-model describ-
ing a taxonomy of exam types.

 The navigation between the set of linked sub-
model is facilitated by using the arrows in the left up-
per corner of the main window or using the Navigator
window displaying the tree of sub-models. Other fea-
tures of this editor allow filtering models to retain
only certain types of objects and links, or search for
terms that can be distributed in more than one sub-
model.

3. UML-based Visual Languages

There is currently a renewed interest in visual lan-
guages for ontologies. In this section, we will present
the Ontology Definition Metamodel (ODM) and
OWLGrED aiming to adapt the graphic Unified Mod-
eling Language [34] to ontology modeling.

3.1. The Ontology Definition Metamodel (ODM)

The Ontology Definition Metamodel (ODM) is a
standard specification defined by the Object Manage-
ment Group [27]. It provides UML metamodels for
RDFS, OWL-DL and OWL-Full. Figure 4 displays an
example of an ODM model for part of an ontology
using some of the complex OWL-DL elements like
class intersection and property restrictions.

 The readability of this UML 2 diagram is im-
paired by the fact that rectangles with stereotype an-
notations in UML classes represent very different
OWL elements such as classes, objects properties, in-
dividuals or restrictions. To understand the diagram,
a human user has to look at the different stereotypes

1 (OMG, 2014), ODM version 1.1 document, Figure 14.32, p. 182

in the boxes and gain an understanding of their mean-
ing. For example, the bottom part of the diagram is
meant to express the fact that a “single colored
Azalea” is a subclass of Azalea that has exactly one
color and a solid color pattern.

Fig.5. A fragment of an ODM model for an OWL on-
tology using advanced constructs.1

 Figure 6 presents a MOT-OWL visual diagram
equivalent to the bottom part of figure 6. It uses the
same Exact Cardinality of 1 and Has Value re-
strictions and reads: “the class of single colored Azal-
eas is the intersection of two (anonymous) classes,
those Azaleas having exactly one color and those
Azaleas having exactly one value for color pattern,
that of a solid color pattern”. Such a visual diagram is
more readable because it spares the use of the unnec-
essary equivalence relation (it will reappear in the
OWL-XML translation) and links like “intersection”,
“on property”, “someValue” or “someValueFrom”,
which are not relations in OWL but elements that
serve to construct new classes.

Fig. 6. Fragment of a GMOT model for an ontology.

8

3.2. OWLGrEd a UML-based editor

OWLGrEd [26] is a tool that provides a UML style
graphical notation for OWL 2. Figure 7 presents a
fragment of a medicine ontology in this visual nota-
tion.

Here object and data properties are visualized as
links between UML classes, or as attributes within
classes. Data properties are integrated in the class
boxes in traditional UML way to reduce the graph
complexity but at the expense of Perceptual Clarity
and Semantic Transparency.

This editor qualifies only partially as a visual lan-
guage because Manchester OWL 2 textual notation
replaces visual elements for Data Properties of Object
Properties. Furthermore, links between properties
cannot be expressed directly.

Fig. 7. A views of a OWLGrEd visual model

The MOT-OWL graph on figure 8 offers a totally
visual equivalent of the same ontology that is totally
visual. It must be completed with sub-models for Di-
abetes, Cancer and Trauma to provide a complete
equivalent to the figure 7 ontology, including the
three kinds of corresponding treatments. But the gain
here is structural readability an perceptual clarity. The
choice to avoid mimicking UML prevents more eas-
ily link crossing and, more important, avoiding links
that are not ontology relations like “on property”.

3.3. UML as a Visual Ontology Language

According to [7,8], the main reason for using UML
notation as a Visual Ontology Language is an effort
to integrate ontology development in the mainstream
of software engineering, to motivate engineers in us-
ing ontologies.

Fig. 8. A MOT-OWL visual model for the medicine ex-

ample of figure 7.

 Unfortunately, UML is based upon an object-
oriented paradigm that provides many limitations for
ontology visualization. First, the concept of Class in
RDFS and OWL is not identical to the concept of
Class in UML. Classes in RDFS and OWL are set-
theoretic, while object-oriented classes in UML de-
fine attributes and methods.

