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Abstract—The aim of this study is to develop a human activity
classification system based on a wearable intelligent textile and
machine learning techniques. Using the Relief-F feature selection
algorithm, we identified a set of relevant features collected by the
smart textile. Then, the retained features have fed a classifier in
order to recognize the underlying activity. In this respect, we
test a support vector machine classifier (SVM) and a k-nearest
neighbor classifier (KNN). The results show the reliability of the
feature selection procedure and indicate that the activities can
be recognized with an overall accuracy of more than 96.37 %
using the KNN classifier and 95.4 % using the SVM classifier.
Since the Hexoskin intelligent textile also allows the collection of
physiological data, these experimental results are very promising
for practical applications of acquisition of human activities
recognition, which will make it possible to study the patient’s
state of health or to detect physiological abnormalities in real
time depending on the physical activity exerted.

Index Terms—Wearable sensors, human activity classification,
feature selection, triaxial accelerometer, physical activity.

I. INTRODUCTION

The automatic classification of physical activity using wear-
able sensors is trending among the areas of research for real-
time monitoring of human movements. This can provide an
automated system to monitor physiological functions over long
periods. In this study, we are using the Hexoskin intelligent
textile1, developed by Carré technologies (Montréal, Canada)
which is an easy to put on and comfortable stretch shirt that
can be used in any ambient environment. The Hexoskin data
acquisition is non-invasive and can be performed continuously
without hampering the movements of the person wearing it.
In practice, Hexoskin enables real-time remote monitoring of
3D acceleration data, cardiac activity and respiratory activity.
Furthermore, through Bluetooth technology, the acquired data
can be easily transferred to a smart device in order to be
remotely analyzed. At this level, it is worth noting that for
several applications such as health, safety and sport, it is highly
desirable to design an automated and personalized physical
activity monitoring system operating in real time at a low cost
price. For instance, physiological data (cardiac and breathing
data) are of interest since they allow the caregivers to study the
state of wearer health and to detect physiological abnormalities
in real time according to the physical activity carried out.

In this paper, we focus on activity monitoring based on
data acquired by the Hexoskin textile. Our work consists
in designing a real-time feature-based procedure for activity

1http://www.hexoskin.com/

recognition: features are extracted, selected, and then they
feed a classification algorithm to output the type of physical
activity. Our contributions are to tackle the delicate problem
of selecting the most relevant features and to develop a robust
classification system to recognize in real time the physical
activity.

This paper is organized as follows. In Section II, we give an
overview of the reported research on activity recognition from
body-worn sensors. In Section III, we present the proposed op-
erational method. Section IV is dedicated to the experimental
results. Finally, in Section V, some conclusions are drawn.

II. RELATED WORKS

Some of the activity recognition works focus on the use of
one or multiple accelerometers and possibly other sensors. In
[1], an overview of related works in human activity recognition
is performed. For each method, the authors specify the un-
derlying activities, the types of sensors, the extracted features
(and, possibly, the feature selection strategy), the classification
method applied, and the achieved accuracy. Similarly, in [2],
the authors give a summary of the different techniques that
were used to classify normal activities and/or identify falls
from body-worn sensor data. This is also the case in the
work of Mannini and Sabatini [3] concerning data involving
accelerometers. In their review, the best classification rate is
of 98.8 % and, it is obtained with a wavelet-based features
and threshold classifiers [4]. Note that the data were collected
from a 3D accelerometer from 20 subjects to distinguish
walking on level ground from walking on a stairway. From
these overviews, it can be noted that the activity recognition
procedure could be decomposed into three main steps: the
computation of features, the selection of relevant features and,
the classification guided by the retained features.

Several activity classification studies have used a wide range
of approaches to compute the features. They can be divided
according to the domain from where the features are extracted
[5]. Time-domain are typically statistical measures including
the mean, median, variance or standard deviation, skewness,
kurtosis, energy and correlation between axes [1]–[3], [6]–[8].
Activity descriptors can also be computed in the frequency
domain such as the Fast Fourier Transform (FFT) [9] or the
discrete cosine transform coefficients [10].

Once the features are generated, the second step is to
apply a feature selection method to the feature set to find the
most salient descriptors able to increase the accuracy of the
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classification and its computational load. In general, feature
selection techniques can be grouped into three categories:
filter methods, wrapper methods and embedded methods [11].
Filter based feature selection methods are generally faster than
wrapper based ones. A study of feature selection methods in
general as well as in the field of human activity recognition
can be found in [2], [12]–[14]. Then, the retained features are
used as inputs in a classification algorithm. In [2], the authors
give a state of the art of the different classification techniques
taken from the machine learning field.

