
Reordering Rows for Better Compression: Beyond the Lexicographic
Order

DANIEL LEMIRE, TELUQ

OWEN KASER, University of New Brunswick

EDUARDO GUTARRA, University of New Brunswick

Sorting database tables before compressing them improves the compression rate. Can we do better than the

lexicographical order? For minimizing the number of runs in a run-length encoding compression scheme,

the best approaches to row-ordering are derived from traveling salesman heuristics, although there is a

significant trade-off between running time and compression. A new heuristic, Multiple Lists, which is a

variant on Nearest Neighbor that trades off compression for a major running-time speedup, is a good

option for very large tables. However, for some compression schemes, it is more important to generate long

runs rather than few runs. For this case, another novel heuristic, Vortex, is promising. We find that we

can improve run-length encoding up to a factor of 3 whereas we can improve prefix coding by up to 80%:

these gains are on top of the gains due to lexicographically sorting the table. We prove that the new row

reordering is optimal (within 10%) at minimizing the runs of identical values within columns, in a few cases.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: Data compaction and com-

pression; H.4.0 [Information Systems Applications]: General

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Compression, Data Warehousing, Gray codes, Hamming Distance,

Traveling Salesman Problem

1. INTRODUCTION

Database compression reduces storage while improving the performance of some queries. It
is commonly recommended to sort tables to improve the compressibility of the tables [Poess
and Potapov 2003] or of the indexes [Lemire et al. 2010]. While it is not always possible or
useful to sort and compress tables, sorting is a critical component of some column-oriented
architectures [Abadi et al. 2008; Holloway and DeWitt 2008]

At the simplest level, we model compressibility by counting runs of identical values within
columns. Thus, we want to reorder rows to minimize the total number of runs, in all columns
(§ 3). The lexicographical order is the most common row-reordering heuristic for this prob-
lem.

Can we beat the lexicographic order? Engineers might be willing to spend extra time
reordering rows—even for modest gains (10% or 20%)—if the computational cost is accept-
able. Indeed, popular compression utilities such as bzip2 are often several times slower than
faster alternatives (e.g., gzip) for similar gains.

Moreover, minimizing the number of runs is of theoretical interest. Indeed, it reduces to
the Traveling Salesman Problem (TSP) under the Hamming distance—an NP-hard prob-
lem [Trevisan 1997; Ernvall et al. 1985] (§ 3.1). Yet there have been few attempts to design
and study TSP heuristics with the Hamming distance and even fewer on large data sets.
For the generic TSP, there are several well known heuristics (§ 3.2), as well as strategies to
scale them up (§ 3.3). Inspired by these heuristics, we introduce the novel Multiple Lists
heuristic (§ 3.3.1) which is designed with the Hamming distance and scalability in mind.

While counting runs is convenient, it is an incomplete model. Indeed, several compression

This work is supported by Natural Sciences and Engineering Research Council of Canada grants 261437
and 155967 and a Quebec/NB Cooperation grant.
Author’s addresses: D. Lemire, LICEF Research Center, TELUQ; O. Kaser and E. Gutarra, Dept. of CSAS,
University of New Brunswick, Saint John.

ar
X

iv
:1

20
7.

21
89

v3
 [

cs
.D

B
]

 3
 F

eb
 2

01
4

:2 D. Lemire et al.

algorithms for databases may be more effective when there are many “long runs” (§ 4).
Thus, instead of minimizing the number of runs of column values, we may seek to maxi-
mize the number of long runs. We can then test the result with popular compression algo-
rithms (§ 6.1). For this new problem, we propose two heuristics: Frequent-Component
(§ 4.2), and Vortex (§ 4.3). Vortex is novel.

All our contributed heuristics have O(n log n) complexity when the number of columns is
a constant. However, Multiple Lists uses a linear number of random accesses, making it
prohibitive for very large tables: in such cases, we use table partitioning (§ 3.3.2).

We can assess these TSP heuristics experimentally under the Hamming distance (§ 5).
Using synthetic data sets (uniform and Zipfian), we find that Vortex is a competitive
heuristic on Zipfian data. It is one of the best heuristics for generating long runs. Meanwhile,
Multiple Lists offers a good compromise between speed and run minimization: it can even
surpass much more expensive alternatives. Unfortunately, it is poor at generating long runs.

Based on these good results, we apply Vortex and Multiple Lists to realistic tables,
using various table-encoding techniques. We show that on several data sets both Multiple
Lists and Vortex can improve compression when compared to the lexicographical order—
especially if the column histograms have high statistical dispersion (§ 6).

2. RELATED WORK

Many forms of compression in databases are susceptible to row reordering. For example,
to increase the compression factor, Oracle engineers [Poess and Potapov 2003] recommend
sorting the data before loading it. Moreover, they recommend taking into account the cardi-
nality of the columns—that is, the number of distinct column values. Indeed, they indicate
that sorting on low-cardinality columns is more likely to increase the compression factor.
Poess and Potapov do not quantify the effect of row reordering. However, they report that
compression gains on synthetic data are small (a factor of 1.4 on TPC-H) but can be much
larger on real data (a factor of 3.1). The effect on performance varies from slightly longer
running times to a speedup of 38% on some queries. Loading times are doubled.

Column-oriented databases and indexes are particularly suitable for compression.
Column-oriented databases such as C-Store use the conventional (lexicographical) sort to
improve compression [Stonebraker et al. 2005; Abadi et al. 2006]. Specifically, a given table
is decomposed into several overlapping projections (e.g., on columns 1,2,3 then on column
2,3,4) which are sorted and compressed. By choosing projections matching the query work-
load, it is possible to surpass a conventional DBMS by orders of magnitude. To validate
their model, Stonebraker et al. used TPC-H with a scale factor of 10: this generated 60 mil-
lion rows in the main table. They kept only attributes of type INTEGER and CHAR(1).
On this data, they report a total space usage of 2 GB compared to 2.7 GB for an alternative
column store. They have a 30% storage advantage, and better performance, partly because
they sort their projections before compressing them.

Lemire and Kaser [2011] prove that sorting the projections on the low-cardinality column
first often maximizes compression.They stress that picking the right column order is impor-
tant as the compressibility could vary substantially (e.g., by a factor of 2 or 3). They consider
various alternatives to the lexicographical order such as modular and reflected Gray-code
orders or Hilbert orders, and find them ineffective. In contrast, we propose new heuristics
(Vortex and Multiple Lists) that can surpass the lexicographical order. Indeed, when
using a compression technique such as Prefix coding (see § 6.1.1), Lemire and Kaser obtain
compression gains of more than 20% due to sorting: using the same compression technique,
on the same data set, we report further gains of 21%. Pourabbas et al. [2012] extend the
strategy by showing that columns with the same cardinality should be ordered from high
skewness to low skewness.

The compression of bitmap indexes also greatly benefits from table sorting. In some exper-
iments, the sizes of the bitmap indexes are reduced by nearly an order of magnitude [Lemire

Reordering Rows for Better Compression: Beyond the Lexicographic Order :3

et al. 2010]. Of course, everything else being equal, smaller indexes tend to be faster. Mean-
while, alternatives to the lexicographical order such as Frequent-Component, reflected
Gray-code or Hilbert orders are unhelpful on bitmap indexes [Lemire et al. 2010]. (We
review an improved version of Frequent-Component in § 4.2.)

Still in the context of bitmap indexes, Malik and Kender [2007] get good compression
results using a variation on the Nearest Neighbor TSP heuristic. Unfortunately, its quadratic
time complexity makes the processing of large data sets difficult. To improve scalability,
Malik and Kender [2007] also propose a faster heuristic called aHDO which we review in
§ 3.2. In comparison, our novel Multiple Lists heuristic is also an attempt to get a more
scalable Nearest Neighbor heuristic. Malik and Kender used small data sets having between
204 rows and 34 389 rows. All their compressed bitmap indexes were under 10 MB. On their
largest data set, the compression gain from aHDO was 14% when compared to the original
order. Sorting improved compression by 7%, whereas their Nearest Neighbor TSP heuristic
had the best gain at 17%. Pinar et al. [2005] also present good compression results on bitmap
indexes after reordering: on their largest data set (11 MB), they report using a Gray-code
approach to get a compression ratio of 1.64 compared to the original order. Unfortunately,
they do not compare with the lexicographical order.

Sometimes reordering all of the data before compression is not an option. For example,
Fusco et al. [2010; 2012] describe a system where bitmap indexes must be compressed on-the-
fly to index network traffic. They report that their system can accommodate the insertion
of more than a million records per second. To improve compressibility without sacrificing
performance, they cluster the rows using locality sensitive hashing [Gionis et al. 1999]. They
report a compression factor of 2.7 due to this reordering (from 845 MB to 314 MB).

3. MINIMIZING THE NUMBER OF RUNS

One of the primary benefits of column stores is the compression due to run-length encoding
(RLE) [Abadi et al. 2008; Bruno 2009; Holloway and DeWitt 2008]. Moreover, the most
popular bitmap-index compression techniques are variations on RLE [Wu et al. 2006].

RLE is a compression strategy where runs of identical values are coded using the repeated
value and the length of the run. For example, the sequence aaaaabcc becomes 5 × a, 1 ×
b, 2 × c. Counters may be stored using a variable number of bits, e.g., using variable-byte
coding [Scholer et al. 2002; Bhattacharjee et al. 2009], Elias delta coding [Scholer et al.
2002] or Golomb coding [Golomb 1966]. Or we may store counters using a fixed number of
bits for faster decoding.

RLE not only reduces the storage requirement: it also reduces the processing time. For
example, we can compute the component-wise sum—or indeed any O(1) operation—of
two RLE-compressed array in time proportional to the total number of runs. In fact, we
sometimes sacrifice compression in favor of speed:

— to help random access, we can add the row identifier to the run length and repeated
value [Abadi et al. 2006] so that 5×a, 1×b, 2× c becomes 5×a at 1, 1×b at 6, 2× c at 7;

— to simplify computations, we can forbid runs from different columns to partially over-
lap [Bruno 2009]: unless two runs are disjoint as sets of row identifiers, then one must be
a subset of the other;

— to avoid the overhead of decoding too many counters, we may store single values or short
runs verbatim—without any attempt at compression [Antoshenkov 1995; Wu et al. 2006].

Thus, instead of trying to model each form of RLE compression accurately, we only count
the total number of runs (henceforth RunCount).

Unfortunately, minimizing RunCount by row reordering is NP-hard [Lemire and Kaser
2011; Olken and Rotem 1986]. Therefore, we resort to heuristics. We examine many possible
alternatives (see Table I).

:4 D. Lemire et al.

Table I: Summary of heuristics considered and overall results. Not all methods were tested
on realistic data; those not tested were either too inefficient for large data, or were clearly
unpromising after testing on Zipfian data.

Name Reference Described
Experiments

Synthetic Realistic

1-reinsertion [Pinar and Heath 1999] § 3.2 § 5 —

aHDO [Malik and Kender 2007] § 3.2 § 5 —

BruteForcePeephole novel § 3.2 § 5 —

Farthest Insertion,
Nearest Insertion,
Random Insertion

[Rosenkrantz et al. 1977] § 3.2 § 5 —

Frequent-Component [Lemire et al. 2010] § 4.2 § 5 —

Lexicographic Sort — § 3 § 5 § 6.4

Multiple Fragment [Bentley 1992] § 3.2 § 5 —

Multiple Lists novel § 3.3.1 § 5 § 6.4

Nearest Neighbor [Bellmore and Nemhauser 1968] § 3.2 § 5 —

Savings [Clarke and Wright 1964] § 3.2 § 5 —

Vortex novel § 4.3 § 5 § 6.4

An effective heuristic for the RunCount minimization problem is to sort the rows in
lexicographic order. In the lexicographic order, the first component where two tuples differ
(aj 6= bj but ai = bi for i < j) determines which tuple is smaller.