 Furthermore, an OWL property represents a re-
lation between subject resources and object re-
sources. It might look similar to the concept of attrib-
ute or association in the UML object orientation par-
adigm, but the owl:ObjectProperty is a standalone
concept; it does not depend on any class or resource
contrary to associations or attributes in UML. In on-
tology languages, a property can even be defined with
no classes associated with it. That is why a property
cannot be represented as an ordinary association or
attribute as in object orientated languages.

 Gasevic et al. [12] provide an extensive sum-
mary of incompatibilities between UML and ontol-
ogy languages based mainly on [1]. For example, they
underline that Ontology languages have the ability to
construct classes using Boolean operations (union, in-
tersection and complement) and quantifiers. In UML,
there is no corresponding primitives for these notions.
Also, in ontology languages one can specify a cardi-
nality constraint for every domain of a property or
separately for a range, whereas in UML cardinality
must be specified for both association end of a prop-
erty.

 Since our goal is to facilitate the design of on-
tologies, especially at the initial inception stages, and
also their understanding and use at every further stage

9

of the ontology life cycle, the Semantic Transparency
is key. We believe that the differences between UML
and Ontology languages enforce too many unnatural
constructions.

4. Non-UML Visual Languages

Ontology engineering tools, such as Protégé ,
NeOn toolkit or TopBraid Composer offer some vis-
ualization functionalities, but do not support a com-
plete or easy-to-use visual ontology modeling capa-
bility. Here, we discuss here five non-UML proposals
that have been proposed to fill that gap.

4.1. GrOWL visualization tool

GrOWL [18] is an OWL-DL visualization tool im-
plemented as a Java Applet, as a Protégé plugin and a
stand-alone Java application. This visual language
makes use of the color, shading and shape of nodes to
encode properties of the basic OWL constructs (fig-
ure 9).

Fig. 9. The GrOWL visual alphabet.

The GrOWL editor is totally visual for OWL 1 on-
tologies. It does not require to annotate the graphical
representation with formulas as with UML editors. It
uses some of the DL notations for graph labels which

is an advantage for Semantic Transparency. But the
language did not evolve from OWL 1 to OWL 2. It
also uses a large number of symbols that might need
to add unnecessary boxes, for example integrating
quantifiers in a property precludes using the same
property for something else. Also, union or intersec-
tion classes should have the same visual symbol as a
class.

As mentioned by the authors, the visualization is
efficient with small ontologies, but with large ontolo-
gies, even the restricted view to a local neighborhood
does not guarantee scalability. So, the authors have
added filtering mechanism for restricting view to only
class definition and its subclasses, superclasses or in-
stances associated to a selected node. They advocate
that a combination of filtering and navigation tech-
niques are the most powerful and useful visualization
methods.

4.2. The Graffoo Visual Ontology Notation

Graffoo [10] aims at an easy-to-understand nota-
tion for OWL, implemented as a GraphML extension
for the diagram editor yEd. It does not come with an
editing tool, but instead offers a palette for yEd, an
open-source editors for graphs. It provides a partial
visual notation for OWL ontologies, not based on
UML, summarized in figure 10.

Fig. 10. The Graphoo visual alphabet.

 In Graffoo, ontologies are labeled graphs, as in
other representations, that use several shapes for

10

nodes and edges to define classes and class re-
strictions, datatypes and datatype restrictions. The
shapes and colors are a bit too similar to promote Per-
ceptual Clarity, as we can see on the figure.

Arcs with different colors and shapes surmounted
by property names are used to define assertions, an-
notation properties, data properties, and object prop-
erties. The fact that properties are not visual objects
by themselves precludes linking them, to express sub-
properties or inverse properties for example.

Additional axioms in OWL 2 must be added for all
those constructs that are not directly supported by a
particular graphical element, therefore the notation is
not Totally Visual. It suffers from some of the same
difficulties discussed for UML-based tools that em-
bed textual expressions in the graphical representa-
tion.

4.3. VOWL Visual Ontology Editor

VOWL [21,25] is a visual language for the repre-
sentation of ontologies that aims to be understood by
beginning ontology users with only little training. It
takes as input a textual OWL ontology created with
some other edition tool like Protégé.

