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Summary

In several fields such as statistics, machine learning, and bioinformatics, categorical
variables are frequently represented as one-hot encoded vectors. For example, given
8 distinct values, we map each value to a byte where only a single bit has been set.
We are motivated to quickly compute statistics over such encodings.
Given a stream of k-bit words, we seek to compute k distinct sums corresponding to
bit values at indexes 0, 1, 2, . . . , k − 1. If the k-bit words are one-hot encoded then
the sums correspond to a frequency histogram.
This multiple-sum problem is a generalization of the population-count problem
where we seek the sum of all bit values. Accordingly, we refer to the multiple-sum
problem as a positional population-count.
Using SIMD (Single Instruction, Multiple Data) instructions from recent Intel pro-
cessors, we describe algorithms for computing the 16-bit position population count
using less than half of a CPU cycle per 16-bit word. Our best approach uses up to
400 times fewer instructions and is up to 50 times faster than baseline code using
only regular (non-SIMD) instructions, for sufficiently large inputs.
KEYWORDS:
Vectorization, Population Counts, SIMD Instructions, Software Performance, Bioinformatics, Sequenc-
ing, Genomics

1 INTRODUCTION

In many applications such as deep learning1,2,3,4, indexing5, chemistry6, cryptography7, and bioinformatics8,9,10,11 it is desirable
to compute the number of set bits in a computer word. This operation is referred to as the population count (popcnt), Hamming
weight, or the sideways sum of the word. For example, the machine word 10010010 has a population count of three since
there are three set bits. We have previously described efficient subroutines for computing the population count12 of large arrays
that takes advantage of SIMD (Single Instruction, Multiple Data) instructions available on most commodity processors. These
instructions operate on wide data registers and reduce the number of instructions required by processing multiple machine words
simultaneously.
It is common to represent categorical variables using one-hot (1-of-k) encoding13,14 where each categorical value maps to

a corresponding bit within a k-bit word and each word may only have a single bit set. As an illustrative example, consider
a categorical variable country that has the eight distinct values Australia, Canada, China, France, Japan, Portugal,
Spain, and USA. These categorical string values can be unambiguously dictionary-compressed into one-hot encodings (Table 1a)
resulting in lower memory usage and more efficient queries. One of the motivations for such categorical encodings is that many
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TABLE 1 Example of a one-hot encoding.
(a) mapping

Value One-hot
Australia 10000000

Canada 01000000

China 00100000

France 00010000

Japan 00001000

Portugal 00000100

Spain 00000010

USA 00000001

(b) Stream of values
00010000 (France)
00010000 (France)
00000100 (Portugal)
00010000 (France)
00000001 (USA)
00000100 (Portugal)
00000001 (USA)
00000001 (USA)
00000001 (USA)
00100000 (China)
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(a) per-word population count
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(b) positional population count

FIGURE 1 Comparing per-word population count (popcnt) with positional population count (pospopcnt).

machine-learning algorithms require numerical variables and cannot operate directly on categorical data. These encodings are
closely related to the concept of dummy variables in statistics where categorical attributes are represented as zeros or ones for
computing purposes. In this context, we want to compute the frequency histogram, that is the number of occurrences of each
value. For example, given a stream (Table 1b) of one-hot encoded values (Table 1a), we want to compute the number of times
each country has been observed such that France has been observed three times, Portugal two times, USA four times, and
China one time. To compute such cumulative frequency histograms from encoded words, we need to count the number of set
bits at each position (first, second, . . . , last).
We name this novel generalization of the population count operation to individual bits spanning multiple words as the posi-

tional population count (pospopcnt). If each word is made of k-bits then we want to compute k counts representing the total
number of set bits at each of the k positions. As an illustrative example, consider three given input words A, B, and C (Fig. 1),
the conventional per-word population count computes the number of set bits for each word independently (Fig. 1a). In contrast,
the positional population count operation computes the vertical population count over these words for independent bit positions
(Fig. 1b).
Our main contribution is the formalized description of the novel positional population count operation and the introduction

of an efficient algorithmic family for computing it using SIMD instructions leveraging the AVX-512 instruction set architecture
(ISA) available on recent Intel processors. The AVX-512 family of ISAs can operate on up to thirty-two 512-bit registers.
Notably, we show that our proposed algorithm can be in excess of 50-fold faster compared to a baseline scalar approach, as long
as the input is sufficiently large (several kilobytes).

