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I. INTRODUCTION phenological events is likely to lead to the desynchronization
Recent impacts of climate change on plant and animal lifeof plant-animal interactions [3]. This decoupling of trophic
cycle events (i.e. phenology), along with their potential cas-interactions through changes in species phenology has the
cading effects on ecosystem functioning, have cemented thipotential to induce long-lasting effects on biodiversity.
eld of study as a crucial component of global change sci- Phenological studies have been traditionally undertaken
ence [1]. Plant phenological shifts have recently been foundvith ground-based measurements. These measurements are
to in uence the water cycle through impacts on evapotran-very useful, but conventional sampling methodologies are
spiration [2], whereas the observed alteration of the timing ofexceedingly slow. For instance, in [4], the timing of budburst
was monitored by returning to the same sites every 2-3 days
The associate editor coordinating the review of this manuscript andand manually examining the buds on up to 50 branches
approving it for publication was Shadi Alawnen per tree. Such traditional approaches render large-scale
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studies prohibitively time-consuming and expensive. An alterfrom past and future ground and near-surface phenology
native is the development of large-scale phenology networksmagery datasets. First, our framework automatizes image
using inexpensive time-lapse cameras (e.g. PhenoCam in theelection with a machine learning algorithm in order to reduce

US [5], Phenological Eyes Network in Japan [6]). the amount of noise inherently present in time-lapse datasets.

The implementation of such large-scale phenology net-Second, it identi es the presence and location of multiple
works results in an interesting paradigm shift: viability no open buds in each image with a CNN. Finally, our data
longer depends on data acquisition, which is relatively cheapprocessing pipeline uses a clustering algorithm to summarize
Instead, project feasibility is greatly dependent on the develindividual open bud detections into meaningful phenological
opment of tools capable of ef ciently analyzing thousands measurements, namely an estimate of the total number of
of images and terabytes of data. These analytical tools arepen buds, the proportion of open buds per day, the date of
generally based on color analysis of red, green and blue bandsudburst onset, and the rate of budburst. To our knowledge,
(e.g. [B], [7]). They are thus capable of measuring indicesour work is the rst to propose an Al approach capable of
such as landscape greening but are currently unable to extraatentifying and localizing structures of phenological interest.
more sophisticated phenological data, such as the numbérhe obtained measurements are signi cantly more compre-
of buds open in a given tree, which are directly linked to hensive than the color indices traditionally used. The pro-
individual tree growth and herbivore food availability. Recent posed framework was implemented in a coniferous forest site
advances in computer vision and the democratization of neuin the North Shore of Quebec, Canddand is shown to be
ral network models have given researchers the tools necessaapplicable to numerous plant communities worldwide.
to exploit the analytical potential of these large-scale phenol-
ogy datasets. II. MATERIALS AND METHODS

Convolutional neural networks (CNNs) have revolution- A. STUDY AREA
ized the eld of computer vision. CNNs now perform nearly Time-lapse digital cameras were installed in 2014 in three
as well as humans in object classi cation tasks (i.e. iden-sites of the North Shore region of Quebec, Canada (Fig. 1).
tifying and classifying objects in an image [8]) and are These sites follow a latitudinal gradient of black spruce
performing remarkably well in spatially assigning objects (Picea mariana) and balsam r (Abies balsamifera) mixed
(i.e. where are objects located in an image [9]). However, theystands. In this region, tree budburst typically occurs between
remain vastly underutilized in ecological studies. In animalthe end of May and the beginning of June, with balsam r
ecology, a few researchers have recently started using deagsually undergoing budburst a week or two before black
learning methods to process camera-trap data [10], while [11§pruce [17].
proposed a methodology to automatically detect turtles in
drone imagery using CNNs. In plant ecology, existing neural
network applications are scarce and include the identi cation
of multiple plant species from images of collected leaves in
white backgrounds [12], the mapping of forest cover type ]
and structure from aerial and satellite imagery [13], and the e Q
development of a CNN-based decision support system to help
forest managers estimate the number of planting microsites
on planting blocks [14].