Fig. 11. A user interface of WebVOWL for an ontology.

 It is based on a handful of graphical primitives
forming the alphabet of the visual language: classes
are depicted as circles that are connected by arrows
representing the object and datatype properties. Prop-
erties and datatypes identifiers are shown in rectan-
gles with different colors. Information on individuals

2 WebVOWL is publicly available at http://vowl.visualda-

taweb.org

and data values are either displayed in the visualiza-
tion itself or in a sidebar window as shown on figure
11.The visual elements are combined into a graph that
represents central parts of the ontology. They are ren-
dered in a force-directed layout where the size of the
circles corresponds to the number of lines around a
class. Also, the algorithmic layout of the graph tends
to arrange the nodes in a way that the highly con-
nected nodes are placed more at the center of the vis-
ualization. The force-directed algorithm can be
paused by the user so he can rearrange the graph if he
chooses to.

 VOWL comes in two versions: a Protégé plug-
in and a standalone web application, WebVOWL2,
that provides a number of filters that help reduce the
size of the graph in order to focus on certain aspects.
This and other features shown on figure 11 aim to
support the Complexity Management of larger ontol-
ogies. Information like disjointness or properties or
types of properties like transitivity or symmetry are
not displayed visually but listed in the sidebar. Also,
equivalent classes are integrated together in the same
circle with a double ring for a more readable graph.
Inverse properties are displayed to together in boxes
on the same double arrow, another contribution to re-
duce the size of the graph. Despite these functionali-
ties, the visualization of large-scale ontologies will
need to be improved as with other visual languages.

VOWL is not a Totally Visual Modeling tool. Some
editing functionalities are being introduced for basic
OWL elements such as owl:allValuesFrom,
owl:someValuesFrom, owl:hasValue, but these are
not part of the VOWL visualization and must be dis-
played in a textual way.

4.4. The Graphol Visual Ontology Language and the
Eddy Editor

Graphol [5] is a visual ontology language for
OWL 2 based on the OWL 2 functional syntax. It al-
lows drawing ontologies in a completely visual way,
even to capture complex axioms. Graphol has been
proven to be equivalent to OWL 2. Every OWL 2 on-
tology can be specified in Graphol and conversely,
thus satisfying the Semiotic Clarity principle, both for

11

Completeness (1) and Formality (2). The visual on-
tology editor Eddy [20] enables the design of ontolo-
gies with this visual notation.

Graphol is built as an entity-relation graph where
some of the nodes (entities) represent basic OWL 2
elements: rectangles denote classes of the ontologies,
diamonds denote object properties, circles represent
data properties, and rounded rectangles represent data
types. Some of the relations for inclusion or equiva-
lence between classes or between properties are rep-
resented by solid directed arrows.

Fig. 12. An OWL 2 ontology expressed in the Graphol
visual ontology language

 Shown on the example of figure 12 are other kinds
of nodes and links that are operators to combine these
basic entities using dotted links, in order to build
more complex axioms. Black hexagons represent a
disjoint union operator grouping two or more predi-
cates. Blank hexagons represent other kinds of oper-
ators: or, not, inv and chain. Blank and black square
boxes are linked to classes or properties by dotted
lines or inclusion links to represent restrictions on the
domain (blank squares) or range (black squares) of a
property; text like “exists” beside a square box are the
type of restriction.

Graphol provides a Totally Visual syntax. For ex-
ample, the left part of the graph on figure 13 displays
two existential restriction on the same prop-
erty :is_archenemy_of, one on the range and the other
on the domain. It uses the property, which is itself its
inverse property as now permitted by the OWL 2 ex-
tension. Superhero is also defined as equivalent to
that range and defined as a class for which there exist
an archenemy that is a Vilain; and conversely, a Vi-
lain is a class for which there exist an archenemy that
is a super hero.