2 RELATEDWORK

To our knowledge, there is no prior work in the literature describing the positional population count. In contrast, computation
of the population count has enjoyed renewed interest12 following recent advancements in hardware with wider registers and
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population count of 8 bits

sum of bits 1, 2, 3, 4

sum of bits 1 and 2

1st bit 2nd bit

sum of bits 3 and 4

3rd bit 4th bit

sum of bits 5, 6, 7, 8

sum of bits 5 and 6

5th bit 6nd bit

sum of bits 7 and 8

7rd bit 8th bit
FIGURE 2 A tree of adders to compute the population count of eight bits in three steps.

void CSA(uint64_t* h, uint64_t* l,
uint64_t a, uint64_t b, uint64_t c) {

uint64_t u = a xor b;
*h = (a bitand b) bitor (u bitand c);
*l = u xor c;

}

FIGURE 3 A C++ function implementing a bitwise parallel carry-save adder (CSA). Given three input words a, b, c, we
compute ℎ, l representing the most significant and the least significant bits of the sum of the bits from a, b, and c, respectively.

more diverse and mature instruction-set architectures. Computing the population count is of such general importance that most
commodity processors have dedicated instructions (e.g. popcnt on x64 processors). These hardware instructions are efficient
when operating on single words. When large volumes of machine words are available in contiguous memory, other software-
based approaches have demonstrated superior performance12.
One of the earliest efficient algorithm to compute the population count is theWilkes-Wheeler-Gill population-count15 (Fig. 2).

This algorithm begins by adding adjacent bits into two-bit subwords, then adds these two-bit subwords into four-bit subwords,
and finally adds adjacent four-bit subwords into byte values. These byte values are then summed using a multiplication and a
bit-shift. It has a natural tree structure and can be described as a "tree of adders"16.
Another efficient approach17 is the Harley-Seal algorithm that is based on carry-save adder (CSA) networks frequently

used in hardware microarchitectures. The CSA subroutine takes three input words and produce two output words: (1) a
sequence of partial sum bits, and (2) a sequence of carry bits. Given three bit values (a, b, c ∈ {0, 1}), the sum a + b + c
is computed as a 2-bit word where the least significant bit is given by (a xor b) xor c and the most significant bit is given by
(a bitand b) bitor((a xor b) bitand c). We reuse the a xor b expression from the computation of the least significant bit when
computing the most significant bit. Therefore, three values can be summed using 5 logical operations. This CSA network is par-
ticularly effective when generalized to operate on 64-bits in parallel (Fig. 3). Let us illustrate this approach by computing the
population count of four inputs words using a simplified circuit (Fig. 4). Starting with two 64-bit words initialized to zero: one
for the least significant bits (B0) and one for the second least significant bits (B1).

1. Two input words are summed with B0 using a CSA subroutine (Fig. 3) resulting in two outputs: one corresponding to the
least significant bits stored in B0 and another corresponding to the second most significant bit: let us call it x.

2. Two new input words are summed with B0 using the same CSA subroutine. Again the output corresponding to the least
significant bit is stored in B0. We have a second output corresponding to the second most significant bits, let us call it y.

3. In the final step, x, y, and B1 are added together. The output corresponding to the least significant bits is stored in B1.
Similarly, the output corresponding to the most significant bit is stored in B2.
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FIGURE 4 CSA circuit algorithm aggregating four inputs (d0, d1, d2, d3), producing three outputs B0, B1, B2 corresponding to
the least significant bit, second most significant bit and most significant bit of the sum. Observe that B0 and B1 are both inputs
and outputs.

If ci is the population count ofBi, then the population count of the four words is 1c0+2c1+4c2. In general, given 2N input words,
we can produceN +1 words corresponding to the sum of the bits using a CSA circuit. Then the per-word population count can
be computed from the resultingN words. More complex circuits are difficult to illustrate but can be built by recursively applying
the same circuit. Assume that we have a circuit that takes 2N inputs as well asB0,… , BN−1 and produces the updatedB0,… , BN
corresponding to the sum. We can represent this circuit as a function FN (d0,… , d2N−1;B0,… , BN−1) that outputs B0,… , BN .
We can then construct a larger circuit that takes twice as many inputs by two calls to the circuit together with an additional CSA
routine. Indeed, to compute FN+1(d0,… , d2N+1−1;B0,… , BN ), we can start by computing FN (d0,… , d2N−1;B0,… , BN−1). We
provide the first N outputs (B0,… , BN ) from this first call to FN to a second call to the circuit FN , this time using the 2N