In phenology, studies leveraging the power of CNNs and
digital repeat photography are even rarer. In a literature °
review on this subject, only two studies were found: [15],
which ne-tuned a CNN to classify phenological states of Baie-Comesti»
agricultural plants, and [16], which employed a CNN to
identify the occurrence of snow in thousands of near-surface
images from the PhenoCam network. Both of these studies . |
relied only on ne-tuning CNNs capable of identifying the ° R O
presence of a particular object in an image. Considering that
the great potential of object detectors remains unexplorediGURE 1. Map of the study area.
in phenology studies, there is a compelling need to develop
methOdOIOQieS Capable of automating the anaIySiS of Iarg%_ TIME-LAPSE IMAGERY AND COLLECTION
datasets for large-scale longitudinal studies. SpyPoint TinyHD 8 megapixel cameras (Www.spypoint.com)
, In this work, we developed a 3-s.t(-ap arti cial mte[- were installed every year before the end of April and were
ligence framework capable of exploiting the synergies omayedin August (Fig. 2). Hence, all cameras were installed

between cutting-edge, CNN-based object detectors, tagq| pefore tree budburst and were removed weeks after
ditional machine learning algorithms and longitudinally

repeated digital photography to extract more detailed data 1BudCam project: https:/apps-scf-cfs.rncan.gc.ca/budcam/en

_Septles
w e

-
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30 images available per tree per bud type (open and closed).
The open bud images were chosen at the beginning of the
manually determined budburst onset period. Evergreen buds
stay dormant throughout winter, at which time they are small,
brown, rounded structures. Buds usually start opening in late
spring, which results in a gradual increase in size and shiftin
color towards a bright green, until the new leaves are com-
pletely unfolded. Buds were only classi ed as “open" at the
beginning of the phenophase shift, when their color started
shifting from light brown to light green (Fig. 4). As buds were
approximately 10 to 30 pixels long, bounding boxes were
‘ : , 38 x 38-pixel squares centered on the corresponding bud.
FIGURE 2. Example of an installed SpyPoint TinyHD camera. Closed buds were annotated and passed onto the CNN as hard
backgrounds because they are visually quite similar to the
initial stages of open buds and could be easily misclassi ed
y the CNN. Since balsam r and black spruce are evergreen,
uds were hard to locate among the previous year's foliage.
he relatively low image quality and the large potential num-
ger of buds per image made it impossible to annotate all buds
érj each image. Additionally, a marginal number of annotated
pen buds is unlikely to correspond to true open buds.

Due to the small size of the objects of interest and the large
size of the images (3264 2448 pixels), each image was
split into multiple tiles of 200 pixels, which overlapped by

C AUTQMAT’C IMAGE S’_':"ECT’ON ) ) ) 40 pixels to ensure that buds located close to tile edges were

A considerable proportion of the images available in eachy s identi ed by the CNN (Fig. 3). In total, 21172 black
time-series were inadequate for bud detection because thes}'pruce open bud annotations in 10374 tiles of 447 tree
were either too bright due to direct sunlight, too dark due toimages were used to train and validate the CNN, along
a lack of sunlight, or too misty. _ with 11 188 hard background tiles (including 6743 tiles with
Hence, a random forest model [19] was trained {0 auto-jgsed buds) of 1217 images of hard backgrounds. For the

matically remove such unusable images from the analysig,isam r CNN, 26 435 open bud annotations in 14 341 tiles
based on color features (Fig. 3). The random forest model wag¢ g3g tree images were used during training and validation,

trained on 4102 high-quality images where trees were clearly, 4qgition to 15971 tiles (including 9832 closed bud tiles)
visible and on 3701 low-quality images where they were o¢ 1093 images of hard backgrounds. The validation datasets
not. This dataset was manually collated from the available,. | ded open bud annotation data from 3 out of 15 black
time-lapse images. Each image was decomposed into RGBpces and 2 out of 13 balsam rs, as well as additional hard
(Red, Green, Blue) and HSV (Hue, Saturation, Value) colorp,cxground data from 3 black spruces and 2 balsam rs. The
histograms with 32 bins per channel (except hue, which hadgjigation datasets consisted of 22.5% of the black spruce
16 bins). The random forest model was trained withstti&i- jjas and 17.5% of the balsam r tiles available. Each time an
learn python m_odule (version 0.20.3; [20]). The model had image was passed to the CNN, it was rescaled 06600

250 trees, a minimum number of one sample per leaf, useg,q|s and submitted to multiple random data augmentation
13 features per split (i.e., the square root of all availableiecpnigues, namely horizontal and vertical ipping, rotation,
features) and was grown via entropy. To improve pred'Ct'Ontranslation, shearing and rescaling (Fig. 3).

of budburst phenology, we only used up to 10 images per day.