Graphol respects well the Parsimony principle. For
comparison, we present on figure 14 an equivalent
graph in MOT-OWL. True we had to make a refer-

enced copy of the archenemy symmetric property, be-
cause MOT-OWL does not still implement the in-
verse property merger now possible in OWL 2. We
have also copied the has_ability property to increase
readability. But the MOT-OWL model still uses less
nodes than the Graphol model with easier readability.

 Fig. 13. A MOT-OWL 2 equivalent of figure 12

 The authors of Graphol advocate that modeling
in their editor has a very short learning curve for DL
or OWL experts. But we wonder if mixing basic on-
tology primitives (classes, properties, individuals,
datatypes) with constructing operators respects the
Semantic Transparency principle. It seems far from
the semantic provided by classes as sets and proper-
ties as binary relations, notions that are more accessi-
ble to most ontology users, especially content experts.
For example, a Metahuman is understood more di-
rectly in figure 14 as the intersection of the sets of all
Human and the set of persons (anonymous class) that
have at least one ability of a Superpower.

 Also, as the authors point out, the scalability is-
sue will have to be addressed, as with other visual no-
tations, to deal with the Complex Management of very
large ontologies. Since it is unfeasible to feature thou-
sands of concepts in a single graphical graph, they en-
visage in their more recent paper to incorporate new
functionalities in the editor to support ontology mod-
ularization.

4.5. The G-OWL Visual Ontology Language

Our new proposal [15,16] the Graphical Ontology
Web Language (G-OWL) is based on an Entity-Rela-
tion [4] metamodel that serves as a language for the
syntax of G-OWL models. This metamodel supports
the translation of the G-OWL visual models to other
OWL W3C textual syntaxes such as RDF-XML or
Turtle. Figure 14 shows the G-OWL metamodel in
UML notation with typed entities and relations.

12

 Fig. 14. G-OWL entity-relation metamodel

According to this metamodel, as in MOT-OWL, G-

OWL uses polymorphism and a typology of symbols,
both to minimize the number of graphical symbols
and to enable the interpretation of these symbols that
are disambiguated using the topology of neighboring
elements.

The container visual symbol (a rounded rectangle)
reduces the need for many links needed in other visual
notations including our previous MOT-OWL. Figure
15 presents three examples of its use. The first con-
tainer presents an existential restriction, defining a
class whose members have at least one value of an
“Object property” in the class “Value Class”. The sec-
ond one represents a class which is the union of “n”
other classes. The third one asserts the disjointness of
“n” data properties.

Fig. 15. The use of containers in G-OWL

 We beleive that these improvements will in-
crease the Parsimony of the notation and facilitate the
complexity management of large ontologies.

 A complete presentation of the language is out
of the scope of this paper, but the following example
will give a view of a small ontology. It corresponds
to the ontologies for a science-fiction play presented
earlier on figure 13 (in Graphol) and figure 14 (in
MOT-OWL). The visual model on figure 17 requires
fewer links than the other two models thanks to the
use of containers for restrictions and Boolean opera-
tions.

 First, we define Vilains as persons who have
some Super-Hero as their archenemy. Then, we add
the precision that a Super-Hero is a person who has a
Vilain as an archenemy. Both of these classes are sub-
classes of Characters. So are the classes of Extra-ter-
restrials and Humans.

Fig. 16. An equivalent G-OWL model to figure 13, 14.

13

 Characters have two properties, they have a name,
which is a string given by a data property, and one or
more abilities specified by the has_ability object
property. Abilities also have a name. Note that A links
(similarly to R links in MOT-OWL) serve to relate a
property from its domain and to its range.

 Finally, for the notion of a Metahuman, we first
had to define the notion of a person with super pow-
ers, by using another OWL existential restriction. Su-
per powers are a subclass of a character’s abilities.
Then the class of Metahumans is defined precisely as
the intersection of the class of Humans and of the
class of persons with at least one super power.

5. Comparison and Analysis

The following table compares the general features
of the visual notations discussed so far. To the nine
criteria derived from Moody’s work on the Physics of
Notation Theory (PoNT) presented in the introduc-
tion, we add two more criteria:

• Field experimented. According to the doc-
umentation, a field experimentation has
been conducted with various levels of users.

