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ABSTRACT

A data warehouse cannot materialize all possible views, hence we

must estimate quickly, accurately, and reliably the size of views

to determine the best candidates for materialization. Many avail-

able techniques for view-size estimation make particular statisti-

cal assumptions and their error can be large. Comparatively, unas-

suming probabilistic techniques are slower, but they estimate accu-

rately and reliability very large view sizes using little memory. We

compare five unassuming hashing-based view-size estimation tech-

niques including Stochastic Probabilistic Counting and LOGLOG

Probabilistic Counting. Our experiments show that only General-

ized Counting, Gibbons-Tirthapura, and Adaptive Counting pro-

vide universally tight estimates irrespective of the size of the view;

of those, only Adaptive Counting remains constantly fast as we in-

crease the memory budget.

Categories and Subject Descriptors

H.3.2 [Information Storage and Retrieval]: Information Storage;

G.3 [Probability and Statistics]: Probabilistic algorithms

General Terms

Algorithms, Performance, Experimentation, Reliability.

Keywords

OLAP, materialized views, view-size estimation, data warehouse,

random hashing.

1. INTRODUCTION
View materialization is one of the most effective technique to im-

prove query performance of data warehouses. Materialized views

are physical structures which improve data access time by pre-

computing intermediary results. Typical OLAP queries consist

in selecting and aggregating data with grouping sets (GROUP BY

clauses) [13]. By precomputing many plausible groupings, we can

avoid slow responses due to aggregates over large tables. Many

queries, such as those containing conditions (HAVING clauses) can
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also be computed faster using these preaggregates. However, mate-

rializing views requires additional storage space and induces main-

tenance overhead when refreshing the data warehouse. Moreover,

the number of views is large: there are 2d views in a d-dimensional

data cube lattice [13]. Hence, one of the most important issues in

data warehouse physical design is the selection of the views to ma-

terialize, an NP-hard problem [14]. Most heuristics for this prob-

lem depend on view-size estimation.

Some view-size estimation techniques make assumptions about

the data distribution and others are “unassuming.” A common sta-

tistical assumption is uniformity [12], but any skew in the data leads

to an overestimate. Generally, while statistically assuming estima-

tors are computed quickly, the most expensive step being the ran-

dom sampling, their error can be large and it cannot be bounded

a priori. We consider several state-of-the-art statistically unassum-

ing estimation techniques: Probabilistic Counting [10], LOGLOG

Probabilistic Counting [7], Adaptive Counting [6], Generalized

Counting [5], and Gibbons-Tirthapura [11]. While relatively ex-

pensive, unassuming estimators tend to provide good accuracy and

reliability [4].

To use these techniques, we need to hash rows quickly and our

theoretical bounds require at least pairwise independent hash val-

ues. Fortunately, while there can be several dimensions (d > 10)

in a data cube, the number of attribute values in each dimension

is often small compared to the available memory. Hence, we can

hash dimensions separately, store the result in main memory, and

combine these fully independent unidimensional hash values into

d-wise independent multidimensional hash values.

Typically, as we allocate more memory, our algorithms become

more accurate, but also slower. We are concerned with two differ-

ent usage scenario. Firstly, we want rough estimates, with errors as

large as 10%, as quickly as possible. In such cases, we can use tiny

memory budgets (less than 1 MiB). Secondly, we want highly accu-

rate estimates with errors less than 1% or 0.1%. In these instances,

we use several megabytes of memory.

The main result of this paper is an exhaustive theoretical and

experimental comparisons of a wide range of unassuming view-

size estimation techniques. We also present practical theoretical

results on Generalized Counting, a novel algorithm. Finally, we

make some recommendations.

2. RELATED WORK
Sample-based, statistically assuming estimations are typically

fast, but can be inaccurate and can still use a lot of memory. In-

deed, in the worst-case scenario, the histogram of the sample might

be as large as the view size we are trying to estimate. Moreover, it

is difficult to derive unassuming accuracy bounds since the sample
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might not be representative and the model might not be a good fit.