following inputs dN ,… , d2N+1−1. We are left with three values BN , one was provided as an input to FN+1, and two have been
produced by a call to the smaller circuit FN . We can combine these with a CSA routine. By such a recursive argument, we can
show that 2N − 1 CSA routines is sufficient to process 2N inputs.
In addition to being scaled to more inputs, the CSA circuit can be be parallelized using wide SIMD registers (e.g. 512-bit

words using the AVX-512 ISA). Instead of processing 64-bit words one-by-one, we can process multiple 64-bit words in parallel
resulting in greater speed. Given sufficiently large input arrays (e.g., 1 kB), such a SIMD-accelerated CSA network is superior
to all known population count alternatives on current Intel processors12.
Furthermore, our general strategy and many of our constructions are familiar to cryptographers18. Some of these researchers

have produced related optimizations using advanced SIMD instructions19,20.

3 CARRY-SAVE-ADDED (CSA) ROUTINES IN AVX-512

The conventional approach for computing the CSA routine requires 5 logical operations. On processors with the AVX-512
instruction set architecture available, we can simplify this subroutine down to two instructions by using the three-operand
instruction vpternlogd using the _mm512_ternarylogic_epi32 intrinsic function (Fig. 5). These compiler-specific intrinsic
functions enables access to specific processor instructions without having to directly write in assembly or machine language.
The vpternlogd instruction operates on three input bits a, b, c and an 8-bit sequence i and returns the bit at index 1a+2b+4c
of i. Given three 512-bit input registers, the instructions generates a 512-bit output, executing 512-bit operations in parallel. The
vpternlogd instruction can compute any ternary Boolean function using a single instruction.
This instruction is useful in computing the most and least significant bits in the CSA routine. To determine the value of the

8-bit sequence i in the context of computing the least and most significant bits, it suffices to enumerate all 8 possible inputs
(Table 2).
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TABLE 2 CSA routine in the context of the vpternlogd instruction
(a) least significant bit

c b a a xor b xor c 1a + 2b + 4c

0 0 0 0 0
1 0 0 1 1
0 1 0 1 2
1 1 0 0 3
0 0 1 1 4
1 0 1 0 5
0 1 1 0 6
1 1 1 1 7

(b) most significant bit

c b a (a and b) or ((a xor b) and c) 1a + 2b + 4c

0 0 0 0 0
1 0 0 0 1
0 1 0 0 2
1 1 0 1 3
0 0 1 0 4
1 0 1 1 5
0 1 1 1 6
1 1 1 1 7

void CSA_AVX512(__m512i* h, __m512i* l,
__m512i a, __m512i b, __m512i c)

{
*h = _mm512_ternarylogic_epi32(c, b, a, 0b11101000);
*l = _mm512_ternarylogic_epi32(c, b, a, 0b10010110);

}

FIGURE 5 The carry-save adder update step using AVX-512-based instructions. The three inputs are a, b, c, the two outputs
are ℎ and l corresponding respectively to the most significant and least significant bits.

• The least significant bit can be computed as the xor of the three inputs. Therefore, the vpternlogd instruction computes
the desired output when the bits at index {1, 2, 4, 7} of i are set. In software, this bit sequence is represented as the integer
0b10010110 in binary or 150 in decimal.

• Computing the most significant bits involves the expression (a and b) or ((a xor b) and c. We can achieve this result by
setting the bits at index {3, 5, 6, 7} of i that can be represented as the binary string 0b11101000 or 232 in decimal.

When comparing the resulting AVX-512 routine to its 64-bit equivalent (Fig. 3), we observe that the AVX-512-based CSA
subroutine can process 8 times as many bits (512 versus 64) while simultaneously reducing the number of logical operations
from 5 to 2. Taken together, we achieve a gain factor of 5∕2 × 8 = 20 in terms of instructions per input bits.

4 POSITIONAL POPULATION-COUNT ALGORITHMS

Implementations of the positional population count depends on the desired target word size. For simplicity, we focus on 16-bit
words in this work. Wider words (larger universes) can be encoded into multiple distinct streams of 16-bit words. In addition,
our algorithms can be generalized to wider words without difficulty.
To compute the positional population count, we start with sixteen zero-initialized bit-counters. Next, we iterate over the bits

in each word in sequence while incrementing the corresponding target bit-counter as needed. A sensible baseline algorithm for
computing the positional population count involves a shift-mask-add subroutine (Fig. 6):

1. Right shift a 16-bit word by the bit index p ∈ {0, 1,… , 15}. Mathematically, this is equivalent to an integer division by
2p with the result being the integer quotient.