• Metamodeling. A metamodel of the nota-
tion exists, so that the notation is independ-
ent from its software implementations.

 The information in table 1 must not be inter-

preted more than what it is: a brief evaluation of the
visual notations based on the analysis of one or two
documents for each notation. Furthermore, some of
these notations may have evolved since the publica-
tion of the papers we have consulted.

Table 1 – Comparisons of the Visual Notations and Lan-

guages.

 Our goal in this section is not to find the best
notation (if it ever exists) but to identify possible im-
provements for our own Ontology Visual Languages
and Editors. This comparison helps reveal the actual
strengths and weaknesses of the MOT-OWL notation
and identify guidelines for improvements to our new
G-OWL Visual Ontology Language. To achieve this,
we will now discuss each group of criteria.

5.1. Completeness and Formality

Both MOT-OWL (for OWL-DL) and G-OWL (for
OWL 2) obey the first two principles of Complete-
ness (1) and Formality (2). To each semantic OWL
object correspond a unique symbol or an understand-
able combination of symbols in the visual language.
Conversely, to each visual symbol (or some combina-
tion of symbols) correspond only one semantic
OWL 2 object that can be disambiguated using the
symbol’s visual context. For example, even if the
same S link used between classes or properties (poly-
semy) it will correspond to a different OWL relation:
a subclass relation when used between two classes, or
to a sub property relation when used between two
properties.

 However MOT-OWL respects completeness
only with regards to OWL-DL since it has not been
be extended to most of the new OWL 2 features [37]
For example, the OWL 2 DisjointUnion would re-
quire a new class operation symbol to prevent using
every time two constructs, the union n-ary construct
and the multiple pair-wise disjoint symbol imple-
mented in the MOT-OWL notation.

 Most of the new OWL 2 features have been im-
plemented in the G-OWL syntax and its Onto-
Case4G-OWL Eclipse-based editor. An important
point to underline here is the decision not to imple-
ment a strict one-t-one correspondence between
OWL 2 semantic components and the MOT-OWL or
G-OWL set of symbols. This provides a more reada-
ble representation and an easier modeling of ontolo-
gies.

5.2. Perceptual Clarity and Semantic Transparency

Some positive aspects of both MOT-OWL and G-
OWL is that they are Totally Visual(6), have been
Field Experimented (10), and have a good Cognitive
Fit (8) with content experts and ontology modelers.
As with most of the other non-UML notations, they

14

provide a high level of Perceptual Clarity (3) since,
all the OWL basic entities are represented by symbols
with distinct shapes and colors. Looking at any ontol-
ogy visual model, it is possible to rapidly recognize
the basic entities and their relationship.

 Semantic Transparency (4) in MOT-OWL and
G-OWL are favored by the use of mathematical sym-
bols for the existential and universal restrictions and
for the Boolean constructed. The direction of the
“ruled by” R link (in MOT-OWL) and the A link (in
G-OWL) from a class to a property, or from a prop-
erty to a class, individual or value, suggests better the
semantics of a property as a relation between two
classes, the first being its domain and the second be-
ing its range. A similar semantic suggestion is in the
S subclass links from two or more classes to their un-
ion class (in MOT-OWL).

 A weakness in MOT-OWL has been corrected
in G-OWL. Data Properties and Object Properties
must be represented with lightly different shapes and
color, “lightly” because they are both relations (or
predicates) in the set theoretic view of FOL and De-
scription logics. As it is now, if a property is declared
without a range, the editor will not be able to decide
if it is an object property or a data property.

 Another problem is in the class complement
represented by a bi-directional link in MOT-OWL.
Since the complement of class is another class, G-
OWL aim to represent this notion using a container
(not implemented yet). The container is itself a class
that is the complement of “this class”, a visual objects
that can be linke to order visual objects.

5.3. Complexity Management and Polymorphism

We will now discuss two important related require-
ments: Complexity Management (5) and Parsi-
mony/Polymorphism (7). As mentioned before there
is in general an important scalability issue with visual
models. There are three directions to solve the scala-
bility problem: modification of language itself, sim-
plifications in the user interface of the editing tools
and the decomposition of the global model into inter-
related sub-models.