If more than 10 high-quality images were available, we usedy) ARCHITECTURE AND TRAINING

the ones that had the bestrandom forest prediction probabilitfyhe cNN we used was RetinaNet, a state-of-the-art

budburst onset took place. All cameras were set up to tak%
RGB (Red, Green and Blue) images every 30 minutes froml_
5.00 AM to 20.00 PM, local time. To ensure that most buds
were recorded, trees that were 2 to 4 meters tall were targete
Since all cameras were strapped onto nearby trees, the di
tance to the target tree was not xed, but was usually around”
5 meters.

scores. object detector developed by the Facebook Al Research
group [9]. This one-stage detector was chosen for three

D. CONVOLUTIONAL NEURAL NETWORK main reasons: it is precise, fast, and it is readily avail-

1) IMAGE ANNOTATION able (https://github.com/ zyr/keras-retinanet). RetinaNet

For training CNN models, we started by manually deter-was trained with the Keras neural network library (version
mining budburst onset for all train and test trees (33 black2.2.4;[21]) and Tensor ow (version 1.12; [22]) on a NVIDIA
spruce and 29 balsam r) Open buds were manually anno-GeForce RTX 2070 graphics processing unit. RetinaNet
tated (VIA annotation tool; [18]) for 15 black spruce and incorporates two major improvements over other one-stage
13 balsam r trees, whereas closed buds were annotated fodetectors: (i) a focal loss function; and (ii) feature pyramid
13 black spruce and 10 balsam r trees. Usually, there werenetworks (FPNs). The focal loss function is an adaptation
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Select up to 10 images per day using a colour histogram-based random forest
]
v
Define regions of interest
(white polygon)

v

Split images into smaller tiles and apply data
augmentation techniques

v

RetinaNet open bud detection model

'

Stitch tile-level predictions together

!

Remove overlapping detections

v

Plot detected open buds

Estimate phenological measures

FIGURE 3. Detailed overview of the application of the 3-step framework that estimates phenological measures from time-lapse
images. White polygons in the bottom left and middle right figures define the regions of interest analyzed. Red squares in the
bottom left figure are bud detections. Open bud clusters in the middle right figure are randomly colored. The blue band in the
bottom right figure corresponds to the manually determined period of budburst.

of the commonly used cross entropy loss that addressedown-weights the importance of easily classi ed examples
the extreme class imbalance between background and forexnd focuses learning on hard misclassi ed examples [9].
ground classes faced by predictors. This loss function greatlyfhe second improvement, FPNs, takes advantage of the
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Buds were only considered if they were inside the ROI, which
reduced the proportion of false positives and ensured that all
detected buds belonged to the same tree. Since the cameras
were xed throughout each season, a single ROI mask could
be used for the whole time-series, as long as the ROl was large
enough to account for daily tree branch movements (e.g. due
to wind).

Overlapping detections were trimmed via hon-maximum
suppression using an intersection over union (IOU) value
of 0.2. Hence, if the area of the bounding box de ned
by two detections overlapped by more than 20%, we dis-
carded the detection with the lowest RetinaNet prediction
probability.

Depending on image quality, the number of buds detected
per image could vary considerably between images taken
within the same day. Additionally, the CNN was incapable
of estimating the proportion of open buds at a given date
o] oy a." 5 becguse it was unable to re-identify the same bud in differ-

I8 J‘: | ent images. In order to overcome this limitation, we used
Fa R DBSCAN (density-based spatial clustering of applications
S with noise; [26]) to cluster bud detections. This algorithm
FIGURE 4. Example of 200 x 200 pixel tiles with closed (left) and . .
open (right) balsam fir (top) and black spruce (bottom) buds. Buds are groups tOQGther pomts that are closely paCked and classi es
identified by red circles. points in low-density regions as outliers. DBSCAN is suitable
for this clustering problem because it allows the user to de ne
hierarchical structure of CNNs to generate multiple featurea maximum distance between points in the same cluster and a
maps at different scales. FPNs are thus capable of augmentninimum number of points per group. DBSCAN was initially
ing the number of feature maps available and improvingysed to cluster day-level bud predictions using a maximum
multi-scale predictions [23]. distance radius of 25 pixels and a minimum number of