It is also worth mentioning that the number and the type of
sensor accounts for the achieved performances. For example,
in [17], the authors used 5 accelerometers worn on different
parts of the body to recognize user physical activity such as
walking, sitting, watching TV, running, eating and reading.
The overall accuracy was 84%. In another study [18], the
authors even used a total of 30 sensors that were embedded in
a garment and spread across the body to improve recognition
rates for a relatively complex set of activities. However,
increasing the number of sensors could lead to the risk that
the users could feel uncomfortable with many sensors, as they
could prevent them from doing their activities in a natural way.
In this respect, a lot of attention should be given to a smart
textile with an acceptable amount of light sensors (such as
the Hexoskin). In a recent paper [15], a database related to
Hexoskin textile was used only for the detection of falls and
their orientations. The falls were classified according to their
orientations among 11 classes of physical activities. The fall
detection system reaches the accuracy of 98%. In this work, we
tackle a more challenging context. Indeed, we consider only
one accelerometer embedded at the waist level in the textile.
The classification deals with a high number of activities (11
activities) including an unknown activity or null activity class
(any activities out of the activities of interest). Moreover, the
developed classification system operates in real time.

III. METHOD

Our objective is to recognize the ten physical activities and
also the unknown activities (transition class) from the acquired
data from the 3-axis accelerometer. The block diagram of the
proposed method is described in Fig. 1.

A. Peak Detection and Windowing

The sequence of the norm of the acceleration vector is firstly
computed and divided into short time windows by detecting
peaks in real time. More precisely, peaks are detected by
thresholding the norm. The value of the threshold was adjusted
empirically to 1.1. Then, a rectangular window of 90 points
around each detected peak is identified so as its temporal
duration is around 1 s. For each window, several features are
computed to characterize the signal.

B. Feature extraction

We recall that features are values or vectors that represent
the relations of the data in some descriptive and discriminating
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Fig. 1. Block diagram of the proposed Physical activity classification system.

way [19]. Let Ax, Ay and, Az the accelerations along respec-
tively the x, y and, z axes. The norm A of the acceleration
vector is defined by:

A =
√

A2
x +A2

y +A2
z. (1)

For the sake of simplicity, let Sn denote either of the compo-
nent Ax,Ay , Az or A at time n.

For each Sn, the following time-domain features have
been considered in each window, minimum, maximum, mean,
variance (VAR), standard deviation (STD), kurtosis, skewness,
energy, Root Mean Square (RMS), Zero Crossing Rate (ZCR),
Euclidean norm, Maximum Absolute Column Sum (1-Norm),
amplitude and correlation. The frequency domain feature used
is the maximum magnitude of the Fast Fourier Transform
(FFT). Also, some conventional statistical features are used
such as the simple correlation value (Cor).

C. Feature Selection Using Relief-F

The Relief-F algorithm was used to identify the most
important features [21]. The Relief-F algorithm is one of the
popular filters based feature selection methods to estimate the
weight of features. It can efficiently estimate the quality of
features in classification problems with strong dependencies
between features which is an important aspect in our case.
The algorithm ranks individual features according to feature
relevance scores. It randomly selects an instance Ri then
finds the k nearest neighbors from the same classes, called
nearest hits Hj and the k nearest neighbors from the different
classes, called nearest misses Mj(C). It updates the quality
estimate W [A] for all features A according to their values for
Ri, Hj and Mj(C). Instead of finding a single miss from a
different class, Relief-F finds one near miss Mj(C) for each
different class C and averages their contribution for updating
the estimate W [A]. The average is weighted with the prior
probability of each class P (C). The process is repeated for
m times. User-defined parameter k controls the locality of the
estimates. diff(A, I1, I2) calculates the difference between
the values of the attribute A for two instances I1 and I2.
Function diff is also used for calculating the distance between
instances to find the nearest neighbors. The whole distance
is simply the sum of differences over all attributes. A more
detailed discussion can be found in [22].
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Algorithm 1 Algorithm Relief-F
Input: For each training instance, a vector of attribute values
and the class value
Output: the vector W of the estimate qualities of attributes

Set all weights: W [A] := 0; for i := 1 to m do
begin

Randomly select an instance Ri;
Find k nearest hits Hj ;
For each class C 6= class(Ri) do

from class C find k nearest misses Mj(C);
for A := 1 to #attributes do

W [A] := W [A] −
∑k

j=1

diff(A,Ri, Hj)

m.k

+
∑

C 6=class(Ri)

P (C)

1− P (class(Ri))
∑k

j=1

diff(A,Ri,Mj(C))

m.k
end;

D. Classification

The retained features serve the classification algorithm.
We investigated two classification methods: (1) A K Nearest
Neighbor (KNN) which is a non-parametric supervised method
[29]. A given observation is assigned to the class to which
the majority of its k nearest neighbors of the training data
set belong and (2) A support vector machine (SVM) which
is a supervised machine learning algorithm that aims to find
the optimal separating decision hyperplanes between classes
with the maximum margin between patterns of each class.
The classifier performances are evaluated in terms of classi-
fication accuracy and classification accuracies per class. For
this purpose, the database is randomly divided into three sets:
a training set, a validation set and a test set.