 The preoccupation for simplification of the lan-
guage is shown in some of the new features integrated
in OWL 2 for multiple DisjointClasses that state that
all classes are pairwise disjoint, instead of declaring
disjointness for each pair in a large collection. Other

new features such as Disjoint Properties or Property-
ChainInclusion, Top and Bottom Properties, Prop-
erty Qualified Cardinality Restrictions or the use Ob-
jectInverseOf will reduce the number of links be-
tween ontology objects.

 Reduction in the size of models can also be im-
plemented in a parsimonious user interface making
full use of polymorphism. In addition, enclosing iden-
tical individuals, equivalent classes or properties,
Boolean constructs or inverse properties in more vis-
ually distinct G-OWL containers will eliminate the
need of many links in the model presentation, while
permitting the correct semantic translation in one of
the standard textual OWL syntax.

 Finally, probably the best way to implement the
Complexity Management (5) principle is to facilitate
model decomposition into linked sub-model. One ex-
ample is given at the end of section 2. It is a solution
we have experienced in some large MOT modeling
projects such as building an Instructional Engineering
Method (MISA) or modeling the architecture for a
model-driven development of the TELOS platform
[31].

 Other features of the GMOT-OWL or G-OWL
editors facilitate also Complexity Management (5) by
filtering the model by object or link
types or by searching for terms that
can be repeated in various sub-mod-
els throughout the overall ontology.
Following the example of GrOWL, the filtering
mechanisms should be improved by providing local
displays, for example of a class with its sub-classes,
super-classes and linked properties. This is now pos-
sible in the G-OWL editor.

 G-OWL has been implemented on top the
Eclipse IDE and provides many interesting features
for Complexity Management, including the possibil-
ity to organize large ontology visual models into an
integrated set of significant views. These possibilities
will need to be explored further.

5.4. Metamodeling Issues in MOT-OWL and G-OWL

 Metamodeling in a visual ontology language
plays a central role in Model-Driven software engi-
neering [28]. The principle is to use design models of
a software application and apply code generators to
the model so that the software functionalities are plat-
form independent. A metamodel is an explicit de-
scription - a language with a precise vocabulary and

15

grammatical rules – that specifies how each compli-
ant model can be built. A metamodel must provide a
formalized specification of the visual notation for
OWL 2 ontologies.

 MOT-OWL has a partial metamodel using the
MOT language itself [30] to describe the entities and
relations in its vocabulary, and a set of rules to com-
bine them, describing the grammar of the visual lan-
guage. But this metamodel is not related to the main-
stream of Model-driven architectures that proposes
the use of a meta-metamodel, a language to write met-
amodels. In this way a formal metamodel can be spec-
ify for the language in order to promote its interoper-
ability with other notations (visual or textual) for on-
tologies or compare formally its span of applications.

This work has been realized for the development
of the G-OWL visual language and its OntoCase edi-
tor by using the Eclipse Modeling Framework (EMF)
as the formal metamodel modeler.

6. Conclusion

Throughout this presentation, we have used the
Physics of Notations Theory to evaluate a variety of
visual languages for ontologies that have been pro-
posed in the literature, including our own MOT-OWL
and G-OWL. We have adapted the nine principles in
Moody’s work to state eleven principles for visual on-
tology languages.

 Using these principles, we have first examined
the UML-based proposals. Since our main goal is to
facilitate the design of ontologies, especially at the in-
itial inception stages, and also their understanding
and use at every further stage of the ontology life cy-
cle, we have identified important differences between
UML object-oriented paradigm and Ontology lan-
guages that enforce too many unnatural construc-
tions. The semantic transparency of an ontology vis-
ual notation is crucial and UML forces the use of too
many textual elements either within classes or on
links between classes, adding a multiplicity of links
that render difficult the understanding of even small
models and the management of large models.

 We have presented five other visual notation
that propose a number of interesting innovations for a
visual language, particularly the VOWL and Graphol
proposals that seem most interesting, though quite
different. We have identified some of the ideas that
would help improve our own visual languages. Many

new ideas have been implemented in an editor for the
new G-OWL visual language that has been partly
field tested.