There are alternatives to the lexicographical order. A Gray code is an ordered list of
tuples such that the Hamming distance between successive tuples is one.1 The Hamming
distance is the number of different components between two same-length tuples, e.g.,

d((a, b, y), (a, d, x)) = 2.

The Hamming distance is a metric: i.e., d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) +d(y, z) ≥
d(x, z). A Gray code over all possible tuples generates an order (henceforth a Gray-code
order): x < y whenever x appears before y in the Gray code. For example, we can use the
mixed-radix reflected Gray-code order [Richards 1986; Knuth 2011] (henceforth Reflected
GC). Consider a two-column table with column cardinalities N1 and N2. We label the
column values from 1 to N1 and 1 to N2. Starting with the tuple (1, 1), we generate all
tuples in Reflected GC order by the following algorithm:

— If the first component is odd then if the second component is less than N2, increment it,
otherwise increment the first component.

— If the first component is even then if the second component is greater than 1, decrement
it, otherwise increment the first component.

E.g., the following list is in Reflected GC order:

(1, 1), (1, 2), . . . , (1, N2), (2, N2), (2, N2 − 1), . . . , (2, 1), (3, 1), . . .

The generalization to more than two columns is straightforward. Unfortunately, the benefits
of Reflected GC compared to the lexicographic order are small [Malik and Kender 2007;
Lemire and Kaser 2011; Lemire et al. 2010].

We can bound the optimality of lexicographic orders using only the number of rows and
the cardinality of each column. Indeed, for the problem of minimizing RunCount by row
reordering, lexicographic sorting is µ-optimal [Lemire and Kaser 2011] for a table with

1For a more restrictive definition, we can replace the Hamming distance by the Lee metric [Anantha et al.
2007].

Reordering Rows for Better Compression: Beyond the Lexicographic Order :5

n distinct rows and column cardinalities Ni for i = 1, . . . , c with

µ =

∑c
j=1 min(n,

∏j
k=1Nk)

n+ c− 1
.

To illustrate this formula, consider a table with 1 million distinct rows and four columns hav-
ing cardinalities 10, 100, 1000, 10000. Then, we have µ ≈ 2 which means that lexicographic
sorting is 2-optimal. To apply this formula in practice, the main difficulty might be to de-
termine the number of distinct rows, but there are good approximation algorithms [Aouiche
and Lemire 2007; Kane et al. 2010]. We can improve the bound µ slightly:

Lemma 3.1. For the RunCount minimization problem, sorting the table lexicographi-
cally is ω-optimal for

ω =

∑c
i=1 n1,i

n+ c− 1

where c is the number of columns, n is the number of distinct rows, and n1,j is the number
of distinct rows when considering only the first j columns (e.g., n = n1,c).

Proof. Irrespective of the order of the rows, there are at least n+c−1 runs. Yet, under
the lexicographic order, there are no more than n1,i runs in the ith column. The result
follows.

The bound ω is tight. Indeed, consider a table with N1, N2, . . . , Nc distinct values in
columns 1, 2, . . . , c and such that it has n = N1N2 . . . Nc distinct rows. The lexicographic
order will generate N1+N1N2+ · · ·+N1N2 . . . Nc runs. In the notation of Lemma 3.1, there
are

∑c
i=1 n1,i runs. However, we can also order the rows so that there are only n+c−1 runs

by using the Reflected GC order.
We have that ω is bounded by the number of columns. That is, we have that 1 ≤ ω ≤ c.

Indeed, we have that n1,c = n and n1,i ≥ 1 so that
∑c

i=1 n1,i ≥ n+ c− 1 and therefore

ω =
∑c

i=1 n1,i

n+c−1 ≥ 1. We also have that n1,i ≤ n so that
∑c

i=1 n1,i ≤ cn ≤ c(n + c − 1) and

hence ω =
∑c

i=1 n1,i

n+c−1 ≤ c. In practice, the bound ω is often larger when c is larger (see § 6.2).

3.1. Run minimization and TSP

There is much literature about the TSP, including approximation algorithms and many
heuristics, but our run-minimization problem is not quite the TSP: it more resembles a
minimum-weight Hamiltonian path problem because we do not complete the cycle [Cho
and Hong 2000]. In order to use known TSP heuristics, we need a reduction from our
problem to TSP. In particular, we reduce the run-minimization problem to TSP over the
Hamming distance d. Given the rows r1, r2, . . . , rn, RunCount for c columns is given by
the sum of the Hamming distance between the successive rows,

c+

n−1∑
i=1

d(ri, ri+1).

Our goal is to minimize
∑n−1

i=1 d(ri, ri+1). Introduce an extra row r? with the property that
d(r?, ri) = c for any i. We can achieve the desired result under the Hamming distance by
filling in the row r? with values that do not appear in the other rows. We solve the TSP
over this extended set (r1, . . . , rn, r?) by finding a reordering of the elements (r′1, . . . , r

′
n, r?)

minimizing the sum of the Hamming distances between successive rows:

d(r′n, r?) + d(r?, r
′
1) +

n−1∑
i=1

d(r′i, r
′
i+1) = 2c+

n−1∑
i=1

d(r′i, r
′
i+1).

:6 D. Lemire et al.

Any reordering minimizing 2c+
∑n−1

i=1 d(r′i, r
′
i+1) also minimizes

∑n−1
i=1 d(r′i, r

′
i+1). Thus, we

have reduced the minimization of RunCount by row reordering to TSP. Heuristics for
TSP can now be employed for our problem—after finding a tour (r′1, . . . , r

′
n, r?), we order

the table rows as r′1, r
′
2, . . . , r

′
n.

Unlike the general TSP, we know of linear-time c-optimal heuristics when using the Ham-
ming distance. An ordering is discriminating [Cai and Paige 1995] if duplicates are listed
consecutively. By constructing a hash table, we can generate a discriminating order in ex-
pected linear time. It is sufficient for c-optimality.

Lemma 3.2. Any discriminating row ordering is c-optimal for the RunCount mini-
mization problem.

Proof. If n is the number of distinct rows, then a discriminating row ordering has at
most nc runs. Yet any ordering generates at least n runs. This proves the result.

Moreover—by the triangle inequality—there is a discriminating row order minimizing
the number of runs. In fact, given any row ordering we can construct a discriminating
row ordering with a lesser or equal cost

∑n−1
i=1 d(ri, ri+1) because of the triangle inequality.

Formally, suppose that we have a non-discriminating order r1, r2, . . . , rn. We can find two
identical tuples (rk = rj) separated by at least one different tuple (rk+1 6= rj). Suppose j <

n. If we move rj between rk and rk+1, the cost
∑n−1

i=1 d(ri, ri+1) will change by d(rj−1, rj+1)−
(d(rj−1, rj) + d(rj , rj+1)): a quantity at most zero by the triangle inequality. If j = n, the
cost will change by −d(rj−1, rj), another non-positive quantity. We can repeat such moves
until the new order is discriminating, which proves the result.

3.2. TSP heuristics

We want to solve TSP instances with the Hamming distance. For such metrics, one
of the earliest and still unbeaten TSP heuristics is the 1.5-optimal Christofides algo-
rithm [Christofides 1976; Berman and Karpinski 2006; Gharan et al. 2011]. Unfortunately,
it runs in O(n2.5(log n)1.5) time [Gabow and Tarjan 1991] and even a quadratic running
time would be prohibitive for our application.2

Thus, we consider faster alternatives [Johnson and McGeoch 2004; Johnson and McGeoch
1997].

— Some heuristics are based on space-filling curves [Platzman and Bartholdi 1989]. In-
tuitively, we want to sort the tuples in the order in which they would appear on a curve
visiting every possible tuple. Ideally, the curve would be such that nearby points on the
curve are also nearby under the Hamming distance. In this sense, lexicographic orders—as
well as the Vortex order (see § 4.3)—belong to this class of heuristics even though they are
not generally considered space-filling curves. Most of these heuristics run in time O(n log n).

— There are various tour-construction heuristics [Johnson and McGeoch 2004]. These
heuristics work by inserting, or appending, one tuple at a time in the solution. In this sense,
they are greedy heuristics. They all begin with a randomly chosen starting tuple. The
simplest is Nearest Neighbor [Bellmore and Nemhauser 1968]: we append an available
tuple, choosing one of those nearest to the last tuple added. It runs in time O(n2) (see
also Lemma 3.3). A variation is to also allow tuples to be inserted at the beginning of the
list or appended at the end [Bentley 1992]. Another similar heuristic is Savings [Clarke
and Wright 1964] which is reported to work well with the Euclidean distance [Johnson and
McGeoch 2004]. A subclass of the tour-construction heuristics are the insertion heuristics:

2Unless we explicitly include the number of columns c in the complexity analysis, we consider it to be a
constant.

Reordering Rows for Better Compression: Beyond the Lexicographic Order :7

the selected tuple is inserted at the best possible location in the existing tour. They differ
in how they pick the tuple to be inserted:
— Nearest Insertion: we pick a tuple nearest to a tuple in the tour.
— Farthest Insertion: we pick a tuple farthest from the tuples in the tour.
— Random Insertion: we pick an available tuple at random.
One might also pick a tuple whose cost of insertion is minimal, leading to an O(n2 log n)
heuristic. Both this approach and Nearest Insertion are 2-optimal, but the named in-
sertion heuristics are in O(n2) [Rosenkrantz et al. 1977]. There are many variations [Kahng
and Reda 2004].

— Multiple Fragment (or Greedy) is a bottom-up heuristic: initially, each tuple
constitutes a fragment of a tour, and fragments of tours are repeatedly merged [Bentley
1992]. The distance between fragments is computed by comparing the first and last tuples
of both fragments. Under the Hamming distance, there is a c + 1-pass implementation
strategy: first merge fragments with Hamming distance zero, then merge fragments with
Hamming distance one and so on. It runs in time O(n2c2).

— Finally, the last class of heuristics are those beginning with an existing tour. We
continue trying to improve the tour until it is no longer possible or another stopping criteria
is met. There are many “tour-improvement techniques” [Helsgaun 2000; Applegate et al.
2003]. Several heuristics break the tour and attempt to reconstruct a better one [Croes 1958;
Lin and Kernighan 1973; Helsgaun 2000; Applegate et al. 2003].
Malik and Kender [2007] propose the aHDO heuristic which permutes successive tuples to
improve the solution. Pinar et al. [2005] describe a similar scheme, where they consider
permuting tuples that are not immediately adjacent, provided that they are not too far
apart. Pinar and Heath [1999] repeatedly remove and reinsert (henceforth 1-Reinsertion)
a single tuple at a better location. A variation is the BruteForcePeephole heuristic:
divide up the table into small non-overlapping partitions of rows, and find the optimal
solution that leaves the first and last row unchanged (that is, we solve a Traveling Salesman
Path Problem (TSPP) [Lam and Newman 2008]).

3.3. Scaling up the heuristics

External-memory sorting is applicable to very large tables. However, even one of the fastest
TSP heuristics (Nearest Neighbor) may fail to scale. We consider several strategies to
alleviate this scalability problem.

3.3.1. Sparse graph. Instead of trying to solve the problem over a dense graph, where every
tuple can follow any other tuple in the tour, we may construct a sparse graph [Reinelt 1994;
Johnson et al. 2004]. For example, the sparse graph might be constructed by limiting each
tuple to some of its near neighbors. A similar approach has also been used, for example,
in the design of heuristics in weighted matching [Grigoriadis and Kalantari 1988] and for
document identifier assignment [Ding et al. 2010]. In effect, we approximate the nearest
neighbors.

We consider a similar strategy. Instead of storing a sparse graph structure, we store
the table in several different orders. We compare rows only against other rows appearing
consecutively in one of the lists. Intuitively, we consider rows appearing consecutively in
sorted lists to be approximate near neighbors [Indyk and Motwani 1998; Gionis et al. 1999;
Indyk et al. 1997; Chakrabarti et al. 1999; Liu 2004; Kushilevitz et al. 1998]. We implemented
an instance of this strategy (henceforth Multiple Lists).