RetinaNet is composed of one backbone network and3 detections per group. Then, DBSCAN was used again to
two task-speci ¢ subnetworks. We used a ResNet152 backregroup all daily bud detection clusters using a maximum
bone [24], whereas we kept the same subnetworks describegistance radius of 10 pixels and a minimum number of 4 ele-
in the original paper [9]. Other backbones were tested,ments per group. Clustering parameters were ne-tuned to
namely ResNet50, ResNetl01, VGG16, VGG19 andreduce the number of false positives on the day-level cluster-

Densenet121, but ResNet152 was the one that performed beiglg phase and prevent the formation of large clusters on the
(comparison results are not shown). The two subnetworkssjte-level clustering phase.

previously mentioned use the convolutional feature maps
generated by the backbone neural network and the FPN to
perform object classi cation and bounding box regression. ll. RESULTS ) .

We started training our black spruce RetinaNet model withAll analyzes were performed with Python (version 3.6.8;
pre-trained COCO weights (Common Obijects in Comext;wva.python.org). Data_processmg and handling was done
http://cocodataset.org), which provided a much better starting?ith the Pandas (version 0.24.2; [27]) and Numpy (ver-
point than randomized weight initialization. We trained our SN 1.16.2; [28]) libraries. Images were processed with
model for up to 20 epochs with an ADAM optimizer [25] the ©OpenCV library (version 4.0.; [29]) and gures
with an initial learning rate of 1e. The balsam r RetinaNet  Weré plott.ed with the Plptnlne library (version 0.5.1;
was initialized with the black spruce model weights. TheseNttP://plotnine.readthedocs.io).
weights provided a better starting point than the pre-trained
COCO weights, probably because the black spruce RetinaNed. AUTOMATIC IMAGE SELECTION
had already learned to identify similar buds amongst treeThe random forest developed to automatize selection of high-
foliage. The balsam r CNN was trained with an initial quality images was evaluated according to validation preci-
learning rate of 1e° and an ADAM optimizer foramaximum  sjon and recall. Precision, which is calculated as the number
of 60 epochs. Only the CNNs that had the highest averageyf true positives divided by the sum of true positives and false
precision rate were kept. positives, describes the ability of the model to identify only

images of interest (i.e. annotated positives). Recall, de ned
E. BUD DETECTION POST-PROCESSING AND CLUSTERING as the number of true positives divided by the sum of true
For each time-series, a polygonal region of interest (ROIl)positives and false negatives, represents the capacity of the
was manually de ned around the tree of interest (Fig. 3). model to detect all points of interest. These two metrics can
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be formulated as follows: long). With a detection probability threshold of 0.2, the black
True Positives spruce model achieved 82.53% recall and 14.97% precision
Precision = — — on the corresponding validation dataset, whereas the balsam
True Positives + False Positives . o
True Positives r model achieved 52.12% validation recall and 21.83%
Recall = validation precision (Fig. 5).

True Positives + False Negatives’

Our random forest model was very effective, as it achieved
a precision of 96.74% for high-quality images and 89.9%
for low-quality images, and a recall rate of 89.64% for high-
quality images and 96.82% for low-quality images (Table 1).
Manual revision of the images selected by the model con-
rmed the ef ciency of this random forest model.

TABLE 1. Confusion matrix of color histogram-based random forest
model.

Predicted
I Low-quality High-quality
Low-quality | 1219 (96.8%) 40 (3.2%)
High-quality 137 (10.4%) 1186 (89.6%)

Observed

B. HYPERPARAMETER FINE-TUNING FIGURE 5. Balsam fir (top) and black spruce (bottom) RetinaNet model
X . validation precision (left) and recall (right) scores. These scores are
We tested several hyperparameters during convolutional neUsesented according to increasing detection probability thresholds. The

ral network (CNN) training other than multiple backbones. vertical dashed line represents the chosen probability detection
We cumulatively froze all ResNet152 convolutional layer ™"

blocks (e.g. the rstblock, the rstand second block, etc...),

but concluded that not freezing layers yielded the best resultsp, BUDBURST ONSET PREDICTION