References

[1] Baclawski, K., Kokar, M., Kogut, P., Hart, L., Smith, J.E.,
Letkowski, J., & Emery, P. (2002). “Extending the Unified
Modeling Language for ontology development,” Software
and Systems Modeling, vol. 1, no. 2, pp. 142–156.

[2] Berners-Lee, T., Hendler, J., Lassila, O. (2001) The semantic
web. Scientific American 284(5), 34

[3] Brockmans, S., Volz, R., Eberhart, A., & Löffler, P. (2004).
“Visual modeling of OWL DL ontologies using UML,” Pro-
ceedings of the 3rd International Semantic Web Conference,
Hiroshima, pp. 108–213.

[4] Chen, P. (2002) Entity-Relationship Modeling: Historical
Events, Future Trends, and Lessons Learned, in Software Pi-
oneers: Contributions to Software Engineering, ed: Springer,
2002, pp. 297-310.

[5] Console, M., Lembo L., Santarelli V. and Savo D.F. (2017).
Graphol : Ontology Representation Through Diagrams.
http://www.obdasystems.com/sites/default/files/2017-
03/DL-2013_3.pdf , consulted March 15, 2020.

[6] Corcho, O., M. Fernández-López, and A. Gómez-Pérez, On-
tological Engineering: Principles, Methods, Tools and Lan-
guages, in Ontologies for Software Engineering and Software
Technology. 2006. p. 1-48.

[7] Cranefield, S. (2001a). “Networked knowledge representa-
tion and exchange using UML and RDF,” Journal of Digital
Information, vol. 1, no. 8, article no. 44, 2001-02-15.

[8] Cranefield, S. (2001b). “UML and the Semantic Web,” Pro-
ceedings of the Semantic Web Working Symposium, Stanford
University, CA, pp. 113–130.

[9] Denny, M. (2002), Ontology Building: A Survey of Editing
Tools. http://www.xml.com/pub/a/2002/11/06/ontolo-
gies.html

[10] Falco, R., Gangemi, A., Peroni, S., Shotton, D. and Vitali, F.
Modelling OWL Ontologies with Graffoo, in The Semantic
Web: ESWC 2014 Satellite Events. vol. 8798, V. Presutti, E.
Blomqvist, R. Troncy, H. Sack, I. Papadakis, and A. Tordai,
Eds., ed: Springer International Publishing, 2014, pp. 320-
325.

[11] Fernández-López, M., Gómez-Pérez, A., Sierra, J.P., & Si-
erra, A.P. (1999), Building a chemical ontology using
Methontology and the Ontology Design Environment, IEEE
Intelligent Systems, vol. 14, no. 1, pp. 37–46.

[12] Gašević, D., Djurić D. and Devedžić, V. (2006) Model
Driven Architecture and Ontology Development. Springer-
Verlag, New York.

[13] Genon, N., Heymans, P. and Amyot, D. (2011) Analysing
the Cognitive Effectiveness of the BPMN 2.0 Visual Nota-
tion. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE
2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg

[14] Haase, P., Lewen, H., Studer, R. Tran, D. T., Erdmann and
d’Aquin M. (2008) "The Neon ontology engineering toolkit,"
http://citeseerx.ist.psu.edu/viewdoc/down-
load?doi=10.1.1.140.7081&rep=rep1&type=pdf

[15] Héon, M. (2014) Web sémantique et modélisation ontolo-
gique (avec G-OWL). Edition ENI (France). 444 pages.

16

[16] Héon, M., Nkambou, R. and Langheit, C. (2016) Toward G-
OWL: A Graphical, Polymorphic And Typed Syntax For
Building Formal OWL 2 Ontologies, presented at the Pro-
ceedings of the 25th International Conference Companion on
World Wide Web, Montréal, Québec, Canada, 2016. 3.

[17] Kendall, E.F. and D.L. McGuinness, Ontology engineer-
ing. Synthesis Lectures on The Semantic Web: Theory and
Technology, 2019. 9(1): p. i-102.