Before we formally describe the Multiple Lists heuristic, consider the example given
in Fig. 1. Starting from an initial table (Fig. 1a), we sort the table lexicographically with
the first column as the primary key: this forms a list which we represent as solid edges in
the graph of Fig. 1c. Then, we re-sort the table, this time using the second column as the
primary key: this forms a second list which we represent as dotted edges in Fig. 1c. Finally,

:8 D. Lemire et al.

1 3
2 1
2 2
3 3
4 1
4 2
5 3
6 1
6 2
7 4
8 3

(a) Initial table

1 3
3 3
5 3
8 3
7 4
6 2
6 1
4 1
4 2
2 2
2 1

(b) Possible solution

1,3

2,1

3,3

2,2

4,14,2
5,3

6,1

6,28,3

7,4

(c) Multiply-linked list

Fig. 1: Row-reordering example with Multiple Lists

starting from one particular row (say 1,3), we can greedily pick a nearest neighbor (say 3,3)
within the newly created sparse graph. We repeat this process iteratively (3,3 goes to 5,3
and so on) until we have the solution given in Fig. 1b.

Hence, to apply Multiple Lists we pick several different ways to sort the table. For each
table order, we store the result in a dynamic data structure so that rows can be selected
in order and removed quickly. (Duplicate rows can be stored once if we keep track of their
frequencies.) One implementation strategy uses a multiply-linked list. Let K be the number
of different table orders. Add to each row room for 2K row pointers. First sort the row
in the first order. With pointers, link the successive rows, as in a doubly-linked list—using
2 pointers per row. Resort the rows in the second order. Link successive rows, using another
2 pointers per row. Continue until all K orders have been processed and every row has
2K pointers. Removing a row in this data structure requires the modification of up to
4K pointers.

For our experiments, we applied Multiple Lists with K = c as follows. First sort the
table lexicographically3 after ordering the columns by non-decreasing cardinalities (N1 ≤
N2 ≤ · · · ≤ Nc). Then rotate the columns cyclically so that the first column becomes the
second one, the second one becomes the third one, and the last column becomes the first:

3Sorting with reflected Gray code yielded no appreciable improvement on Zipfian data.

Reordering Rows for Better Compression: Beyond the Lexicographic Order :9

1, 2, . . . , c→ c, 1, 2, . . . , c− 1. Sort the table lexicographically according to this new column
order. Repeat this process until you have c different orders, each one corresponding to the
same table sorted lexicographically with a different column order.

Once we have sorted the table several times, we proceed as in Nearest Neighbor (see
Algorithm 1):

— Start with an initially empty list β.
— Pick a row at random, remove it from all sorted lists and add it to list β.
— In all sorted lists, visit all rows that are immediately adjacent (in sorted order) to the last

row added. There are up to 2c such rows. Pick a nearest neighbor under the Hamming
distance, remove it from all sorted lists and append it to β.

— Repeat the last step until the sorted lists are empty. The solution is then given by list β,
which now contains all rows.

Multiple Lists runs in time O(Kcn log n), or O(c2n log n) when we use c sorted lists.
However, we can do better in the K = c case with cyclically rotated column order. First, we
sort with column order 1, 2, . . . , c in O(cn log n) time. Then, we have N1 lists—one list per
value in the first column—sorted in the c, 1, 2, . . . , c − 1-lexicographical order. Thus, sort-
ing in the c, 1, 2, . . . , c− 1-lexicographical order requires only O(cn logN1) time. Similarly,
sorting in the c − 1, c, 1, 2, . . . , c − 2-lexicographical order requires O(cn logN2) time. And
so on. Thus, the total sorting time is in

O(cn log n+ cn logN1 + · · ·+ cn logNc) = O(cn log(nN1N2 . . . Nc−1)).

We expect that nN1N2 . . . Nc−1 � nc and thus

log(nN1N2 . . . Nc−1)� c log n

in practice. (This approach of reusing previous sorting orders when re-sorting is reminiscent
of the Pipe Sort algorithm [Agarwal et al. 1996].) The overall complexity of Multiple
Lists is thus O(c2n+ cn log(nN1N2 . . . Nc−1)).

Algorithm 1 The Multiple Lists heuristic

1: input: Unsorted table t with n rows and c columns.
2: output: a sorted table
3: Form K different versions of t, sorted differently: t(1), t(2), . . . , t(K)

4: β ← empty list
5: pick an element in t(1) randomly, add it to β and remove it from all t(i)’s
6: while size(β) < n do
7: let r be the latest element added to β
8: Given i ∈ {1, 2, . . . ,K}, there are up to two neighbors in sorted order within list t(i); out of

up to 2K such neighbors, pick a nearest neighbor r′ to r in Hamming distance.
9: Add r′ to β and remove it from all t(i)’s
10: end while
11: return β

Although an increase in K degrades the running time, we expect each new list stored to
improve the solution’s quality. In fact, the heuristic Multiple Lists becomes equivalent
to Nearest Neighbor when we maintain the table in all of the c! lexicographical sorting
orders. This shows the following result:

Lemma 3.3. The Nearest Neighbor heuristic over c-column tables and under the
Hamming distance is in O(c c!n log n).

:10 D. Lemire et al.

When there are many columns (c > 4), constructing and maintaining c! lists might be
prohibitive. Through informal tests, we found that maintaining c different sort orders is a
good compromise. For c ≤ 2, Multiple Lists with c sorted lists is already equivalent to
Nearest Neighbor.

Unfortunately, our implementation of Multiple Lists is not suited to an external-
memory implementation without partitioning.

3.3.2. Partitioning. Several authors partition—or cluster—the tuples before applying a TSP
heuristic. [Cesari 1996; Reinelt 1994; Karp 1977; Johnson et al. 2004; Schaller 1999] Using
database terminology, they partition the table horizontally. We explore this approach. The
content of the horizontal partitions depends on the original order of the rows: the first rows
are in the first partition and so on. Hence, we are effectively considering a tour-improvement
technique: starting from an existing row ordering, we partition it and try to reduce the
number of runs within each partition. For example, we can partition a lexicographically
sorted table and process each partition in main memory using expensive heuristics such as
Nearest Neighbor or random-access-intensive heuristics such as Multiple Lists.

We can process each partition independently: the problem is embarrassingly parallel. Of
course, this ignores runs created at the boundary between partitions.

Sometimes, we know the final row of the previous partition. In such cases, we might
choose the initial row in the current partition to have a small Hamming distance with the
last row in the previous partition. In any case, this boundary effect becomes small as the
sizes of the partitions grow.

Another immediate practical benefit of the horizontal partitioning is that we have an
anytime—or interruptible—algorithm [Dean and Boddy 1988]. Indeed, we progressively
improve the row ordering, but can also abort the process at any time without losing the
gains achieved up to that point.

We could ensure that the number of runs is always reduced. Indeed, whenever the ap-
plication of the heuristic on the partition makes matter worse, we can revert back to the
original tuple order. Similarly, we can try several heuristics on each partition and pick the
best. And probabilistic heuristics such as Nearest Neighbor can be repeated. Moreover,
we can repartition the table: e.g., each new partition—except the first and the last—can
take half its tuples from each of the two adjacent old partitions [Johnson and McGeoch
1997].

For simplicity, we can use partitions having a fixed number of rows (except maybe for
the last partition). As an alternative, we could first sort the data and then create partitions
based on the value of one or several columns. Thus, for example, we could ensure that all
rows within a partition have the same value in one or several columns.

4. MAXIMIZING THE NUMBER OF LONG RUNS

It is convenient to model database compression by the number of runs (RunCount). How-
ever, this model is clearly incomplete. For example, there is some overhead corresponding
to each run of values we need to code: short runs are difficult to compress.

4.1. Heuristics for long runs

We developed a number of row-reordering heuristics whose goal was to produce long runs.
Two straightforward approaches did not give experimental results that justified their costs.

One is due to an idea of Malik and Kender [2007]. Consider the Nearest Neighbor TSP
heuristic. Because we use the Hamming distance, there are often several nearest neighbors
for the last tuple added. Malik and Kender proposed a modification of Nearest Neighbor
where they determine the best nearest neighbor based on comparisons with the previous
tuples—and not only with the latest one. We considered many variations on this idea, and
none of them proved consistently beneficial: e.g., when there are several nearest neighbors

Reordering Rows for Better Compression: Beyond the Lexicographic Order :11

1 3
2 1
2 2
3 3
4 1
4 2
5 3
6 1
6 2
7 4
8 3

(a) Initial table

(1,1,1) (4,2,3)
(2,1,2) (3,2,1)
(2,1,2) (3,2,2)
(1,1,3) (4,2,3)
(2,1,4) (3,2,1)
(2,1,4) (3,2,2)
(1,1,5) (4,2,3)
(2,1,6) (3,2,1)
(2,1,6) (3,2,2)
(1,1,7) (1,2,4)
(1,1,8) (4,2,3)

(b) (f(vi), i, vi)

(4,2,3) (1,1,1)
(3,2,1) (2,1,2)
(3,2,2) (2,1,2)
(4,2,3) (1,1,3)
(3,2,1) (2,1,4)
(3,2,2) (2,1,4)
(4,2,3) (1,1,5)
(3,2,1) (2,1,6)
(3,2,2) (2,1,6)
(1,2,4) (1,1,7)
(4,2,3) (1,1,8)

(c) (f(vi), i, vi) (sorted)

(1,2,4) (1,1,7)
(3,2,1) (2,1,2)
(3,2,1) (2,1,4)
(3,2,1) (2,1,6)
(3,2,2) (2,1,2)
(3,2,2) (2,1,4)
(3,2,2) (2,1,6)
(4,2,3) (1,1,1)
(4,2,3) (1,1,3)
(4,2,3) (1,1,5)
(4,2,3) (1,1,8)

(d) Sorted triples

7 4
2 1
4 1
6 1
2 2
4 2
6 2
1 3
3 3
5 3
8 3

(e) Solution

Fig. 2: Row-reordering example with Frequent-Component

to the latest tuple, we tried reducing the set to a single tuple by removing the tuples that
are not also nearest to the second last tuple, and then removing the tuples that are not also
nearest to the third last tuple, and so on.

A novel heuristic, Iterated Matching, was also developed but found to be too ex-
pensive for the quality of results typically obtained. It is based on the observation that
a weighted-matching algorithm can form pairs of rows that have many length-two runs.
Pairs of rows can themselves be matched into collections of four rows with many length-
four runs, etc. Unfortunately, known maximum-matching algorithms are expensive and the
experimental results obtained with this heuristic were not promising. Details can be found
elsewhere [Lemire et al. 2012].

4.2. The Frequent-Component order

Intuitively, we would like to sort rows so that frequent values are more likely to appear
consecutively. The Frequent-Component [Lemire et al. 2010] order follows this intuition.

As a preliminary step, we compute the frequency f(v) of each column value v within each
of the c columns. Given a tuple, we map each component to the triple (frequency, column in-
dex, column value).4 Thus, from the c components, we derive c triples (see Figs. 2a and 2b):
e.g., given the tuple (v1, v2, v3), we get the triples ((f(v1), 1, v1), (f(v2), 2, v2), (f(v3), 3, v3)).
We then lexicographically sort the triples, so that the triple corresponding to a most-
frequent column value appears first—that is, we sort in reverse lexicographical order (see
Fig. 2c): e.g., assuming that f(v3) < f(v1) < f(v2), the triples appear in sorted order as
((f(v2), 2, v2), (f(v1), 1, v1), (f(v3), 3, v3)). The new tuples are then compared against each
other lexicographically over the 3c values (see Fig. 2d). When sorting, we can precompute
the ordered lists of triples for speed. As a last step, we reconstruct the solution from the
list of triples (see Fig. 2e).