2. Mask out all but the least significant bit from the shifted word. This bit is set when the quotient is odd, and zero otherwise.
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void pospopcnt_u16_scalar_basic(uint16_t* data,
uint32_t len, uint32_t* counters) {
for (int i = 0; i < len; ++i) {

// Each bit in every input word.
uint16_t w = data[i];
counters[0] += ((w >> 0) bitand 1);
counters[1] += ((w >> 1) bitand 1);
...
counters[15] += ((w >> 15) bitand 1);

}
}

FIGURE 6 Reference algorithm for computing the positional population count. Given some input data we compute the total
number of set bits at each position by using a branchless mask-shift-add update step.

3. Increment the counter at position p with the value from step 2.
We expect this code to be compiled to efficient assembly. On superscalar processors, branches must be predicted and a branch
misprediction can cost tens of cycles or more. Fortunately, in our tests, the executed code does not trigger a significant number
of mispredicted branches: the end of the short loop (16) is corrected predicted.
For sufficiently long input streams, we estimate the number of executed instructions to∼4 per bit for a total of∼64 instructions

per 16-bit word. Given that most recent Intel processors can retire four instructions per CPU cycle, we expect a processing speed
of around 16 cycles per 16-bit word for this scalar shift-mask-add subroutine (Fig. 6).

4.1 AVX-512
We build CSA circuits over 512-bit registers using a CSA routine (Fig. 5). The simplest network (Fig. 4) takes four 512-bit
registers (or 256B) as inputs (Fig. 7) and uses three calls to the CSA_AVX512 function. We can double the size of the network
and process 512B inputs using seven calls to the CSA_AVX512 function. Again, doubling the network size, we can process
1 kB inputs using fifteen calls to the CSA_AVX512 function (Fig. 8). Each call to the CSA_AVX512 function involves only two
instructions (two times vpternlogd). Excluding load and store instructions, we use (1) 6 instructions per block of 256B or
(2) 14 instructions per block of 512B or (3) 30 instructions per block of 1 kB. Notably, the number of instructions per input
volume increases with wider circuits.
At the end of each circuit, we have a set of registers {B0, B1, B2, . . . } corresponding, for each bit position in i ∈ [0, 1,… , 512),

to the sum of set bits. For simplicity let us assume that we are working with the smaller circuit (256B). Before starting the pro-
cedure, the registers B0, B1, B2 and the 16 output bit-counters are zero-initialized. Next, the first 512B of inputs are process with
the circuit and receive as output the updated values of B0, B1, B2. In addition, we also receive a new register B3 corresponding to
the fourth least significant bit of the sum of the set bits at position i ∈ [0, 1,… , 512). We can update our sixteen bit-counters by
checking the bits in B3: the first counter needs to be incremented by eight times the sum of the bits at indexes {0, 16, 32,… , 496},
the second counter needs to be incremented by eight times the sum of the bits at indexes {1, 17, 33,… , 497}, and so forth. The
process of loading the next 512B of input data, call the circuit, and providing it with the updated values B0, B1, B2 is repeated
until no more data is available. At this point, when no more input data is available, we must increment our bit-counters with
the remaining bits in B0, B1, B2. These are processed as B3 except that the multiplier is 1, 2 and 4 respectively. The algorithms
using the large circuits (512B and 1 kB) work similarly.
The inner loop of our algorithm, where the bit-counters from the B3 register are updated could become expensive. This loop

execute 16 sums of 32 bit values and multiply the result by eight. This final multiplication can be deferred until the end of the
main loop. Further, we vectorize the sum (Fig. 9) by using sixteen vector of counters, each spanning 512 bits, or thirty-two
16-bit counters, instead of using sixteen scalar counters. Given the B3 register, we select the least significant bit of each 16-bit
word by using a mask-select operation involving the _mm512_and_si512 intrinsic function. Next, we increment counters using
a horizontal add operation involving the _mm512_add_epi16 intrinsic. Finally, we shift each 16-bit subword of the B3 register
right by one bit with the _mm512_srli_epi16 intrinsic function. This procedure can be written in scalar form as:
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// inputs: B0, B1
// data[i], ..., data[i + 3]
//
// temporary variables: B1A, B1B
//
// outputs: B0, B1, B2
//
CSA_AVX512(&B1A , &B0 , B0 , data[i] , data[i + 1] );
CSA_AVX512(&B1B , &B0 , B0 , data[i + 2] , data[i + 3] );
CSA_AVX512(&B2 , &B1 , B1 , B1A , B1B );