However, a sample-based algorithm is expected to be an order of

magnitude faster than an algorithm which processes the entire data

set. Haas et al. [15] estimate the view size from the histogram of a

sample: adaptively, they choose a different estimator based on the

skew of the distribution. Faloutsos et al. [8] obtain results nearly as

accurate as Haas et al., that is, an error of approximately 40%, but

with a simpler algorithm.

Stochastic Probabilistic Counting [10], LOGLOG Probabilistic

Counting (henceforth LOGLOG) [7] and Adaptive Counting [6]

have been shown to provide very accurate view-size estimations

quickly for very large views, but their estimates assume we have

independent hashing. Because of this assumption, their theoretical

bound may not hold in practice.

Gibbons and Tirthapura [11] derived an unassuming bound, for

an algorithm we will refer to as Gibbons-Tirthapura or GT, that

only requires pairwise independent hashing. It has been shown re-

cently that if you have k-wise independent hashing for k > 2 the

theoretically bound can be improved substantially [17]. Bar-Yossef

et al. [5, Section 2] presented a new scheme which they described

as a generalization of Probabilistic Counting, assuming only pair-

wise independent hashing. The benefit of these new schemes is

that as long as the random number generator is truly random and

the hashed values use enough bits, the theoretical bounds have to

hold irrespective of the size of the view or of other factors. We

can be certain to have high accuracy and reliability, but what about

speed?

3. ESTIMATION BY MULTIFRACTALS
We implemented the statistically assuming algorithm by Falout-

sos et al. based on a multifractal model [8]. Given a sample, all that

is required to learn the multifractal model is the number of distinct

elements in the sample F0, the number of elements in the sample

N′, the total number of elements N, and the number of occurrences

of the most frequent item in the sample mmax. Hence, a very simple

implementation is possible (see Algorithm 1). The memory usage

of this algorithm is determined by the GROUP BY query on the

sample (line 6): typically, a larger sample will lead to a more im-

portant memory usage.

Algorithm 1 View-size estimation using a multifractal distribution

model.

1: INPUT: Fact table t containing N facts

2: INPUT: GROUP BY query on dimensions D1,D2, . . . ,Dd

3: INPUT: Sampling ratio 0 < p < 1

4: OUTPUT: Estimated size of GROUP BY query

5: Choose a sample in t ′ of size N′ = bpNc
6: Compute g=GROUP BY(t ′)
7: let mmax be the number of occurrences of the most frequent tuple

x1, . . . ,xd in g

8: let F0 be the number of tuples in g

9: k← dlogF0e
10: while F < F0 do

11: p← (mmax/N′)1/k

12: F ← ∑
k
a=0

(
k
a

)
(1− (pk−a(1− p)a)N′ )

13: k← k +1

14: p← (mmax/N)1/k

15: RETURN: ∑
k
a=0

(
k
a

)
(1− (pk−a(1− p)a)N)

4. UNASSUMING ESTIMATION
All unassuming methods presented in this paper use the same

probabilistic idea. Whereas the initial data has unknown distribu-
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Figure 1: Irrespective of the original data, the hashed values

can be uniformly distributed.

tion, if we use an appropriate random hashing method, the hashed

values are uniformly distributed (see Fig. 1).

4.1 Independent Hashing
Hashing maps objects to values in a nearly random way. We

are interested in hashing functions from tuples to [0,2L) where L

is fixed (L = 32 or L = 64 in this paper). Hashing is uniform

if P(h(x) = y) = 1/2L for all x,y, that is, if all hashed values

are equally likely. Hashing is pairwise independent if P(h(x1) =
y1∧h(x2) = y2) = P(h(x1) = y1)P(h(x2) = y2) = 1/4L for all xi,yi.

Pairwise independence implies uniformity. Hashing is k-wise inde-

pendent if P(h(x1) = y1 ∧ ·· · ∧ h(xk) = yk) = 1/2kL for all xi,yi.

Finally, hashing is (fully) independent if it is k-wise independent

for all k. Fully independent hashing of F0 distinct values requires

Ω(F0) units of memory [1] and is thus impractical if F0 is large.

We can compute k-wise independent hash values efficiently in a

multidimensional data warehouse setting. For each dimension Di,

we build a look-up table Ti, using the attribute values of Di as keys.