Consider a table where columns have uniform histograms: given n rows and a column
of cardinality Ni, each value appears n/Ni times. In such a case, Frequent-Component
becomes equivalent to the lexicographic order with the columns organized in non-decreasing
cardinality.

4.3. Vortex: a novel order

The Frequent-Component order has at least two inconveniences:

4This differs slightly from the original presentation of the order [Lemire et al. 2010] where the column value
appeared before the column index.

:12 D. Lemire et al.

1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3
3 4
4 1
4 2
4 3
4 4

(a) Lexicographic

1 1
1 2
1 3
1 4
2 4
2 3
2 2
2 1
3 1
3 2
3 3
3 4
4 4
4 3
4 2
4 1

(b) Reflected GC

1 4
1 3
1 2
1 1
4 1
3 1
2 1
2 4
2 3
2 2
4 2
3 2
3 4
3 3
4 3
4 4

(c) Vortex

1 1
1 2
2 2
2 1
2 3
2 4
1 4
1 3
3 3
3 4
4 4
4 3
4 1
4 2
3 2
3 1

(d) z-order with
Gray codes

1 1
2 1
2 2
1 2
1 3
1 4
2 4
2 3
3 3
3 4
4 4
4 3
4 2
3 2
3 1
4 1

(e) Hilbert

Fig. 3: Two-column tables sorted in various orders

— Given c columns having N distinct values apiece, a table where all possible rows are
present has N c distinct rows. In this instance, Frequent-Component is equivalent to the
lexicographic order. Thus, its RunCount is N c+N c−1+· · ·+1. Yet a better solution would
be to sort the rows in a Gray-code order, generating only N c +c−1 runs. For mathematical
elegance, we would rather have Gray-code orders even though the Gray-code property may
not enhance compression in practice.

— The Frequent-Component order requires comparisons between the frequencies of
values that are in different columns. Hence, we must at least maintain one ordered list of
values from all columns. We would prefer a simpler alternative with less overhead.

Thus, to improve over Frequent-Component, we want an order that considers the
frequencies of column values and yet is a Gray-code order. Unlike Frequent-Component,
we would prefer that it compare frequencies only between values from the same column.

Many orders, such as z-orders with Gray codes [Faloutsos 1986] (see Fig. 3d) and Hilbert
orders [Hamilton and Rau-Chaplin 2008; Kamel and Faloutsos 1994; Eavis and Cueva 2007]
(see Fig. 3e), use some form of bit interleaving : when comparing two tuples, we begin by
comparing the most significant bits of their values before considering the less significant
bits. Our novel Vortex order interleaves individual column values instead (see Fig. 3c).
Informally, we describe the order as follows:

— Pick a most frequent value x(1) from the first column, select all tuples having the value
x(1) as their first component, and put them first (see Fig. 5b with x(1) = 1);

— Consider the second column. Pick a most frequent value y(1). Among the tuples having
x(1) as their first component, select all tuples having y(1) as their second component and
put them last. Among the remaining tuples, select all tuples having y(1) as their second
component, and put them first (see Fig. 5c with y(1) = 1);

— Repeat.

Our intuition is that, compared to bit interleaving, this form of interleaving is more likely
to generate runs of identical values. The name Vortex comes from the fact that initially

Reordering Rows for Better Compression: Beyond the Lexicographic Order :13

1,21,1 1,3 1,4

2,1

3,1

4,1

2,32,2 2,4

3,2

4,2

3,3 3,4

4,3 4,4

Fig. 4: Graphical representation of some of the order relations between tuples in {1, 2, 3, 4}×
{1, 2, 3, 4} under the Vortex order

2 1
1 1
1 2
1 1
3 1
1 3
3 2
3 3

(a) Shuffled

1 1
1 2
1 1
1 3
3 2
3 3
2 1
3 1

(b) Value 1, first column

1 2
1 3
1 1
1 1
2 1
3 1
3 2
3 3

(c) Value 1, second column

Fig. 5: First two steps in sorting with Vortex

there are long runs, followed by shorter and shorter runs (see Figs. 3c and 4).
To describe the Vortex order formally (see Algorithm 2), we introduce the alternating

lexicographic order (henceforth alternating). Given two tuples a and b, let j be the first
component where the two tuples differ (aj 6= bj but ai = bi for i < j), then a <ALT b if
and only if (aj < bj) ⊕ (j is even) where ⊕ is the exclusive or. (We use the convention
that components are labeled from 1 to c so that the first component is odd.) Given a tuple
x = (x1, x2, . . . , xc), let T (x) be (x1, 1), (x2, 2), . . . , (xc, c) and T ′(x) be the list T (x) sorted
lexicographically. Then x <VORTEX y if and only if T ′(x) <ALT T

′(y). Vortex generates a
total order on tuples because T ′ is bijective and alternating is a total order.

We illustrate Vortex sorting in Fig. 6. First, the initial table is normalized by frequency
so that the most frequent value in each column is mapped to value 1 (see Figs. 6a, 6b, 6c).
In Fig. 6d, we give the corresponding T ′ values: e.g., the row 1, 4 becomes (1, 2), (4, 1). We
then sort the T ′ values using the alternating order (see Fig. 6e) before finally inverting
the T ′ values to recover the rows in Vortex order (see Fig. 6f). Of course, these are not
the rows of the original table, but rather the rows of renormalized table. We could further
reverse the normalization to recover the initial table in Vortex order.

Like the lexicographical order, the Vortex order is oblivious to the column cardinalities
N1, N2, . . . , Nc: we only use the content of the two tuples to determine which is smallest
(see Algorithm 2).

Compared with Frequent-Component, Vortex always chooses the first (most fre-
quent) value from column 1, then the most frequent value from column 2, and so forth.
Indeed, we can easily show the following proposition using the formal definition of the
Vortex order:

Lemma 4.1. Consider tuples with positive integer values. For any 1 ≤ k ≤ c, suppose

:14 D. Lemire et al.

1 3
2 1
2 2
3 3
4 1
4 2
5 3
6 1
6 2
7 4
8 3

(a) Initial table

column 1 column 2
2→ 1 3→ 1
4→ 2 1→ 2
6→ 3 2→ 3
1→ 4 4→ 4
3→ 5
5→ 6
7→ 7
8→ 8

(b) Renormalization

4 1
1 2
1 3
5 1
2 2
2 3
6 1
3 2
3 3
7 4
8 1

(c) Normalized table

(1, 2), (4, 1)
(1, 1), (2, 2)
(1, 1), (3, 2)
(1, 2), (5, 1)
(2, 1), (2, 2)
(2, 1), (3, 2)
(1, 2), (6, 1)
(2, 2), (3, 1)
(3, 1), (3, 2)
(4, 2), (7, 1)
(1, 2), (8, 1)

(d) T ′ values

(1, 1), (3, 2)
(1, 1), (2, 2)
(1, 2), (8, 1)
(1, 2), (6, 1)
(1, 2), (5, 1)
(1, 2), (4, 1)
(2, 1), (3, 2)
(2, 1), (2, 2)
(2, 2), (3, 1)
(3, 1), (3, 2)
(4, 2), (7, 1)

(e) alternating order

1 3
1 2
8 1
6 1
5 1
4 1
2 3
2 2
3 2
3 3
7 4

(f) Solution (normalized)

Fig. 6: Row-reordering example with Vortex

Algorithm 2 Comparison between two tuples of integers by the Vortex order. We recom-
mend organizing the columns in non-decreasing order of cardinality and the column values
in non-increasing order of frequency.

1: input: two tuples x = (x1, x2, . . . , xc) and y = (y1, y2, . . . , yc)
2: output: whether x <VORTEX y
3: x′ ← (x1, 1), (x2, 2), . . . , (xc, c)
4: sort the list x′ lexicographically {E.g., (13, 1), (12, 2)→ (12, 2), (13, 1).}
5: y′ ← (y1, 1), (y2, 2), . . . , (yc, c)
6: sort the list y′ lexicographically
7: for i = 1, 2, . . . , c do
8: if x′i 6= y′i then
9: return (x′i <LEXICO y′i)⊕ (i is even)
10: end if
11: end for
12: return false {We have x = y.}

τ is a tuple containing the value 1 in one of its first k components, and τ ′ is a tuple that
does not contain the value 1 in any of its first k components. Then τ <VORTEX τ

′.

Frequent-Component instead chooses the most frequent value overall, then the
second-most frequent value overall, and so forth, regardless of which column contains them.
Both Frequent-Component and Vortex list all tuples containing the first value consec-
utively. However, whereas Vortex also lists the tuples containing the second value consec-

Reordering Rows for Better Compression: Beyond the Lexicographic Order :15

utively, Frequent-Component may fail to do so. Thus, we expect Vortex to produce
fewer runs among the most frequent values, compared to Frequent-Component.

Whereas the Hilbert order is only a Gray code when N is a power of two, we want
to show that Vortex is always an N -ary Gray code. That is, sorting all of the tuples
in {1, 2, . . . , N} × · · · × {1, 2, . . . , N} = {1, 2, . . . , N}c creates a Gray code—the Hamming
distance of successive tuples is one. We believe that of all possible orders, we might as well
pick those with the Gray-code property, everything else being equal.

Let Vortex(N1, N2, . . . , Nc) be the
∏c

i=1Ni tuples in {1, 2, . . . , N1}×· · ·×{1, 2, . . . , Nc}
sorted in the Vortex order. Let

ΛN
c,k = Vortex(N,N, . . . , N︸ ︷︷ ︸

c−k

, N − 1, N − 1, . . . , N − 1︸ ︷︷ ︸
k

).

We begin by the following technical lemmata which allow us to prove that Vortex is a
Gray code by induction.

Lemma 4.2. If ΛN
c−1,k−1 and ΛN

c,k are Gray codes, then so is ΛN
c,k−1 for any integers

N > 1, c ≥ 2, k ∈ {1, . . . , c}.
Proof. Assume that ΛN

c−1,k and ΛN
c,k are Gray codes. The ΛN

c,k−1 tuples begin with the
tuple

(1, N, . . . , N︸ ︷︷ ︸
c−k

, N − 1, N − 1, . . . , N − 1︸ ︷︷ ︸
k−1

)

and they continue up to the tuple

(1, 1, N, . . . , N︸ ︷︷ ︸
c−k−1

, N − 1, N − 1, . . . , N − 1︸ ︷︷ ︸
k−1

).

Except for the first column which has a fixed value (one), these tuples are in reverse ΛN
c−1,k−1

order, so they form a Gray code. The next tuple in ΛN
c,k−1 is

(N, 1, N, . . . , N︸ ︷︷ ︸
c−k−1

, N − 1, N − 1, . . . , N − 1︸ ︷︷ ︸
k−1

)

and the following tuples are in an order equivalent to ΛN
c,k, except that we must consider

the first column as the last and decrement its values by one, while the second column is
considered the first, the third column the second, and so on. The proof concludes.

Lemma 4.3. For all c ≥ 1 and all k ∈ {0, 1, . . . , c}, Λ2
c,k is a Gray code.

Proof. We have that Λ2
c,0 is a reflected Gray code with column values 1 and 2: e.g., for

c = 3, we have the order

Λ2
3,0 =

1, 2, 2
1, 2, 1
1, 1, 1
1, 1, 2
2, 1, 2
2, 1, 1
2, 2, 1
2, 2, 2

.

Thus, we have that Λ2
c,0 is always a Gray code. Any column with cardinality one can be

trivially discarded. Hence, we have that Λ2
c,k is always a Gray code for all k ∈ {0, 1, . . . , c},

proving the lemma.

:16 D. Lemire et al.

c = 1 c = 2 · · · C
N = 2 Lemma 4.3
N = 3

L
em

m
a

4
.4 → →

...
...

...

N → →
Fig. 7: Illustration of the basis for the induction argument in the proof of Proposition 4.5

Lemma 4.4. For any value of N and for k = 0 or k = 1, ΛN
1,k is a Gray code.