FIGURE 7 CSA circuit for our AVX-512 implementation in C++ processing 4 registers or 256B, the CSA_AVX512 is as in
Fig. 5.

for (pos = 0; pos < 16; ++pos) {
for (i = 0; i < 32; ++i) {

counter[pos] += B[i] & 1;
B[i] >>= 1;

}
}
with the convention that the subword B at index i (B[i]) selects a 16-bit word within B. By unrolling this vectorized code, we
achieve 3 × 16 = 48 instructions, without considering overhead and load/store instructions. We can add these 48 instructions to
our previous counts: (1) 54 instructions per block of 256B or (2) 62 instructions per block of 512B or (3) 78 instructions per
block of 1 kB. Dividing by the number of 16-bit words processed, we get the following instruction counts per word:

1. 0.42 when using blocks of 256B,
2. 0.24 when using blocks of 512B, and
3. 0.15 when using blocks of 1 kB.

Based on these numbers, as block sizes get larger, we expect fewer instructions per input word and therefore improved perfor-
mance. In comparison, we estimate about 64 instructions per 16-bit word for the scalar version. This corresponds to a >400-fold
reduction in the number of executed instructions.
This analysis ignores the overhead cost of recovering the counts from both the vectorized counters and the running registers

{B0, B1, B2,…}. For small inputs, this overhead can occupy a dominant proportion of the total cost. For example, the sixteen
vector counters span 1 kB on their own. Hence, to achieve good performance, the input stream should at least exceed 1 kB.
Taken together, we describe several SIMD-accelerated CSA networks of different sizes for computing the positional popu-

lation count with up to >400-fold reduction in the number of executed instructions compared to a scalar implementation. Our
SIMD-based approach can compute the positional population count for inputs that are a multiple of 256B. Any residual input
values will be processed using a scalar subroutine.

5 EXPERIMENTS

We implemented the algorithms in C99 and we make them available online at https://github.com/lemire/pospopcnt_avx512
under the Apache 2.0 license. Code was compiled with GCC 8.2 using the optimization flags -O2 -march=native. All tests
were performed using a host machine with a Cannon Lake microarchitecture (Table 3). Performance was measured using the
Linux performance counters (e.g. PERF_COUNT_HW_CPU_CYCLES to count processor cycles). The host processor has 32 kB of L1
cache per core, 256 kB of L2 cache per core and 4MB of L3 cache. We verified that the processor is not subject to downclocking
when running AVX-512 instructions21 using the avx-turbo22 benchmarking tool.
For all experiments, we generate random data using a Mersenne Twister pseudorandom number generator. However, we find

that performance is independent of the input data as our algorithms do not branch on the content of the data.

https://github.com/lemire/pospopcnt_avx512
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// inputs: B0, B1, B2, B2
// data[i], ..., data[i + 15]
//
// temporary variables: B1A, B1B, B2A, B2B,
// B2A, B2B
//
// outputs: B0, B1, B2, B2, B3
//
CSA_AVX512(&B1A , &B0 , B0 , data[i] , data[i + 1] );
CSA_AVX512(&B1B , &B0 , B0 , data[i + 2] , data[i + 3] );
CSA_AVX512(&B2A , &B1 , B1 , B1A , B1B );
CSA_AVX512(&B1A , &B0 , B0 , data[i + 4] , data[i + 5] );
CSA_AVX512(&B1B , &B0 , B0 , data[i + 6] , data[i + 7] );
CSA_AVX512(&B2B , &B1 , B1 , B1A , B1B );
CSA_AVX512(&B2A. , &B2 , B2 , B2A , B2B );
CSA_AVX512(&B1A , &B0 , B0 , data[i + 8] , data[i + 9] );
CSA_AVX512(&B1B , &B0 , B0 , data[i + 10], data[i + 11]);
CSA_AVX512(&B2A , &B1 , B1 , B1A , B1B );
CSA_AVX512(&B1A , &B0 , B0 , data[i + 12], data[i + 13]);
CSA_AVX512(&B1B , &B0 , B0 , data[i + 14], data[i + 15]);
CSA_AVX512(&B2B , &B1 , B1 , B1A , B1B );
CSA_AVX512(&B2B , &B2 , B2 , B2A , B2B );
CSA_AVX512(&B3 , &B2 , B2 , B2A , B2B );

FIGURE 8 CSA circuit for our AVX-512 implementation in C++ processing 16 registers or 1 kB, the CSA_AVX512 is as in
Fig. 5.