Each time we meet a new key, we generate a random number in

[0,2L) and store it in the look-up table Ti. This random number

is the hashed value of this key. This table generates (fully) inde-

pendent hash values in amortized constant time. In a data ware-

housing context, whereas dimensions are numerous, each dimen-

sion will typically have few distinct values: for example, there are

only 8,760 hours in a year. Therefore, the look-up table will of-

ten use a few Mib or less. When hashing a tuple x1,x2, . . . ,xk in

D1×D2× . . .Dk, we use the value T1(x1)⊕T2(x2)⊕ ·· ·⊕Tk(xk)
where ⊕ is the EXCLUSIVE OR operator. This hashing is k-wise

independent and requires amortized constant time. Tables Ti can be

reused for several estimations: we can simultaneously estimate the

size of a GROUP BY on D1 and D2, and the size of a GROUP BY on

D2 and D3 while using a single table T2.

4.2 Probabilistic Counting
Our version of (Stochastic) Probabilistic Counting [10] (or just

Counting for short) is given in Algorithm 2. LOGLOG (see Algo-

rithm 3) is a faster variant [7]. The main difference between the two

algorithms is that LOGLOG only keeps track of the maximum num-

ber of leading zeroes, whereas Probabilistic Counting keeps track

of all observed numbers of leading zeroes and is thus more resilient

to outliers in the hashing values (see Fig. 2). For the same param-

eter M, the memory usage of the two algorithms is comparable in

practice: Probabilistic Counting uses a M× L binary matrix and

LOGLOG uses M counters to store integer values ranging from 1 to

L− logM. Assuming independent hashing, these algorithms have

(relative) standard error (or the relative standard deviation of the

error) of 0.78/
√

M and 1.3/
√

M respectively (see Fig. 3). These

theoretical results assume independent hashing which we cannot

realistically provide. They also require the view size to be very

large. Fortunately, we can detect the small views. A small view

compared to the available memory (M), will leave several of the M



00000101101
10100101101
01101010111
01011110110
00101010110
00011010101

0
00
000

00000

COUNTING

LOGLOG

rejects outlier

only keep maximum 

Figure 2: Probabilistic counting methods.

counters unused (array M in Algorithm 2). Thus, following Cai et

al. [6], when more than 5% of the counters are unused we return a

linear counting estimate [20] instead of the LOGLOG estimate: see

last line of Algorithm 2 (henceforth Adaptive Counting). Finally,

Alon et al. [2] presented a probabilistic counting variant using only

pairwise independent hashing, but the error bounds are large: for

any c > 2, the relative error is bounded by c− 1 with reliability

1− 2/c (an error bound of 3900% 19 times out of 20). We do not

expect these algorithms to be very sensitive to the size of the mem-

ory M.

Algorithm 2 View-size estimation using Probabilistic Counting.

1: INPUT: Fact table t containing N facts

2: INPUT: GROUP BY query on dimensions D1,D2, . . . ,Dd

3: INPUT: Memory budget parameter M = 2k

4: INPUT: Independent hash function h from d tuples to [0,2L).
5: OUTPUT: Estimated size of GROUP BY query

6: b← M×L matrix (initialized at zero)

7: for tuple x ∈ t do

8: x′← πD1 ,D2 ,...,Dd
(x) {projection of the tuple}

9: y← h(x′) {hash x′ to [0,2L)}
10: α = y mod M

11: i← position of the first 1-bit in by/Mc
12: bα,i← 1

13: A← 0

14: for α ∈ {0,1, . . . ,M−1} do

15: increment A by the position of the first zero-bit in bα,0,bα,1, . . .

16: RETURN: M/φ2A/M where φ≈ 0.77351

Algorithm 3 View-size estimation using LOGLOG and Adaptive

Counting.

1: INPUT: fact table t containing N facts

2: INPUT: GROUP BY query on dimensions D1,D2, . . . ,Dd

3: INPUT: Memory budget parameter M = 2k

4: INPUT: Independent hash function h from d tuples to [0,2L).
5: OUTPUT: Estimated size of GROUP BY query

6: M ← 0,0, . . . ,0︸ ︷︷ ︸
M

7: for tuple x ∈ t do

8: x′← πD1 ,D2 ,...,Dd
(x) {projection of the tuple}

9: y← h(x′) {hash x′ to [0,2L)}
10: j← value of the first k bits of y in base 2

11: z← position of the first 1-bit in the remaining L− k bits of y (count

starts at 1)

12: M j ←max(M j,z)

13: (original LOGLOG) RETURN: αMM2
1
M ∑ j M j

where αM ≈ 0.39701− (2π2 + ln2 2)/(48M).