Proof. We have that ΛN
1,0 is a Gray code for any value of N because one-component

tuples are always Gray codes. It immediately follows that ΛN
1,1 is also a Gray code for any

N since, by definition, ΛN
1,1 = ΛN−1

1,0 .

Proposition 4.5. The Vortex order is an N -ary Gray code.

Proof. The proof uses a multiple induction argument, which we express as pseudocode.
At the end of each pass through the loop on N , we have that ΛN ′

c,k is a Gray code for all

N ′ ≤ N , all c ∈ {2, . . . , C} and all k ∈ {0, 1, 2, . . . , c}. The induction begins from the cases
where there are only two values per column (N = 2, see Lemma 4.3) or only one column
(c = 1, Lemma 4.4). See Fig. 7 for an illustration.

1: for N = 3, 4, . . . ,N do
2: We have that ΛN−1

c,k is a Gray code for all c ∈ {2, 3, . . . , C} and also for all

k ∈ {0, 1, 2, . . . , c}. {For N > 3, this is true from the previous pass in the loop
on N . For N = 3, it follows from Lemma 4.3.}

3: for c = 2, . . . , C do
4: By line 2, ΛN−1

c,0 is a Gray code, and by definition ΛN
c,c = ΛN−1

c,0 .
5: for k = c, c− 1, . . . , 1 do
6: (1) ΛN

c,k is a Gray code {when k = c it follows by line 4 and otherwise by
line 8 from the previous pass of the loop on k}

7: (2) ΛN
c−1,k−1 is a Gray code {when c = 2, it follows by Lemma 4.4, and for

c > 2 it follows from the previous pass of the loop on c}
8: (1) + (2) ⇒ ΛN

c,k−1 is a Gray code by Lemma 4.2.
9: end for
10: Hence, ΛN

c,0 is a Gray code. (And also ΛN
c,k for all k ∈ {0, 1, 2, . . . , c− 1}.)

11: end for
12: end for

The integers N and C can be arbitrarily large. Thus, the pseudocode shows that ΛN
c,k is

always a Gray code which proves that Vortex is an N -ary Gray code for any number of
columns and any value of N .

5. EXPERIMENTS: TSP AND SYNTHETIC DATA

We present two groups of experiments. In this section, we use synthetic data to compare
many heuristics for minimizing RunCount. Because the minimization of RunCount
reduces to the TSP over the Hamming distance, we effectively assess TSP heuristics.
Two heuristics stand out, and then in § 6 these two heuristics are assessed in more re-
alistic settings with actual database compression techniques and large tables. The Java
source code necessary to reproduce our experiments is at http://code.google.com/p/
rowreorderingjavalibrary/.

http://code.google.com/p/rowreorderingjavalibrary/
http://code.google.com/p/rowreorderingjavalibrary/

Reordering Rows for Better Compression: Beyond the Lexicographic Order :17

Table II: Relative reduction in RunCount compared to lexicographical sort (set at 1.0),
for Zipfian tables (c = 4)

relative RunCount reduction
n =8 192 n =131 072 n = 1 048 576

Lexicographic Sort 1.000 1.000 1.00
Multiple Lists 1.167 1.188 1.204
Vortex 1.154 1.186 1.203
Frequent-Component 1.151 1.186 1.203
Nearest Neighbor 1.223 1.242
Savings 1.225 1.243
Multiple Fragment 1.219 1.232
Farthest Insertion 1.187
Nearest Insertion 1.214
Random Insertion 1.201
Lexicographic Sort+1-reinsertion 1.171
Vortex+1-reinsertion 1.193
Frequent-Component+1-reinsertion 1.191

The aHDO scheme runs a complete pass through the table, trying to permute successive
rows. If a pair of rows is permuted, we run through another pass over the entire table. We
repeat until no improvement is possible. In contrast, the more expensive tour-improvement
heuristics (BruteForcePeephole and 1-reinsertion) do a single pass through the table.
The BruteForcePeephole is applied on successive blocks of 8 rows.

5.1. Reducing the number of runs on Zipfian tables

Zipfian distributions are commonly used [Eavis and Cueva 2007; Houkjær et al. 2006; Gray
et al. 1994] to model value distributions in databases: within a column, the frequency of
the ith value is proportional to 1/i. If a table has n rows, we allow each column to have
n possible distinct values, not all of which will usually appear. We generated tables with
8 192–1 048 576 rows, using four Zipfian-distributed columns that were generated indepen-
dently. Applying Lemma 3.1 to these tables, the lexicographical order is ω-optimal for
ω ≈ 3.

The RunCount results are presented in Table II. We present relative RunCount reduc-
tion values: a value of 1.2 means that the heuristic is 20% better than lexicographic sort.
For some less scalable heuristics, we only give results for small tables. Moreover, we omit
results for aHDO [Malik and Kender 2007] and BruteForcePeephole (with partitions of
eight rows) because these tour-improvement heuristics failed to improve any tour by more
than 1%. Because BruteForcePeephole fails, we conclude that all heuristics we consider
are “locally almost optimal” because you cannot improve them appreciably by optimizing
subsets of 8 consecutive rows.

Both Frequent-Component and Vortex are better than the lexicographic order.
The Multiple Lists heuristic is even better but slower. Other heuristics such as Nearest
Neighbor, Savings, Multiple Fragment and the insertion heuristics are even better,
but with worse running time complexity. For all heuristics, the run-reduction efficiency
grows with the number of rows.

5.2. Reducing the number of runs on uniformly distributed tables

We also ran experiments using uniformly distributed tables, generating n-row tables where
each column has n possible values. Any value within the table can take one of n distinct
values with probability 1/n.5 For these tables, the lexicographical order is 3.6-optimal ac-

5We abuse the terminology slightly by referring to these tables as uniformly distributed: the models used
to generate the tables are uniformly distributed, but the data of the generated tables may not have uniform

:18 D. Lemire et al.

Table III: Relative reduction in RunCount compared to lexicographical sort (set at 1.0),
for uniformly distributed tables (c = 4)

relative RunCount reduction
n =8 192 n =131 072 n = 1 048 576

Lexicographic Sort 1.000 1.000 1.00
Multiple Lists 1.127 1.128 1.128
Vortex 1.020 1.020 1.021
Frequent-Component 1.022 1.023 1.023
Nearest Neighbor 1.122 1.123
Savings 1.122 1.123
Multiple Fragment 1.133 1.133
Farthest Insertion 1.075
Nearest Insertion 1.129
Random Insertion 1.103
Lexicographic Sort+1-reinsertion 1.092
Vortex+1-reinsertion 1.094
Frequent-Component+1-reinsertion 1.080

cording to Lemma 3.1.
Table III summarizes the results. The most striking difference with Zipfian tables is

that the efficiency of most heuristics drops drastically. Whereas Vortex and Frequent-
Component are 20% superior to the lexicographical order on Zipfian data, they are barely
better (2%) on uniformly distributed data. Moreover, we fail to see improved gains as the
tables grow larger—unlike the Zipfian case. Intuitively, a uniform model implies that there
are fewer opportunities to create long runs of identical values in several columns, when
compared to a Zipfian model. This probably explains the poor performance of Vortex and
Frequent-Component.

We were surprised by how well Multiple Lists performed on uniformly distributed
data, even for small n. It fared better than most heuristics, including Nearest Neighbor,
by beating lexicographic sort by 13%. Since Multiple Lists is a variant of the greedy
Nearest Neighbor that considers a subset of the possible neighbors, we see that more
choice does not necessarily give better results. Multiple Lists is a good choice for this
problem.

5.3. Discussion

For these in-memory synthetic data sets, we find that the good heuristics to minimize
RunCount—that is, to solve the TSP under the Hamming distance—are Vortex and
Multiple Lists. They are both reasonably scalable in the number of rows (O(n log n))
and they perform well as TSP heuristics.

Frequent-Component would be another worthy alternative, but it is harder to imple-
ment as efficiently as Vortex. Similarly, we found that Savings and Multiple Fragment
could be superior TSP heuristics for Zipfian and uniformly distributed tables, but they scale
poorly with respect to the number of rows: they have a quadratic running time (O(n2)).
For small tables (n = 131 072), they were three and four orders of magnitude slower than
Multiple Lists in our tests.

6. EXPERIMENTS WITH REALISTIC TABLES

Minimizing RunCount on synthetic data might have theoretical appeal and be some-
what applicable to many applications. However, we also want to determine whether row-
reordering heuristics can specifically improve table compression, and therefore database
performance, on realistic examples. This requires that we move from general models such

histograms.

Reordering Rows for Better Compression: Beyond the Lexicographic Order :19

as RunCount to size measurements based on specific database-compression techniques. It
also requires large real data sets.

6.1. Realistic column storage

We use conventional dictionary coding [Lemke et al. 2010; Binnig et al. 2009; Poess and
Potapov 2003] prior to row-reordering and compression. That is, we map column values
bijectively to 32-bit integers in [0, N) where N is the number of distinct column values.6

We map the most frequent values to the smallest integers [Lemire and Kaser 2011].
We compress tables using five database compression schemes: Sparse, Indirect and Prefix

coding as well as a fast variation on Lempel-Ziv and RLE. We compare the compression
ratio of each technique under row reordering. For simplicity, we select only one compression
scheme at a time: all columns are compressed using the same technique.

6.1.1. Block-wise compression. The SAP NetWeaver platform [Lemke et al. 2010] uses three
compression techniques: Indirect, Sparse and Prefix coding. We implemented them and set
the block size to p = 128 values.

— Indirect coding is a block-aware dictionary technique. For each column and each block,
we build a list of the N ′ values encountered. Typically, N ′ � N , where N is the total number
of distinct values in the column. Column values are then mapped to integers in [0, N ′) and
packed using dlogNe bits each [Ng and Ravishankar 1997; Binnig et al. 2009]. Of course,
we must also store the actual values of the N ′ codes used for each block and column. Thus,
whereas dictionary coding requires pdlogNe bits to store a column, Indirect coding requires
N ′dlogNe+pdlogN ′e bits—plus the small overhead of storing the value of N ′. In the worst
case, the storage cost of indirect coding is twice as large as the storage cost of conventional
dictionary coding. However, whenever N ′ is small enough, indirect coding is preferable.
Indirect coding is related to the block-wise value coding used by Oracle [Poess and Potapov
2003].

— Sparse coding stores the most frequent value using an p-bit bitmap to indicate where
this most frequent value appears. Other values are stored using dlogNe bits. If the most
frequent value appears ζ times, then the total storage cost is (p− ζ + 1)dlogNe+ p bits.

— Prefix coding begins by counting how many times the first value repeats at the be-
ginning of the block; this counter is stored first along with the value being repeated. Then
all other values are packed. In the worst case, the first value is not repeated, and Prefix
coding wastes dlog pe bits compared to conventional dictionary coding. Because it counts
the length of a run, Prefix coding can be considered a form of RLE (§ 6.1.3).

6.1.2. Lempel-Ziv-Oberhumer. Lempel-Ziv compression [Ziv and Lempel 1978] compresses
data by replacing sequences of characters by references to previously encountered sequences.
The Lempel-Ziv-Oberhumer (LZO) library [Oberhumer 2011] implements fast versions of
the conventional Lempel-Ziv compression technique. Abadi et al. [2006] evaluated several
alternatives including Huffman and Arithmetic encoding, but found that compared with
LZO, they were all too expensive for databases.

If a long data array is made of repeated characters—e.g., aaaaa—or repeated short
sequences—e.g., ababab—we expect most Lempel-Ziv compression techniques to generate
a compressed output that grows logarithmically with the size of the input. It appears to
be the case with the LZO library: its LZO1X CODEC uses 16 bytes to code 64 identical
32-bit integers, 17 bytes to code 128 identical integers, and 19 bytes for 256 integers. For
our tests, we used LZO version 2.05.