This is likely because the objects we were trying to detectBesides using the traditional validation metrics mentioned in

were very different from the objects present in the original the previous section, we validated our models by comparing
COCO dataset used to initialize model training. We testedheural network predicted budburst onset dates with manually
multiple bounding box sizes, from 30 30 pixels to 50x  estimated dates from test sites not used in model training
50 pixels and found that 3& 38 pixels boxes resulted in (Fig. 6). The number of open buds detected was calculated for
models with hlgher preCiSion andrecall. Thisis I|ke|y becaUSEa maximum of 10 images per day, depending on the number
38 x 38-pixel boxes are large enough to include a small mar-of jmages selected by the color histogram-based random
gin around the target bud for context, without letting the noiseforest model. The neural network open bud cluster detection
present in the margin overwhelm the neural network. We alsqncrease coincided with the budburst onset dates that had

tested several tile resizing sizes (300 to 800 pixels) and foungheen manually identi ed for both black spruce and balsam
that a 500-pixel resizing parameter resulted in more preciser (Fig. 6).

models, presumably because of a trade-off between greater

bud size and lower image resolution. Finally, we evaluated|y. DISCUSSION

several class imbalance ratios and kept a 1 to 1 tile ratian this study, we present the rst example of an Al frame-
between open bud and hard background tiles, which resultediork capable of identifying phenological activity in plants.
in the best compromise between too much noise and nolManually extracting this type of data from large digital repeat

enough data. photography datasets is prohibitively time-consuming. How-
ever, our Al framework represents an exceptionally ef cient
C. RETINANET MODEL PERFORMANCE alternative: it takes only a few seconds to identify and localize

RetinaNet model performance was evaluated using validaepen buds in each image, while manual analysis takes several
tion precision and recall. After training, the models were minutes perimage. Furthermore, neural networks are capable
tuned to favor recall over precision because a considerof indefatigably analyzing data nonstop, 24 hours per day,
able proportion of open buds were not annotated, meaningvhereas human analysts need to take frequent stops and are
that a large number of false positives actually correspondednore prone to counting errors as weariness accumulates.
to true, non-annotated positives. The annotation process iffhe time it takes to extract phenological measures from an
itself is extremely time consuming and visually strenuousindividual time-series is thus reduced from multiple days to
for observers because the annotated objects are humerousss than an hour. Replicability of results is also better with
but the objects themselves are very small (10 to 30 pixelconvolutional neural networks than with human observers.
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Crowdsourcing projects like CrowdCurio, which recruits ultimately improve our understanding of ecosystem functions
citizen scientists to tag phenological structures in digitizedand processes.
herbarium specimen images [33], could also explore these
synergies quite easily: citizen scientists annotate the data thaf: CONCLUSION o
allows researchers to train more ef cient machine learning 1 € methodology proposed in this study shows what can be

models, such as CNNs. CNNs also have the potential tccomplished when arti cial intelligence is used to process

revolutionize the type of analyzes done with large-scale phe&cological data. Our framework is capable of quickly con-

nology imagery datasets, such as PhenoCam [34]. Usua”})'/erting atime-lapse digital photography dataset into multiple

these types of analyzes rely on RGB color indices, n(,Jm“,__,b;s‘colog_;ically—relevant indicators !n three steps: 0] .automgtic
the green chromatic coordinate (e.g. [5], [35]). This index selection of the most adequate images available in the time-

is easy to estimate and is correlated with important phenoS€"ies; (ii) identi cation and localization of multiple open

logical events, such as canopy greening [36] and seasondUds per image; and (ii) clustering of bud detections for
canopy-level photosynthesis [37]. However, the green chrolhe estimation of various indicators of ecological impor-
matic coordinate is simultaneously affected by leaf colortance. Our future work will focus both on the technological

and canopy structure [35], is insensitive to signi cant levels improvement of this framework and on the extension of our

of defoliation [38], and in coniferous-dominated forests is Phenology networks to produce the larger amounts of data

mostly associated with changes in pigmentation of exist-at we are now able to process.

ing Ieaveg instead of leaf emergence and senescence [37}-rerENCES
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