14: (Adaptive Counting) RETURN:

{
αMM2

1
M ∑ j M j if β/M ≥ 0.051

−M logβ/M otherwise

where β is the number of M j for j = 1, . . . ,M with value zero

 0

 2

 4

 6

 8

 10

 12

 512  1024  1536  2048

st
an

da
rd

 e
rr

or
 (

%
)

M

Counting
LogLog Counting

Figure 3: Standard error for Probabilistic Counting and

LOGLOG as a function of the memory parameter M.

4.3 Generalized Counting
We modified a generalization to Probabilistic Counting [5, Sec-

tion 2] (henceforth GC), see Algorithm 4. The tuples and hash

values are stored in an ordered set, and since each tuple is inserted

(line 14), the complexity of processing each tuple with respect to

M is in O(logM). However, for small M with respect to the view

size, most tuples are never inserted since their hash value is larger

than the smallest M hash values (line 13).

The original algorithm [5] used many hashing bits: L ≥
3∑i log |Di| where |Di| is the number of attribute values in dimen-

sion Di. The main problem is that the number of required bits de-

pends on the volume of the cuboid, which is typically far larger

than the view-size. As the next result shows, with our modified al-

gorithm, few bits are necessary. For example, when hashing with

L = 64 bits, using a memory budget of M = 10000, and with rela-

tive accuracy of ε = 0.1, we can estimate view sizes far exceeding

anything seen in practice (2×1021 facts). Moreover, we show that

the accuracy bounds improve substantially if the hashed values are

more than pairwise independent (see Fig. 4(a)).

Proposition 1 For L ≥ 1 + logF0/(εM) and M ≥ 2k ≥ 4, Algo-

rithm 4 estimates a view size F0 within relative precision ε < 1/2

with reliability 1−δ where δ is given by (4k/(e2/3ε2M))k/2.

PROOF. Suppose we have F0 distinct tuples in the GROUP BY

and assume that F0 > M. If M ≤ F0, we can modify the algorithm

so that an exact count is returned.

First, consider the case where we overestimate the true count by

ε, that is 2LM/max(M ) ≥ (1 + ε)F0, hence we have at least M

hashed values smaller than 2LM/((1 + ε)F0). Hashed values take

integer values in [0,2L). Assuming L≥ 1+ logF0/(εM), the prob-

ability that a hashed value is smaller than 2LM/((1 + ε)F0) is less

than M/((1+ ε)F0)+2−L ≤M/((1+ ε)F0)+ εM/(2F0)≤M(2+
ε + ε2)/(2(1 + ε)F0) = Mp/F0 where p = (2 + ε + ε2)/(2(1 +
ε)). Let Xi for i = 1, . . . ,F0 be 1 with probability p/F0 and

zero otherwise. Write X = ∑i=1,...,F0
Xi, we have that X̄ =

∑i=1,...,F0
E(Xi) = Mp whereas, by pairwise independence, σ2 =

var(X) = ∑i=1,...,F0
var(Xi) = F0(Mp/F0−M2 p2/F2

0 ) = Mp(1−
Mp/F0)≤Mp. By a Chernoff-Hoeffding bound [18, Theorem 2.4]

and the k-wise independence of the Xi’s, P(X ≥ M) ≤ P(|X −

Mp| > M −Mp) ≤
(

kMp

e2/3(1−p)2M2

)k/2
=
(

kp

e2/3(1−p)2M

)k/2
. We

have that p ≤ 1 and 1− p ≥ ε/2 for ε < 1/2, hence P(X ≥

M)≤
(

k4
e2/3ε2M

)k/2
. Finally, observe that P(2LM/max(M )≥ (1+

ε)F0)≤ P(X ≥M).
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Figure 4: Bound on the estimation error (19 times out of 20)

as a function of the number of tuples kept in memory (M) with

k-wise independent hashing.