6.1.3. Run-Length Encoding. We implemented RLE by storing each run as a triple [Stone-
braker et al. 2005]: value, starting point and length of the run. Values are packed using

6We do not store actual column values (such as strings): their compression is outside our scope.

:20 D. Lemire et al.

Table IV: Characteristics of data sets used with bounds on the optimality of lexicographical
order (ω), and a measure of statistical deviation (p0).

rows distinct rows cols
∑

iNi ω p0
Census1881 4 277 807 4 262 238 7 343 422 2.9 0.17
Census-Income 199 523 196 294 42 103 419 12 0.65
Wikileaks 1 178 559 1 147 059 4 10 513 1.3 0.04
SSB (DBGEN) 240 012 290 240 012 290 15 8 874 195 8.0 0.10
Weather 124 164 607 124 164 371 19 52 369 4.5 0.36
USCensus2000 37 019 068 22 493 432 10 2 774 239 3.4 0.54

dlogNe bits whereas both the starting point and the length of the run are stored using
dlog ne bits, where n is the number of rows.

6.2. Data sets

We selected realistic data sets (see Table IV): Census1881 [Lemire and Kaser 2011; Pro-
gramme de recherche en démographie historique 2009], Census-Income [Frank and Asun-
cion 2010], a Wikileaks-related data set, the fact table from the Star Schema Benchmark
(SSB) [O’Neil et al. 2009] and Weather [Hahn et al. 2004]. Census1881 comes from the
Canadian census of 1881: it is over 305 MB and over 4 million records. Census-Income is the
smallest data set with 100 MB and 199 523 records. However, it has 42 columns and one col-
umn has a very high relative cardinality (99 800 distinct values). The Wikileaks table was
created from a public repository published by Google7 and it contains the non-classified
metadata related to leaked diplomatic cables. We extracted 4 columns: year, time, place
and descriptive code. It has 1 178 559 records. We generated the SSB fact table using a ver-
sion of the DBGEN software modified by O’Neil.8 We used a scale factor of 40 to generate
it: that is, we used command dbgen -s 40 -T l. It is 20 GB and includes 240 million rows.
The largest non-synthetic data set (Weather) is 9 GB. It consists of 124 million surface
synoptic weather reports from land stations for the 10-year period from December 1981
through November 1991. We also extracted a table from the US Census of 2000 [US Census
Bureau 2002] (henceforth USCensus2000). We used attributes 5 to 15 from summary file 3.
The resulting table has 37 million rows.

The column cardinalities for Census1881 range from 138 to 152 882 and from 2 to
99 800 for Census-Income. Our Wikileaks table has column cardinalities 273, 1 440, 3 935
and 4 865. The SSB table has column cardinalities ranging from 1 to 6 084 386. (The fact
table has a column with a single value in it: zero.) For Weather, the column cardinalities
range from 2 to 28 767. Attribute cardinalities for USCensus2000 vary between 130 001 to
534 896.

For each data set, we give the suboptimality factor ω from Lemma 3.1 in Table IV.
Wikileaks has the lowest factor (ω = 1.3) followed by Census1881 (ω = 2.9) whereas
Census-Income has the largest one (ω = 12.4). Correspondingly, Wikileaks and Census1881
have the fewest columns (4 and 7), and Census-Income has the most (42).

We also provide a simple measure of the statistical dispersion of the frequency of the
values. For column i, we find a most frequent value vi, and we determine what fraction of this
column’s values are vi. Averaging the fractions, we have our measure p0 =

∑c
i=1 f(vi)/nc,

where our table has n rows and c columns and f(vi) is the number of times vi occurs in its
column. As an example, consider the table in Fig. 1a. In the first column, the value ‘6’ is a
most frequent value and it appears twice in 11 tuples. In the second column, the value ‘3’ is
most frequent, and it appears 4 times. In this example, we have p0 = 2+4

2×11 ≈ 0.27. In general,

7http://www.google.com/fusiontables/DataSource?dsrcid=224453
8http://www.cs.umb.edu/~poneil/publist.html

http://www.google.com/fusiontables/DataSource?dsrcid=224453
http://www.cs.umb.edu/~poneil/publist.html

Reordering Rows for Better Compression: Beyond the Lexicographic Order :21

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 32 1024 32768 1048576

ti
m

e
(m

in
)

partition size (rows)

(a) Running time

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 32 1024 32768 1048576

co
m

p
re

ss
ed

 s
iz

e
(M

B
)

partition size (rows)

LZO
RLE

(b) Compressed data size

Fig. 8: The Multiple Lists heuristic applied on each partition of a lexicographically
sorted Weather table for various partition sizes. When partitions have size 1, we recover the
lexicographical order. We refer to the case where the partition size is set to 131 072 rows as
Multiple Lists? (indicated by a dashed vertical line in the plots).

we have that p0 ranges between 0 and 1. For uniformly distributed tables having high
cardinality columns, the fraction p0 is near zero. When there is high statistical dispersion
of the frequencies, we expect that the most frequent values have high frequencies and so
p0 could be close to 1. One benefit of this measure is that it can be computed efficiently.
By this measure, we have the highest statistical dispersion in Census-Income, Weather and
USCensus2000.

6.3. Implementation

Because we must be able to process large files in a reasonable time, we selected Vortex
as one promising row-reordering heuristic. We implemented Vortex in memory-conscious
manner: intermediate tuples required for a comparison between rows are repeatedly built
on-the-fly.

Prior to sorting lexicographically, we reorder columns in order of non-decreasing cardi-
nality [Lemire and Kaser 2011]: in all cases this was preferable to ordering the columns in
decreasing cardinality. For Vortex, in all cases, there was no significant difference (< 1%)
between ordering the columns in increasing or decreasing order of cardinality. Effectively,
Vortex does not favor a particular column order. (A related property can be formally
proved [Lemire et al. 2012].)

We used Multiple Lists on partitions of a lexicographically sorted table (see § 3.3).9

Fig. 8 shows the effect of the partition size on both the running time and the data com-
pression. Though larger partitions may improve compression, they also require more time.
As a default, we chose partitions of 131 072 rows. Henceforth, we refer to this heuristic as
Multiple Lists?.

We compiled our C++ software under GNU GCC 4.5.2 using the -O3 flag. The C++
source code is at http://code.google.com/p/rowreorderingcpplibrary/. We ran our
experiments on an Intel Core i7 2600 processor with 16 GB of RAM using Linux. All data
was stored on disk, before and after the compression. We used a 1 TB SATA hard drive
with an estimated sustained reading speed of 115 MB/s. We used an external-memory sort
that we implemented in the conventional manner [Knuth 1997]: we load partitions of rows,

9When reporting the running time, we include the time required to sort the table lexicographically.

http://code.google.com/p/rowreorderingcpplibrary/

:22 D. Lemire et al.

Table V: Compression ratio compared to lexicographical sort

Vortex Multiple Lists?

Sparse 1.27 1.00
Indirect 1.07 1.02
Prefix 1.45 0.99
LZO 0.99 1.07
RLE 1.02 1.13
RunCount 0.99 1.13

(a) Census 1881

Vortex Multiple Lists?

1.00 0.99
1.03 0.96
1.15 0.95
0.97 1.04
0.97 1.24
0.96 1.25

(b) Census-Income

Vortex Multiple Lists?

Sparse 1.15 0.94
Indirect 0.63 0.96
Prefix 1.21 0.91
LZO 0.63 0.90
RLE 0.71 1.14
RunCount 0.70 1.14

(c) Wikileaks

Vortex Multiple Lists?

1.00 0.99
1.00 0.99
1.00 0.97
1.00 1.00
1.00 1.00
1.00 1.00

(d) SSB (DBGEN)

Vortex Multiple Lists?

Sparse 0.80 1.06
Indirect 0.78 1.55
Prefix 0.74 0.94
LZO 0.91 1.96
RLE 0.67 1.69
RunCount 0.66 1.67

(e) Weather

Vortex Multiple Lists?

1.09 1.00
1.72 1.06
1.81 1.08
0.26 0.94
3.08 1.15
3.04 1.15

(f) USCensus2000

which we sort in RAM and write back in the file; we then merge these sorted partitions
using a priority queue. Our code is sequential.

Our algorithms are scalable. Indeed, both Vortex and lexicographical sorting rely on
the standard external-memory sorting algorithm. The only difference between Vortex and
lexicographical sort is that the function used to compare tuples is different. This difference
does not affect scalability with respect to the number of tuples even though it makes Vortex
slower. As for Multiple Lists?, it relies on external-memory sorting and the repeated
application of Multiple Lists on fixed-sized blocks—both of which are scalable.

6.4. Experimental results on realistic data sets

We present the results in Table V, giving the compression ratio on top of the lexicographical
order: e.g., a value of two indicates that the compression ratio is twice as large as what we
get with the lexicographical order.

Neither Vortex nor Multiple Lists? was able to improve the compression ratio on the
SSB data set. In fact, there was no change (within 1%) when replacing the lexicographical
order with Vortex. And Multiple Lists? made things slightly worse (by 3%) for Prefix
coding, but left other compression ratios unaffected (within 1%). To interpret this result,
consider that, while widely used, the DBGEN tool still generates synthetic data. For ex-
ample, out of 17 columns, seven have almost perfectly uniform histograms. Yet “real world
data is not uniformly distributed” [Poess and Potapov 2003].

For Census1881, the most remarkable result is that Vortex was able to improve
the compression under Sparse or Prefix coding by 27% and 45%. For Census-Income,
Multiple Lists? was able to improve RLE compression by 25%. For Wikileaks, we
found it interesting that Multiple Lists? reduced RunCount (and the RLE output)

Reordering Rows for Better Compression: Beyond the Lexicographic Order :23

Table VI: Time necessary to reorder the rows

Lexico. Vortex Multiple Lists?

Census1881 2.7 s 14 s 19 s
Census-Income 0.19 s 4.7 s 11 s
Wikileaks 0.3 s 2.0 s 2.5 s
SSB 12 min 35 min 52 min
SSB ×2.5 49 min 105 min 154 min
Weather 6 min 26 min 43 min
USCensus2000 33 s 3 min 12 min

by 14% whereas the lexicographical order is already 1.26-optimal, which means that
Multiple Lists? is 1.1-optimal in this case. On Weather, the performance of Vortex
was disappointing: it worsened the compression in all cases. However, Multiple Lists?

had excellent results: it doubled the Lempel-Ziv (LZO) compression, and it improved
RLE compression by 70%. Yet on the USCensus2000 data set, Vortex was preferable to
Multiple Lists? for all compression schemes except LZO. We know that the lexicographi-
cal order is 3.4-optimal at reducing RunCount, yet Vortex is able to reduce RunCount
by a factor of 3 compared to the lexicographical order. It follows that Vortex is 1.1-optimal
in this case.

Overall, both Vortex and Multiple Lists? can significantly improve over the lexi-
cographic order when a database-compression technique is used on real data. For every
database-compression technique, significant improvement could be obtained by at least one
of the reordering heuristics on the real data sets. However, significant degradation could
also be observed, and lexicographic order was best in four realistic cases (Sparse coding
on Census-Income, Indirect coding on Wikileaks, Prefix coding on Weather and LZO on
USCensus2000). In § 6.5, we propose to determine, based on characteristics of the data,
whether significant gains are possible on top of the lexicographical order.

6.4.1. Our row-reordering heuristics are scalable. We present wall-clock timings in Table VI
to confirm our claims of scalability. For this test, we included a variation of the SSB
where we used a scale factor of 100 instead of 40 when generating the data. That is, it
is 2.5 times larger (henceforth SSB ×2.5). As expected, the lexicographical order is fastest,
whereas Multiple Lists? is slower than either Vortex or the lexicographical order. On
the largest data set (SSB), Vortex and Multiple Lists? were 3 and 4 times slower than
lexicographical sorting. One of the benefits of an approach based on partitions, such as
Multiple Lists?, is that one might stop early if benefits are not apparent after a few
partitions. When comparing SSB and SSB ×2.5, we see that the running time grew by a
factor of 4 for the lexicographical order, a factor of 2 for Vortex and a factor of 3 for
Multiple Lists?. For SSB ×2.5, the running time of Multiple Lists? included 50 min
for sorting the table lexicographically, and the application of Multiple Lists on blocks of
rows only took 104 min. Because Multiple Lists? uses blocks with a fixed size, its running
time will be eventually dominated by the time required to sort the table lexicographically
as we increase the number of tuples.