[18] Krivov, S., Williams, R. and Villa, F. (2007). GrOWL: A tool
for visualization and editing of OWL ontologies. Web Seman-
tics: Science, Services and Agents on the World Wide Web,
vol. 5, pp. 54-57.

[19] Larkin J. H. and Simon H. A., (1987) Why a diagram is
(sometimes) worth ten thousand words. Cognitive science,
vol. 11, pp. 65-100, 1987.

[20] Lembo, D., Pantaleone, D. , Santarelli, V. & Savo, D. F.
(2018). Drawing OWL 2 ontologies with Eddy the editor. AI
Communications. 31. 1-17. 10.3233/AIC-180751.

[21] Lohmann, S., Negru, S., Haag, F. and Ertl, T. "Visualizing
ontologies with VOWL", Semantic Web, vol. 7, pp. 399-419,
2016.

[22] Mizoguchi, R. & Kitamura, Y. (2001). “Knowledge system-
atization through ontology engineering – a key technology
for successful intelligent systems,” Invited paper, Pacific-
Asian Conference on Intelligent Systems, Seoul

[23] Moody, D. (2009) The “physics” of notations: toward a sci-
entific basis for constructing visual notations in software en-
gineering, IEEE Transactions on Software Engineering, vol.
35, pp. 756-779.

[24] Moody, D. L. and van Hillegersberg, J. (2008) Evaluating the
Visual Syntax of UML: An analysis of the Cognitive Effec-
tiveness of the UML Family Of Diagrams. Conference on
Software Language Engineering.

[25] Negru, S., Lohmann, S. and Haag, F. VOWL Specification of
Version 2.0, 7 April 2014, http://purl.org/vowl/spec/v2/ re-
trieved March 15,2020

[26] Ovcinnikova, J. and Cerans, K. (2016). "Advanced UML
Style Visualization of OWL Ontologies." http://www.diva-
por-
tal.org/smash/get/diva2:1033953/FULLTEXT02#page=144,
retrieved March 15, 2020

[27] OMG (2014). Ontology Definition Metamodel (ODM):
OMG Adopted Specification, version 1.1. Available:
http://www.omg.org/spec/ODM/1.0/Beta2/PDF/ retreived
March 15, 2020.

[28] OMG (2003) MDA Guide Version 1.0.1, OMG Document
Number: omg/2003-06-01", OMG, 12.6.2003,
http://www.omg.org/cgi-bin/doc?omg/2003-06-01

[29] Paquette G. (2008). Graphical Ontology Modeling Language
for Learning Environments. Technology, Instruction., Cogni-
tion and Learning , Vol.5 , p.133-168, Old City Publishing,
Inc.

[30] Paquette, G. (2010) Visual Knowledge and Competency
Modeling - From Informal Learning Models to Semantic
Web Ontologies. Hershey, PA: IGI Global, 2010.

[31] Paquette, G., Rosca, I., Mihaila, S. and Masmoudi, A. (2007)
"TELOS: A service-oriented framework to support learning
and knowledge management," in E-Learning Networked En-
vironments and Architectures, Springer, 2007

[32] Popescu, G. and Wegmann A. (2014) Using the Physics of
Notations Theory to Evaluate the Visual Notation of SEAM.

CBI (2) 2014: 166-173. https://infoscience.epfl.ch/rec-
ord/198951/files/PID3224947.pdf, consulted March 15,
2020.

[33] Protégé (2009). Welcome to Protege. http://protege.stan-
ford.edu/

[34] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and
Lorensen, W. E. (1991) Object-oriented modeling and design
vol. 199: Prentice-hall Englewood Cliffs, NJ.

[35] Staab, S. & Studer, R., eds. (2004) Handbook on Ontologies.
Springer, Berlin, Heidelberg.

[36] TopBraid (2017). TopBraid Composer (TM). Available:
https://www.topquadrant.com/tools/modeling-topbraid-com-
poser-standard-edition/

[37] W3C (2012) OWL 2 Web Ontology Language, New Features
and Rationale (2nd Edition), 11 December 2012,
http://www.w3.org/TR/2012/REC-owl2-new-features-
20121211/, consulted March 15, 2020.