Algorithm 4 Generalized Counting view-size estimation.

1: INPUT: Fact table t containing N facts

2: INPUT: GROUP BY query on dimensions D1,D2, . . . ,Dd

3: INPUT: Memory budget parameter M

4: INPUT: k-wise hash function h from d tuples to [0,2L).
5: OUTPUT: Estimated size of GROUP BY query

6: M ← empty sorted sequence, max(M ) returns an element with largest

hashed value

7: t← 0

8: for tuple x ∈ t do

9: x′← πD1 ,D2 ,...,Dd
(x) {projection of the tuple}

10: y← h(x′) {hash x′ to [0,2L)}
11: if size(M )< M then

12: insert x′ with hashed value y in M
13: else if y < max(M ) then

14: insert x′ with hashed value y in M {x′ may already be in M }
15: if size(M )> M then

16: remove max(M ) from M
17: RETURN: 2Lsize(M )/max(M )

Similarly, suppose that we underestimate the true count by ε,

2LM/max(M ) ≤ (1− ε)F0, hence we have less than M hashed

values smaller than 2LM/((1 − ε)F0). The probability that a

hashed value is smaller than 2LM/((1−ε)F0) is less than M/((1−
ε)F0)+2−L ≤M/((1−ε)F0)+εM/(2F0)≤M(2+ε−ε2)/(2(1−
ε)F0) = Mp/F0 where p = (2 + ε− ε2)/(2(1− ε)). Let Xi for

i = 1, . . . ,F0 be 1 with probability p/F0 and zero otherwise. Write

X = ∑i=1,...,F0
Xi, we have that X̄ = Mp whereas σ2 = Mp. Fi-

nally, P(X ≤ M) ≤ P(|X −Mp| > M−Mp) ≤
(

kp

e2/3(1−p)2M

)k/2
.

By inspection, we see that p/(1− p)2 ≤ 2/ε2, hence P(X ≤M)≤(
k4

e2/3ε2M

)k/2
which completes the proof. 2

4.4 Gibbons-Tirthapura
Originally, the GT algorithm was proposed in the context of data

streams and parallel processing [11] (see Algorithm 5). If the view

size is smaller than the memory parameter (M), the estimation is

without error. For this reason, we expect GT to perform well when

estimating small and moderate view sizes compared to the available

memory. We can processing most tuples in (amortized) constant

time with respect to M (line 13) using a hash table, however the

occasional pruning of tuples requires (amortized) linear time with

respect to M (line 16).

The original theoretical bounds [11] assumed pairwise indepen-

dence. However, more independent hashing, as is possible in our

context for views with many dimensions, allow for better theoret-

ical bounds [17] as illustrated by Fig. 4(b). Comparing Fig. 4(b)

and 4(a), we may be tempted to conclude that GC is far superior to

GT. We will compare them experimentally.

Algorithm 5 Gibbons-Tirthapura view-size estimation.

1: INPUT: Fact table t containing N facts

2: INPUT: GROUP BY query on dimensions D1,D2, . . . ,Dd

3: INPUT: Memory budget parameter M

4: INPUT: k-wise hash function h from d tuples to [0,2L).
5: OUTPUT: Estimated size of GROUP BY query

6: M ← empty look-up table

7: t← 0

8: for tuple x ∈ t do

9: x′← πD1 ,D2,...,Dd
(x) {projection of the tuple}

10: y← h(x′) {hash x′ to [0,2L)}
11: j← position of the first 1-bit in y (count starts at 0)

12: if j ≤ t then

13: Mx′ = j

14: while size(M ) > M do

15: t← t +1

16: prune all entries in M having value less than t

17: RETURN: 2tsize(M )

Proposition 2 Algorithm 5 estimates the number of distinct tuples

within relative precision ε, with a k-wise independent hash for k≥ 2

by storing M distinct tuples (M ≥ 8k) and with reliability 1− δ

where δ is given by

δ ≤ kk/2

ek/3Mk/2

(
αk/2

(1−α)k
+

4k/2

αk/2εk(2k/2−1)

)
.

for 4k/M ≤ α < 1 and any k,M > 0.