6.4.2. Better compression improves speed. Everything else being equal, if less data needs to
be loaded from RAM and disk to the CPU, speed is improved. It remains to assess whether
improved compression can translate into better speed in practice. Thus, we evaluated how
fast we could uncompress all of the columns back into the original 32-bit dictionary values.
Our test was to retrieve the data from disk (with buffering) and store it back on disk. We
report the ratio of the decompression time with lexicographical sorting over the decompres-
sion time with alternative row reordering methods. Because the time required to write the
decompressed values would have been unaffected by the compression, we would not expect
speed gains exceeding 50% with better compression in this kind of test.

:24 D. Lemire et al.

— First, we look at our good compression results on the Weather data set with
Multiple Lists? for the LZO and RLE (resp. 1.96 and 1.69 compression gain). The
decompression speed was improved respectively by a factor of 1.19 and 1.14.

— Second, we consider the USCensus2000 table, where Vortex improved both Prefix cod-
ing and RLE compression (resp. 1.81 and 3.04 compression gain). We saw gains to the
decompression speed of 1.04 and 1.12.

These speed gains were on top of the gains already achieved by lexicographical sorting. For
example, Prefix coding was only improved by 4% compared to the lexicographical order on
the USCensus2000 table, but if we compute ratios with respect to a shuffled table, they went
from 1.25 for lexicographical sorting to 1.30 with Vortex. Hence, the total performance
gain due to row reordering is 30%.

6.5. Guidance on selecting the row-reordering heuristic

It is difficult to determine which row-reordering heuristic is best given a table and a compres-
sion scheme. Our processing techniques are already fast, and useful guidance would need
to be obtained faster—probably limiting us to decisions using summaries such as those
maintained by the DBMS. And such concise summaries might be insufficient:

— Suppose that we are given a set of columns and complete knowledge of their his-
tograms. That is, we have the list of attribute values and their frequencies. Unfortunately,
even given all this data, we could not predict the efficiency of the row reordering techniques
reliably. Indeed, consider the USCensus2000 data set. According to Table V, Vortex im-
proves RLE compression by a factor of 3 over the lexicographical order. Consider what
happened when we took the same table (USCensus2000) and randomly shuffled columns,
independently. The column histograms were not changed—only the relationships between
columns were affected. Yet, not only did Vortex fail to improve RLE compression over this
newly generated table, it made it much worse (from a ratio of 3.04 to 0.74). The performance
of Multiple Lists? was also adversely affected: while it slightly improves the compression
by Prefix coding (1.08) over the original USCensus2000 table, it made compression worse
(0.93) over the reshuffled USCensus2000 table.

— Perhaps one might hope to predict the efficiency of row-reordering techniques by us-
ing small samples, without ever sorting the entire table. There are reasons again to be
pessimistic. We took a random sample of 65 536 tuples from the USCensus2000 table. Over
such a sample, Vortex improved LZO compression by 2.5% compared to the lexicograph-
ical order, whereas over the whole data set Vortex makes LZO much worse than the
lexicographical order (1.025 versus 0.26). Similarly, whereas Vortex improves RLE by a
factor of 3 when applied over the whole table, the gain was far more modest over our sample
(1.06 versus 3.04).

However, we can offer some guidance. For compression schemes that are closely related to
RunCount, such as RLE, the optimality of a lexicographic sort should be computed using
Lemma 3.1. If ω ≈ 1, we can safely conclude that the lexicographical order is sufficient.

Moreover, our results on synthetic data sets (§ 5) suggest that some statistical dispersion
in the frequencies of the values is necessary. Indeed, we could not improve the RunCount
of tables having uniformly distributed columns even when ω were relatively large. On our
real data sets, we got the best compression gains compared to the lexicographical order with
the Weather and USCensus2000 tables. They both have high p0 values (0.36 and 0.54).

Hence, we propose to only try better row-reordering heuristics when ω and p0 are large
(e.g., ω > 3 and p0 > 0.3). Both measures can be computed efficiently.

Furthermore, when applying a scheme such as Multiple Lists on partitions of the sorted
table, it would be reasonable to stop the heuristic after a few partitions if there is no
benefit. For example, consider the Weather data and Multiple Lists?. After 20 blocks of

Reordering Rows for Better Compression: Beyond the Lexicographic Order :25

131 072 tuples, we have a promising gain of 1.6 for LZO and RLE, but a disappointing ratio
of 0.96 for Prefix coding. That is, we have valid estimates (within 10%) of the actual gain
over the whole data set after processing only 2% of the table.

7. CONCLUSION

For the TSP under the Hamming distance, lexicographical sort is an effective and natu-
ral heuristic. It appears to be easier to surpass the lexicographical sort when the column
histograms have high statistical dispersion (e.g. Zipfian distributions).

Our original question was whether engineers willing to spend extra time reordering rows
could improve the compressibility of their tables, at least by a modest amount. Our answer
is positive.

— Over real data, Multiple Lists? always improved RLE compression when compared to
the lexicographical order (10% to 70% better).

— Vortex almost always improved Prefix coding compression, sometimes by a large per-
centage (80%) compared to the lexicographical order.

— On one data set, Vortex improved RLE compression by a factor of 3 compared to lexi-
cographical order.

As far as heuristics are concerned, we have certainly not exhausted the possibilities.
Several tour-improvement heuristics used to solve the TSP [Johnson and McGeoch 1997]
could be adapted for row reordering. Maybe more importantly, we could adapt the TSP
heuristics using a different distance measure than the Hamming distance. For example,
consider difference coding [Moffat and Stuiver 2000; Bhattacharjee et al. 2009; Anh and
Moffat 2010] where the successive differences between attribute values are coded. In this
case, we could use an inter-row distance that measures the number of bits required to code
the differences. Just as importantly, the implementations of our row-reordering heuristics
are sequential: parallel versions could be faster, especially on multicore processors.

REFERENCES

Abadi, D., Madden, S., and Ferreira, M. 2006. Integrating compression and execution in column-oriented
database systems. In Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data. ACM, New York, NY, USA, 671–682.

Abadi, D. J., Madden, S. R., and Hachem, N. 2008. Column-stores vs. row-stores: how different are they
really? In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.
ACM, New York, NY, USA, 967–980.

Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A., Naughton, J. F., Ramakrishnan, R., and
Sarawagi, S. 1996. On the computation of multidimensional aggregates. In VLDB’96, Proceedings of
the 22nd International Conference on Very Large Data Bases. Morgan Kaufmann, San Francisco, CA,
USA, 506–521.

Anantha, M., Bose, B., and AlBdaiwi, B. 2007. Mixed-radix Gray codes in Lee metric. IEEE Trans.
Comput. 56, 10, 1297–1307.

Anh, V. N. and Moffat, A. 2010. Index compression using 64-bit words. Softw. Pract. Exper. 40, 2,
131–147.

Antoshenkov, G. 1995. Byte-aligned bitmap compression. In Data Compression Conference (DCC’95).
IEEE Computer Society, Washington, DC, USA, 476.

Aouiche, K. and Lemire, D. 2007. A comparison of five probabilistic view-size estimation techniques in
OLAP. In Proceedings of the ACM 10th International Workshop on Data Warehousing and OLAP
(DOLAP ’07). ACM, New York, NY, USA, 17–24.

Applegate, D., Cook, W., and Rohe, A. 2003. Chained Lin-Kernighan for large traveling salesman prob-
lems. INFORMS J. Comput. 15, 1, 82–92.

Bellmore, M. and Nemhauser, G. L. 1968. The traveling salesman problem: a survey. Oper. Res. 16, 3,
538–558.

Bentley, J. 1992. Fast algorithms for geometric traveling salesman problems. INFORMS J. Comput. 4, 4,
387–411.

:26 D. Lemire et al.

Berman, P. and Karpinski, M. 2006. 8/7-approximation algorithm for (1,2)-TSP. In Proceedings of the
17th annual ACM-SIAM symposium on Discrete algorithms. ACM, New York, NY, USA, 641–648.

Bhattacharjee, B., Lim, L., Malkemus, T., Mihaila, G., Ross, K., Lau, S., McArthur, C., Toth, Z.,
and Sherkat, R. 2009. Efficient index compression in DB2 LUW. Proc. VLDB Endow. 2, 2, 1462–1473.

Binnig, C., Hildenbrand, S., and Färber, F. 2009. Dictionary-based order-preserving string compression
for main memory column stores. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data. ACM, New York, NY, USA, 283–296.

Bruno, N. 2009. Teaching an old elephant new tricks. In Proceedings, CIDR 2009 : Fourth Biennial Con-
ference on Innovative Data Systems. Asilomar, USA. electronic proceedings at https://database.cs.
wisc.edu/cidr/cidr2009/cidr2009.zip, last checked 2012-07-04.

Cai, J. and Paige, R. 1995. Using multiset discrimination to solve language processing problems without
hashing. Theor. Comput. Sci. 145, 1-2, 189–228.

Cesari, G. 1996. Divide and conquer strategies for parallel TSP heuristics. Comput. Oper. Res. 23, 7,
681–694.

Chakrabarti, A., Chazelle, B., Gum, B., and Lvov, A. 1999. A lower bound on the complexity of
approximate nearest-neighbor searching on the Hamming cube. In Proceedings of the 31st annual ACM
symposium on Theory of computing. ACM, New York, NY, USA, 305–311.

Cho, D.-S. and Hong, B.-H. 2000. Optimal page ordering for region queries in static spatial databases. In
11th International Conference on Database and Expert System Applications (DEXA’00), LNCS 1873.
Springer, Berlin, Heidelberg, 366–375.

Christofides, N. 1976. Worst-case analysis of a new heuristic for the travelling salesman problem. Tech.
Rep. 388, Graduate School of Industrial Administration, Carnegie Mellon University.

Clarke, G. and Wright, J. W. 1964. Scheduling of vehicles from a central depot to a number of delivery
points. Oper. Res. 12, 4, 568–581.

Croes, G. A. 1958. A method for solving traveling-salesman problems. Oper. Res. 6, 6, 791–812.

Dean, T. and Boddy, M. 1988. An analysis of time-dependent planning. In Proceedings of the 7th national
conference on artificial intelligence. AAAI, Palo Alto, California, USA, 49–54.

Ding, S., Attenberg, J., and Suel, T. 2010. Scalable techniques for document identifier assignment in
inverted indexes. In Proceedings of the 19th International Conference on World Wide Web (WWW
’10). ACM, New York, NY, USA, 311–320.

Eavis, T. and Cueva, D. 2007. A Hilbert space compression architecture for data warehouse environ-
ments. In Data Warehousing and Knowledge Discovery (DaWaK’07) (LNCS 4654). Springer, Berlin,
Heidelberg, 1–12.

Ernvall, J., Katajainen, J., and Penttonen, M. 1985. NP-completeness of the Hamming salesman
problem. Bit 25, 1, 289–292.

Faloutsos, C. 1986. Multiattribute hashing using Gray codes. SIGMOD Rec. 15, 2, 227–238.

Frank, A. and Asuncion, A. 2010. UCI machine learning repository. http://archive.ics.uci.edu/ml
(checked 2012-07-04).

Fusco, F., Stoecklin, M. P., and Vlachos, M. 2010. NET-FLi: On-the-fly compression, archiving and
indexing of streaming network traffic. Proc. VLDB Endow. 3, 1382–1393.