IV. EXPERIMENTAL RESULTS

A. Data collection

Thirteen healthy volunteers (age 25.43 ± 7.51 years old,
weight 60.7 ± 6.7 kg, heigh 172.7 ± 7.2 cm) have participated
to this study. The data collection was firstly approved by insti-
tutional ethics committees, with all subjects providing written
informed consent before their participation. Data collection
was performed at the research center of the Hospital Center
of Montreal University (Canada). Each participant wore the
smart textile Hexoskin and repeated 5 times a sequence of
10 tasks such as going up the stairs, going down the stairs,
walking, running, sitting, fall right, fall left, fall backward,
fall forward and lying. The 11th task corresponds to unknown
activities. The accelerations were collected from the 3-axis
sensors integrated in the Hexoskin with a 13-bit resolution
and a frequency of 64 Hz.

B. Peak Detection and Feature Extraction

As mentioned in the previous section, in order to segment
the signals into windows, real-time detection of peaks is
performed on the signal norm A. Once a peak detected, a
rectangular window of one second was identified for feature

extraction and classification. The total number of 58 features
was extracted from Ax, Ay , Az and A. Fig. 2 displays the
signal norm of the sequence of the ten performed tasks.
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Fig. 2. Signal norm of the sequence of the ten activities.

C. Feature selection and classification

Physical activity classification system was developed using
Matlab R2017a software (Mathworks, Massachusetts, United
States). The system was developed using a machine Core i7-
920 with Intel-Core CPU (2.67 GHz) and 12 G of memory.

We investigated two classification methods, i.e., a KNN
and a SVM classifier. The database was randomly divided
into three sets: a training set (70% of the whole samples),
a validation set (15%) and a test set (15%). To determine
the best number N of features, a 100-fold cross-validation
was performed. The N features have been selected using the
training set to produce the model. A set of 35 features was
retained for the KNN and a set of 38 for the SVM. The selected
features are then tested on an independent test set, giving
96.37% of accuracy using a KNN and 95.40% of accuracy
when using an SVM (Table II). The retained features for
the KNN are summarized in Table I, those for the SVM are
slightly different.

TABLE I
THE 35 RETAINED FEATURES USING THE RELIEF-F ALGORITHM AND THE

KNN CLASSIFIER.

Min A, ZCR (Ax), MaxFFT (A), Cor (Ax,Ay), Cor (Ax,Az), ZCR(Az),
Skewness (Az), Skewness (Ax) Cor (Ay , Az), Skewness (Ay), Skewness
(A), Kurtosis (Z), Kurtosis (A), max-min (Ay), Kurtosis (Ax) Kurtosis
(Ay), max-min (Ax), STD (A), Mean (Az), Min (Ay), Mean (Ax), STD
(Ay), MaxFFT (Ay), Min (Ax), Min (Az), max-min (Az), STD (Ax),
Norm1 (Ax), RMS (Ax), Norm (Ax), STD (Az), Mean (A), RMS (Az)
Norm (Az), Var (A), Norm1 (Az), MaxFFT (Ax), Norm1 (A)

The classification accuracies per class (of different activ-
ities) on the test set are summarized in Table II. The most
misclassified activity is the lying class. This is due to the small
number of data in this class compared to other classes. Overall,
with an accuracy of 96.37 %, KNN performs slightly better
than SVM with 95.4 % of accuracy. Using a KNN, Fall-Right
and going Up the stairs have the highest recognition rate with
an accuracy more than 98%.
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TABLE II
CLASSIFIER PERFORMANCE : ACCURACY (IN %) AND ACCURACIES PER

CLASS (IN %)

Classifier KNN SVM
Number of features 35 38

Accuracy 96.37 95.40
Activities KNN SVM

Up the stairs 98.41 96.30
Down the stairs 94.97 95.53

Walk 97.44 97.85
Run 97.44 97.15
Sit 91.66 91.67

Fall-Right 98.76 90.12
Fall-Left 95.08 93.44
Fall-Back 91.78 89.04
Fall-Front 91.35 92.59

Lying 83.33 66.67
Unknown 96.24 94.97

V. CONCLUSIONS

In this study, a real-time activity classification system is
presented. The system is based on smart textile and machine
learning techniques. The feature selection was performed
using the Relief-F algorithm which ranks individual features
according to their relevance scores. The classification used the
KNN and the SVM classifiers. Their performances have been
tested on a high number of activities showing the reliability of
the approach. The classification of physical activities is very
important. Indeed, it offers opportunities to develop automated
systems to monitor real-time changes in physiological data
according the physical activities. Thus, it allows caregivers
to study human health status and to detect physiological
abnormalities in real-time depending on physical activities.
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