For the case where hashing is 4-wise independent, as in some of

experiments below, we derived a more concise bound [4].

Corollary 1 With 4-wise independent hashing, Algorithm 5 esti-

mates the number of distinct tuples within relative precision ε ≈
5/
√

M, 19 times out of 20 for ε small.

5. EXPERIMENTAL RESULTS
To benchmark the accuracy and speed of our implementation

of the view-size estimation algorithms, we have run tests over the

US Census 1990 data set [16] as well as on synthetic data produced

by DBGEN [19]. The synthetic data was produced by running the

DBGEN application with scale factor parameter equal to 2 except

where otherwise stated. The characteristics of data sets are detailed

in Table 1. We selected 20 and 8 views respectively from these

data sets: all views in US Census 1990 have at least 4 dimensions

whereas only 2 views have at least 4 dimensions in the synthetic

data set. Statisticians sometimes define the standard error to be the

standard deviation of the measures, but when the exact value can

be known, it is better to use the deviation from the true value or√
E((X− c)2)/c where c is the value we try to estimate. The (rel-

ative) standard error, defined as the standard deviation of the error,

was computed from 20 estimates using this formula where c, the

exact count, was computed once using brute force.

US Census 1990 DBGEN

# of facts 2458285 13977981

# of views 20 8

# of attributes 69 16

Data size 360 MiB 1.5 GiB

Table 1: Characteristic of data sets.

We used the GNU C++ compiler version 4.0.2 with the “-O2”

optimization flag on an Apple MacPro machine with 2 Dual-Core

Intel Xeon processors running at 2.66 GHz and 2 GiB of RAM.

No thrashing was observed. To ensure reproducibility, C++ source

code is available freely from the authors. For the US Census 1990



Algorithm 6 Test protocol.

1: for GROUP BY query q ∈ Q do

2: for memory budget m ∈M do

3: for random seed value r ∈ R do

4: Estimate the size of GROUP BY q with m memory budget and r

random seed value

5: Save estimation results (time and estimated size) in a log file

data set, the hashing look-up table is a simple array since there are

always fewer than 100 attribute values per dimension. Otherwise,

for the synthetic DBGEN data, we used the GNU/CGI STL exten-

sion hash map which is to be integrated in the C++ standard as an

unordered map: it provides amortized O(1) inserts and queries.

All other look-up tables are implemented using the STL map tem-

plate which has the computational complexity of a red-black tree.

We used comma separated (CSV) (and pipe separated files for DB-

GEN) text files and wrote our own C++ parsing code.

The test protocol we adopted (see Algorithm 6) has been exe-

cuted for each unassuming estimation technique, GROUP BY query,

random seed and memory size. At each step corresponding to those

parameter values, we compute the estimated GROUP BY view sizes

and time required for their computation. Similarly, for the multi-

fractal estimation technique, we computed the time and estimated

size for each GROUP BY, sampling ratio value and random seed.

In Subsection 5.1, we consider the first use case: the user is sat-

isfied with a moderate accuracy (such as 10%). In Subsection 5.2,

we address the case where high accuracy (at least 1%) is sought,

maybe at the expense of memory usage and processing speed.

5.1 Small memory budgets

5.1.1 Accuracy

Test over the US Census 1990 data set

Fig. 5 represents the standard error for each unassuming estima-

tion technique and memory size M ∈ {16,64,256,2048}. For the

multifractal estimation technique, we present the standard error for

each sampling ratio p ∈ {0.1%,0.3%,0.5%,0.7%}. The X axis

represents the size of the exact GROUP BY values and the Y axis,

the corresponding standard error. Both of the X and Y axis are in

a logarithmic scale. The standard error generally decreases when

the memory budget increases. However, for small views, the er-

ror can exceed 100% for Probabilistic Counting and LOGLOG: this

is caused by a form of overfitting where many counters are not or

barely used (see Section 4.2) when the ratio of the view size over

the memory budget is small. In contrast, Fig. 5(a) shows that GT

has sometimes accuracy better than 0.01% for small views. For

the multifractal estimation technique (see Fig. 5(d)), the error de-

creases when the sampling ratio increases. While the accuracy can

sometimes approach 10%, we never have reliable accuracy.