Fusco, F., Vlachos, M., and Stoecklin, M. 2012. Real-time creation of bitmap indexes on streaming
network data. VLDB J. 21, 3, 287–307.

Gabow, H. N. and Tarjan, R. E. 1991. Faster scaling algorithms for general graph matching problems. J.
ACM 38, 4, 815–853.

Gharan, S. O., Saberi, A., and Singh, M. 2011. A randomized rounding approach to the traveling salesman
problem. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science. IEEE Computer Society, Washington, DC, USA, 550–559.

Gionis, A., Indyk, P., and Motwani, R. 1999. Similarity search in high dimensions via hashing. In
VLDB’99, Proceedings of the 25th International Conference on Very Large Data Bases. Morgan Kauf-
mann, San Francisco, CA, USA, 518–529.

Golomb, S. W. 1966. Run-length encodings. IEEE Trans. Inf. Theory 12, 3, 399–401.

Gray, J., Sundaresan, P., Englert, S., Baclawski, K., and Weinberger, P. J. 1994. Quickly generating
billion-record synthetic databases. SIGMOD Rec. 23, 2, 243–252.

Grigoriadis, M. D. and Kalantari, B. 1988. A new class of heuristic algorithms for weighted perfect
matching. J. ACM 35, 4, 769–776.

Hahn, C., Warren, S., and London, J. 2004. Edited synoptic cloud reports from ships and land stations
over the globe, 1982–1991. http://cdiac.ornl.gov/ftp/ndp026b/ (checked 2012-07-04).

https://database.cs.wisc.edu/cidr/cidr2009/cidr2009.zip
https://database.cs.wisc.edu/cidr/cidr2009/cidr2009.zip
http://archive.ics.uci.edu/ml
http://cdiac.ornl.gov/ftp/ndp026b/

Reordering Rows for Better Compression: Beyond the Lexicographic Order :27

Hamilton, C. H. and Rau-Chaplin, A. 2008. Compact Hilbert indices: Space-filling curves for domains
with unequal side lengths. Inf. Process. Lett. 105, 5, 155–163.

Helsgaun, K. 2000. An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur.
J. Oper. Res. 126, 1, 106–130.

Holloway, A. L. and DeWitt, D. J. 2008. Read-optimized databases, in depth. Proc. VLDB Endow. 1, 1,
502–513.

Houkjær, K., Torp, K., and Wind, R. 2006. Simple and realistic data generation. In VLDB’06, Proceedings
of the 32nd International Conference on Very Large Data Bases. ACM, New York, NY, USA, 1243–
1246.

Indyk, P. and Motwani, R. 1998. Approximate nearest neighbors: towards removing the curse of dimen-
sionality. In Proceedings of the 30th annual ACM symposium on Theory of computing. ACM, New
York, NY, USA, 604–613.

Indyk, P., Motwani, R., Raghavan, P., and Vempala, S. 1997. Locality-preserving hashing in multidi-
mensional spaces. In Proceedings of the 29th annual ACM symposium on Theory of computing. ACM,
New York, NY, USA, 618–625.

Johnson, D. S., Krishnan, S., Chhugani, J., Kumar, S., and Venkatasubramanian, S. 2004. Com-
pressing large boolean matrices using reordering techniques. In VLDB’04, Proceedings of the 30th
International Conference on Very Large Data Bases. Morgan Kaufmann, San Francisco, CA, USA,
13–23.

Johnson, D. S. and McGeoch, L. A. 1997. The traveling salesman problem: A case study. In Local Search
in Combinatorial Optimization, E. H. L. Aarts and J. K. Lenstra, Eds. John Wiley and Sons, Hoboken,
NJ, USA, 215–310. http://akpublic.research.att.com/~dsj/papers/TSPchapter.pdf (Last checked
2012-07-04).

Johnson, D. S. and McGeoch, L. A. 2004. Experimental analysis of heuristics for the STSP. In The
Traveling Salesman Problem and Its Variations, G. Gutin and A. P. Punnen, Eds. Springer, Berlin,
Heidelberg, 369–443.

Kahng, A. and Reda, S. 2004. Match twice and stitch: a new TSP tour construction heuristic. Oper. Res.
Lett. 32, 6, 499–509.

Kamel, I. and Faloutsos, C. 1994. Hilbert R-tree: An improved R-tree using fractals. In VLDB’94,
Proceedings of the 20th International Conference on Very Large Data Bases. Morgan Kaufmann, San
Francisco, CA, USA, 500–509.

Kane, D. M., Nelson, J., and Woodruff, D. P. 2010. An optimal algorithm for the distinct elements
problem. In Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, New York, NY, USA, 41–52.

Karp, R. M. 1977. Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in
the plane. Math. Oper. Res. 2, 3, 209–224.

Knuth, D. E. 1997. Searching and Sorting. The Art of Computer Programming Series, vol. 3. Addison-
Wesley, Reading, Massachusetts.

Knuth, D. E. 2011. Combinatorial Algorithms, Part 1. The Art of Computer Programming Series, vol. 4A.
Addison-Wesley, Boston, Massachusetts.

Kushilevitz, E., Ostrovsky, R., and Rabani, Y. 1998. Efficient search for approximate nearest neighbor
in high dimensional spaces. In Proceedings of the 30th annual ACM symposium on Theory of computing.
ACM, New York, NY, USA, 614–623.

Lam, F. and Newman, A. 2008. Traveling salesman path problems. Math. Program. 113, 1, 39–59.

Lemire, D. and Kaser, O. 2011. Reordering columns for smaller indexes. Inf. Sci. 181, 12, 2550–2570.

Lemire, D., Kaser, O., and Aouiche, K. 2010. Sorting improves word-aligned bitmap indexes. Data Knowl.
Eng. 69, 1, 3–28.

Lemire, D., Kaser, O., and Gutarra, E. 2012. Reordering rows for better compression: Beyond the
lexicographical order. Tech. Rep. TR-12-001, UNBSJ CSAS. July.

Lemke, C., Sattler, K.-U., Faerber, F., and Zeier, A. 2010. Speeding up queries in column stores. In
Data Warehousing and Knowledge Discovery (DaWaK’10) (LNCS 6263). Springer, Berlin, Heidelberg,
117–129.

Lin, S. and Kernighan, B. W. 1973. An effective heuristic algorithm for the traveling-salesman problem.
Oper. Res. 21, 2, 498–516.

Liu, D. 2004. A strong lower bound for approximate nearest neighbor searching. Inf. Process. Lett. 92, 1,
23–29.

Malik, H. H. and Kender, J. R. 2007. Optimizing frequency queries for data mining applications. In
Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007). IEEE Computer

http://akpublic.research.att.com/~dsj/papers/TSPchapter.pdf

:28 D. Lemire et al.

Society, Washington, DC, USA, 595–600.

Moffat, A. and Stuiver, L. 2000. Binary interpolative coding for effective index compression. Inform.
Retr. 3, 1, 25–47.

Ng, W. and Ravishankar, C. 1997. Block-oriented compression techniques for large statistical databases.
IEEE Trans. Knowl. Data Eng. 9, 2, 314–328.

Oberhumer, M. F. X. J. 2011. LZO real-time data compression library. online: http://www.oberhumer.
com/opensource/lzo/. checked 2012-04-18.

Olken, F. and Rotem, D. 1986. Rearranging data to maximize the efficiency of compression. In Proceedings
of the 5th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. ACM, New
York, NY, USA, 78–90.

O’Neil, P., O’Neil, E., Chen, X., and Revilak, S. 2009. The star schema benchmark and augmented
fact table indexing. In Performance Evaluation and Benchmarking (LNCS 5895). Springer, Berlin,
Heidelberg, 237–252.

Pinar, A. and Heath, M. T. 1999. Improving performance of sparse matrix-vector multiplication. In
Proceedings of the 1999 ACM/IEEE conference on Supercomputing. ACM, New York, NY, USA. Article
No. 30.

Pinar, A., Tao, T., and Ferhatosmanoglu, H. 2005. Compressing bitmap indices by data reorganization.
In Proceedings of the 21st International Conference on Data Engineering (ICDE’05). IEEE Computer
Society, Washington, DC, USA, 310–321.

Platzman, L. and Bartholdi, III, J. 1989. Spacefilling curves and the planar travelling salesman problem.
J. ACM 36, 4, 719–737.

Poess, M. and Potapov, D. 2003. Data compression in Oracle. In VLDB’03, Proceedings of the 29th
International Conference on Very Large Data Bases. Morgan Kaufmann, San Francisco, CA, USA,
937–947.

Pourabbas, E., Shoshani, A., and Wu, K. 2012. Minimizing index size by reordering rows and columns.
In SSDBM’08: Proceedings of the 24th International Conference on Scientific and Statistical Database
Management. Springer, Berlin, Heidelberg, 467–484.

Programme de recherche en démographie historique. 2009. The 1852 and 1881 historical censuses of
Canada. http://www.prdh.umontreal.ca/census/en/main.aspx. last checked 2012-07-04.

Reinelt, G. 1994. The traveling salesman: computational solutions for TSP applications. Springer-Verlag,
Berlin, Heidelberg.

Richards, D. 1986. Data compression and Gray-code sorting. Inf. Process. Lett. 22, 4, 201–205.

Rosenkrantz, D., Stearns, R., and Lewis, II, P. 1977. An analysis of several heuristics for the traveling
salesman problem. SIAM J. Comput. 6, 3, 563–581.

Schaller, M. 1999. Reclustering of high energy physics data. In SSDBM’99: Proceedings of the 11th
International Conference on Scientific and Statistical Database Management. IEEE Computer Society,
Washington, DC, USA.

Scholer, F., Williams, H., Yiannis, J., and Zobel, J. 2002. Compression of inverted indexes for fast
query evaluation. In Proceedings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM, New York, NY, USA, 222–229.

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A.,
Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., and Zdonik, S. 2005. C-Store: a column-
oriented DBMS. In VLDB’05, Proceedings of the 31st International Conference on Very Large Data
Bases. ACM, New York, NY, USA, 553–564.

Trevisan, L. 1997. When Hamming meets Euclid: the approximability of geometric TSP and MST. In
Proceedings of the 29th annual ACM symposium on Theory of computing. ACM, New York, NY, USA,
21–29.

US Census Bureau. 2002. United States census 2000—summary file 3. http://www.census.gov/
census2000/sumfile3.html (checked 2012-07-04).

Wu, K., Otoo, E. J., and Shoshani, A. 2006. Optimizing bitmap indices with efficient compression. ACM
Trans. Database Syst. 31, 1, 1–38.

Ziv, J. and Lempel, A. 1978. Compression of individual sequences via variable-rate coding. IEEE Trans.
Inf. Theory 24, 5, 530–536.

http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
http://www.prdh.umontreal.ca/census/en/main.aspx
http://www.census.gov/census2000/sumfile3.html
http://www.census.gov/census2000/sumfile3.html

	1 Introduction
	2 Related work
	3 Minimizing the number of runs
	3.1 Run minimization and TSP
	3.2 TSP heuristics
	3.3 Scaling up the heuristics
	3.3.1 Sparse graph
	3.3.2 Partitioning

	4 Maximizing the number of long runs
	4.1 Heuristics for long runs
	4.2 The Frequent-Component order
	4.3 Vortex: a novel order

	5 Experiments: TSP and synthetic data
	5.1 Reducing the number of runs on Zipfian tables
	5.2 Reducing the number of runs on uniformly distributed tables
	5.3 Discussion

	6 Experiments with realistic tables
	6.1 Realistic column storage
	6.1.1 Block-wise compression
	6.1.2 Lempel-Ziv-Oberhumer
	6.1.3 Run-Length Encoding

	6.2 Data sets
	6.3 Implementation
	6.4 Experimental results on realistic data sets
	6.4.1 Our row-reordering heuristics are scalable
	6.4.2 Better compression improves speed

	6.5 Guidance on selecting the row-reordering heuristic

	7 Conclusion