// input: B
// counter[0], ..., counter[15] are 512-bit registers
__m512i one = _mm512_set1_epi16(1); // 1-mask (000...1)
for (pos = 0; pos < 16; ++pos) {

__m512i masked = _mm512_and_si512(B, one)); // Select LSB (bit) with 1-mask
counter[pos] = _mm512_add_epi1(counter[pos], masked); // Horizontal add
B = _mm512_srli_epi16(B, 1); // Shift 16-bit words right by 1 bit

}

FIGURE 9 Vectorized counter increment.

Our proposed AVX-512-based approach has a fixed overhead, irrespective of the input stream size. This overhead is non-
negligible for small inputs. For tiny inputs (512 words), we need about 30 instructions per 16-bit word, and almost all of these
instructions are part of the overhead. However, once we reach a few thousands words (e.g., 4096 words or 8 kB), our AVX-
512-based approach becomes beneficial. We simulated random input data for 8 and 512 kB, as well as 16, 64, 256, and 1024
MB and benchmarked our three different CSA circuits against a scalar implementation (Table 4). To guarantee reliability, we
repeat each test three times and verify that the standard error is well within a 5%. We also present the speeds in GB/s for input
sizes up to 64MB (see Fig. 10). For the scalar algorithm, we observe a fixed speed over the range of inputs in our experiments:
17 cycles and 65 instructions per input word. Overall, the fastest approach is our proposed AVX-512 algorithm with large block
size (1 kB), except maybe for inputs of less than 64 kB. Increasing the input size reduce the number of instructions per input
word and simultaneously increase speed. Due to diminishing returns, the performance for 1GB inputs are practically identical to
that of 256MB. In the best scenario, the AVX-512 approach uses 300 times fewer instructions compared to the scalar approach.
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TABLE 3 Hardware

Processor Base Frequency Max. Frequency L1 data cache per core Microarchitecture Compiler
Intel i3-8121U 2.2GHz 3.2GHz 32 kB Cannon Lake (2018) GCC 8.2

TABLE 4 Performance results for different input sizes: CPU cycles per 16-bit word, instructions per 16-bit word and speed
in GB/s.

(a) 8 kB input

Cycles/word Ins./word Speed (GB/s)
Scalar 17 65 0.22
AVX-512 (256B) 1.2 3.9 0.44
AVX-512 (512B) 1.5 4.7 0.45
AVX-512 (1 kB) 1.5 4.7 0.45

(b) 512 kB input

Cycles/word Ins./word Speed (GB/s)
17 65 0.36
0.22 0.57 15
0.15 0.39 18
0.14 0.29 19

(c) 16MB input

Cycles/word Ins./word Speed (GB/s)
Scalar 17 65 0.36
AVX-512 (256B) 0.65 0.52 9.7
AVX-512 (512B) 0.55 0.32 11
AVX-512 (1 kB) 0.51 0.23 12

(d) 64MB input

Cycles/word Ins./word Speed (GB/s)
17 65 0.36
0.65 0.52 12
0.44 0.32 14
0.41 0.23 15

(e) 256MB input

Cycles/word Ins./word Speed (GB/s)
Scalar 17 65 0.36
AVX-512 (256B) 0.47 0.52 14
AVX-512 (512B) 0.39 0.32 16
AVX-512 (1 kB) 0.36 0.22 18

(f) 1GB input

Cycles/word Ins./word Speed (GB/s)
17 65 0.36
0.47 0.52 14
0.39 0.32 16
0.36 0.22 18

As a reference point, the C memcpy function runs at a speed of 20GB/s for large inputs compared to 18 GB/s for the positional
popcount operation on large inputs.

6 CONCLUSION

Taken together, we introduce a novel population count operation referred to as the positional population count (pospopcnt) and
introduce efficient SIMD-accelerated algorithms based on carry-saver add (CSA) circuits. We demonstrate that we can process
16-bit words at nearly the speed of a memory copy when AVX-512 is available and when the input size is sufficiently large (e.g.,
256MB). Our best algorithm is over 40 times faster compared to a non-vectorized approach.
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