Test over synthetic data

Similarly, we plotted the standard error for each technique, com-

puted from the DBGEN data set (see Fig. 6). The five unassuming

techniques have the same behaviour observed on the US Census

data set. The model-based multifractal technique (see Fig. 6(d))

is especially accurate because DBGEN follows a uniform distri-

bution [19]. For this reason, DBGEN is a poor tool to bench-

mark model-based view-estimation techniques, but this problem

does not carry over to unassuming techniques since they are data-

distribution oblivious.

We also performed experiments on very large data sets (5, 10, 20

and 30 GiB) generated by DBGEN. Table 2 shows that the accuracy

is not sensitive to data and view sizes for small M. In addition,

for very large views, Probabilistic Counting has a small edge in

accuracy.

Table 2: Standard error over large data sets.
(a) Probabilistic Counting

Memory budget

Data size View size 64 128 256

5 GiB 1000000 11% 8% 5%

10 GiB 2000000 10% 7% 6%

20 GiB 4000000 8% 6% 5%

30 GiB 6000000 9% 7% 7%

(b) Gibbons-Tirthapura

Memory budget

Data size View size 64 128 256

5 GiB 1000000 10% 8% 7%

10 GiB 2000000 9% 7% 6%

20 GiB 4000000 10% 8% 6%

30 GiB 6000000 14% 8% 5%

5.1.2 Speed

The time needed to estimate the size of all the views by the unas-

suming techniques is about 5 minutes for the US Census 1990 data

set and 7 minutes for the synthetic data set. For the multifractal

technique, all the estimates are completed in roughly 2 seconds,

but it takes 1 minute (resp. 4 minutes) to sample 0.5% of the US

Census data set (resp. the synthetic data set – TPC H), in part be-

cause the data is not stored in a flat file. We ran further experiments

on the data generated by DBGEN (with a scale factor equal to 5,

i.e., 5 GiB of data) to highlight the time spent by each processing

step: loading and parsing the data, hashing and computing esti-

mated view sizes. As shown in Table 3, the running time of the al-

gorithms is sensitive to the number of dimensions. For a low (resp.

high) number of dimensions, relatively more time is spent reading

data (resp. hashing data). However, the time spent hashing or read-

ing is in turn much larger than the rest of the time spent by the

algorithms (counting). This explains why all the unassuming esti-

mation algorithms have similar running times and why timings are

not sensitive to the memory parameter (M), as long as it is small.

5.2 Large Memory Budgets
When the memory budget is close to the view size, estimation

techniques are not warranted. Hence, we did not use the US Census

data set since it is too small.

Table 3: Wall-clock running times.

(a) Unidimensional view (view size = 7.5×105)

Loading Hashing Counting Time (s)

Memory m1 m2 m1 m2 m1 m2 m1 m2

T
ec

h
n

iq
u

e (1) 50% 52% 42% 45% 7% 3% 72 68

(2) 54% 40% 45% 35% 1% 26% 68 90

(3) 53% 52% 46% 45% 1% 3% 67 68

(4) 54% 17% 46% 14% – 69% 67 215

(5) 54% 20% 46% 18% – 62% 68 175

(b) tridimensional view (view size = 2.4×107)

Loading Hashing Counting Time (s)

Memory m1 m2 m1 m2 m1 m2 m1 m2

T
ec

h
n

iq
u

e (1) 29% 15% 68% 13% 3% 72% 239 240

(2) 30% 13% 70% 11% 1% 76% 235 277

(3) 29% 15% 71% 13% – 72% 237 240

(4) 30% 5% 70% 5% 1% 90% 235 652

(5) 29% 6% 71% 5% – 88% 238 576

m1 = 256 m2 = 8388608

(1): LOGLOG (2): Probabilistic Counting (3): Adaptive Counting

(4): Gibbons-Tirthapura (5): Generalized Counting
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Figure 5: Standard error of estimation as a function of exact view size for increasing values of M (US Census 1990).
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Figure 6: Standard error of estimation as a function of exact view size for increasing values of M (synthetic data set).

5.2.1 Accuracy

Fig. 7 shows the behavior of the five probabilistic schemes over

a moderately small synthetic unidimensional view. While all five

schemes have similar accuracy when the memory budget is small

relative to the size of the view, as soon as the memory budget is

within an order of magnitude of the view size, they differ signifi-

cantly: LOGLOG and Counting are no longer reliable whereas the

three other schemes quickly achieve nearly exact estimates. As we

increase the memory budget, this phenomenon happens somewhat

later with LOGLOG than Counting. Adaptive Counting still has a
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Figure 9: Estimation time for a given view (four dimensions

and 1.18×107 distinct tuples) as a function of memory budgets

M (synthetic data set).

good accuracy for large M because it switches from LOGLOG esti-

mates to linear counting estimates [20] (see Algorithm 3). The ac-

curacy of GC is limited by the size of L. Finally, we ran some tests

over a large view using large values of M (see Fig. 8): these values

of M still translate in memory usages well below 1 GiB. The main

difference with the large view being that LOGLOG and Adaptive

Counting performance seems to be substantially worst than Proba-

bilistic Counting unless we increase the number of bits (L = 64).

5.2.2 Speed

We also computed the time required to estimate a large view us-

ing various memory budgets M (see Fig. 9). For small values of M

(M ≤ 65536) all techniques are equally fast: most processing time

is spent hashing and parsing the data (see Table 2). For larger val-

ues of M, the time spent counting the hash values by GC and GT

eventually dominates the processing time (see Table 3). Probabilis-

tic Counting scales well with large values of M whereas LOGLOG

does not slow down with increasing values of M, but their accura-

cies do not necessarily improve either. Adaptive Counting remains

fast and gets increasingly accurate as M becomes large.

6. DISCUSSION
Our results show that Probabilistic Counting and LOGLOG do

not entirely live up to their theoretical promise. For small view

sizes relative to the available memory, the accuracy can be very

low. One implication of this effect is that we cannot increase the

accuracy of Probabilistic Counting and LOGLOG by adding more

memory unless we are certain that all view sizes are very large.

Meanwhile, we observed that GC, GT, and Adaptive Counting ac-

curacies are independent of the view size and improve when more

memory is allocated, though they also become slower, except for

Adaptive Counting which remains constantly fast. When compar-

ing the memory usage of the various techniques, we have to keep

in mind that the memory parameter M can translate in different

memory usage. The memory usage depends also on the number

of dimensions of each view. Generally, GC and GT will use more

memory for the same value of M than either Probabilistic Counting,

Adaptive Counting, or LOGLOG, though all of these can be small

compared to the memory usage of the look-up tables Ti used for

k-wise independent hashing. When memory usage is not a concern

(M and L large), GC, GT, and Adaptive Counting have accuracies

better than 0.1%. For large values of M, which of GT and GC is

more accurate depends on the number of hashing bits used (L). GC

is the only scheme guaranteed to converge to the true view size as

M grows. View-size estimation by sampling can take minutes when

data is not laid out in a flat file or indexed, but the time required for

an unassuming estimation is even higher. For small values of M,

streaming and hashing the tuples accounts for most of the process-

ing time so for faster estimates, we could store all hashed values in

a bitmap (one per dimension).

7. CONCLUSION AND FUTURE WORK
We have provided unassuming techniques for view-size estima-

tion in a data warehousing context. We adapted distinct count es-

timators to the view-size estimation problem. Using the standard

error, we have demonstrated that among these techniques, GC,

GT, and Adaptive Counting provide stable estimates irrespective

of the size of views and that increasing the memory usage leads to

more accuracy. For small memory budgets, all unassuming meth-

ods have comparable speeds. For large memory budgets, however,

only Adaptive Counting remains constantly fast. For large view

sizes, using more hashing bits (L = 64) is important, particularly

when using Adaptive Counting.

There is ample room for future work. Firstly, we plan to extend

these techniques to other types of aggregated views (for example,

views including HAVING clauses including icebergs [9]). Secondly,

we want to precompute the hashed values for fast view-size estima-

tion. Furthermore, these techniques should be tested in a material-

ized view selection heuristic [3].
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Figure 7: Standard error accuracy for a small unidimensional view (250,000 items) as a function of memory budgets M.
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