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Abstract—The purpose of this study is to investigate data clus-
tering to determine representative patterns in three-dimensional
(3D) knee kinematic data measurements. Kinematic data are
high-dimensional vectors to describe the temporal variations of
the three fundamental angles of knee rotation during a walking
cycle, namely the abduction/adduction angle, with respect to
the frontal plane, the flexion/extension angle, with respect to
the sagittal plane, and internal/external angle, with respect to
the transverse plane. To offset the curse of dimensionality,
inherent to high dimensional data pattern analysis, the method
reduces dimensionality by isometric mapping without affecting
information content. The data thus simplified is then clustered
by the DBSCAN algorithm. The method has been tested on a
large database of 165 healthy knee kinematic data measurements.
Clusters are validated in terms of the silhouette index, the
Dunn index, and connectivity. Results show that a two-cluster
characterization of the kinematic knee data in each plane is quite
effective. A further clinical investigation shows that the men and
women knee patterns are balanced between the two clusters and,
for 80% of participants, the right and left knees are in the same
cluster.

I. INTRODUCTION

The interpretation of knee kinematic during locomotion is
a subject of increasing interest in biomechanics research. The
purpose is to evaluate e knee function objectively [1] so as to
understand pathological knee alterations [2]. A characteriza-
tion of knee kinematic data by a few representative patterns
can inform on an individual’s locomotion function [3] and thus
assist in the diagnosis of normal gait, also called asymptomatic
gait. The kinematic data of the knee describe the three angles
between the tibia and femur in 3D space corresponding to
flexion/extension in the sagittal plane, abduction/adduction in
the frontal plane and internal/external rotation in the transverse
plane. These data suffer from significant variability and also
from the curse of dimensionality [4] due to their high dimen-
sionality (Fig. 1). Most studies have used simple descriptions
of the pathological classes, such as the mean of available gait
data, or locally determined information, and have followed
with clustering, including hierarchical [5], c-means [6], and
fuzzy clustering [7]. In general, summarizing data by local
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information and average values, has led to poor interpretations.
Some studies [8] have sought better interpretations by using
global information in the form of kinematic curves.
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Fig. 1. 3D knee kinematic curves. Each curve represents a subject from
the database : (a) Flexion/Extension, (b) Adduction/Abduction and (c) Inter-
nal/external rotation.

In this paper, we investigate density-based spatial clustering,
namely the BDSCAN algorithm, of knee kinematic measure-
ments curves to extract representative kinematic data curve that
characterizes healthy gait of locomotion. Prior to clustering,
and to offset the curse of dimensionality [4], the dimension
of the data space is significantly reduced, while preserving
the data descriptive content, by a nonlinear isometric mapping
which preserves geodesic distances between clustered data.
The method has been tested for each of the three measurement
planes separately, namely the sagittal, frontal, and transverse
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Fig. 2. Bloc diagram of the proposed knee kinematic clustering method.

planes. Cluster divisions of the data are evaluated using the
silhouette index, the Dunn index, and connectivity. Results
show that a two-cluster characterization of the kinematic
knee data in each plane is quite effective. A further clinical
investigation shows that the men and women knee patterns are
balanced between the two clusters and for 80% of participants,
the right and left knees are in the same cluster.

The remainder of this paper is organized as follows: Section
II describes the method in its main functional steps, including
dimensionality reduction, clustering, and cluster validation.
The experimental results and a discussion are provided in
Section III. Section IV contains a conclusion.

II. METHOD

The functional diagram of the knee kinematic data cluster-
ing method in this study is illustrated in Fig. 2. Following
data collection and preprocessing (Section II-A), the proposed
framework consists of three main steps: the first consists of
nonlinear dimensionality reduction using an isometric map-
ping (Section II-B). This is followed by clustering of the
kinematic data of reduced dimension, which includes the
estimation of the number of clusters (Section II-C), clustering
proper (Section II-D) and cluster validation (Section II-E). The
resulting clusters are described based on clinical interpretation
(Section III).

A. Data collection and preprocessing

3D knee kinematic data measurements consist of vectors
that describe the temporal variation, during a full gait cycle of
locomotion, of the three fundamental angles of knee rotation,
i.e., the knee angles with respect to the sagittal, frontal, and
transverse planes (Fig. 1). The data collection was performed
using a state-of-the-art KneeKG acquisition system [9]. For
each participant, the positional angles are recorded during
about 45 sec on a treadmill. A total of 90 subjects (49
females and 41 males) were recruited: 83 from The Hospital
Maisonneuve-Rosemont (HMR) and 7 from the Laboratoire
de recherche en imagerie et orthopdie (LIO). Kinematics was
analyzed on both knees of the 83 HMR subjects, and on
one knee of the 7 LIO subjects. 8 of the HMR analyses
(6 right knees and 2 left knees of different subjects) were
excluded because of calibration errors or instability of the

KneeKG giving measurements from a total of 165 knees. A
mean kinematic pattern per subject was obtained by averaging
the 15 most repeatable gait cycles. The knee rotation curves,
defining the motion of the tibia relative to the femur, were
then normalized from 1 to 100% of the average gait cycle.
Data normalization was followed by outliers removal.

B. Dimensionality reduction

Dimensionality reduction has been performed using isomet-
ric mapping (IsoMap), a nonlinear dimensionality reduction
method based on spectral theory. The main idea of IsoMap
consists of performing a multidimensional scaling in the
geodesic space in order to find the low-dimensional mapping
that preserves the pairwise distances. The geodesic distance,
which is the shortest path along the curved surface of the
manifold, is approximately based on the nearest neighborhood
graph [10].

C. Estimation of the number of clusters

The number of clusters is determined based on two criteria:
the Bayesian information criterion and the intra-cluster varia-
tion using the Elbow method.

1) Bayesien information criterion (BIC): The Bayesian
information criterion (BIC) is given by the general expression
Kass and Wasserman [11]:

BIC = L(0) — %mlogn (D

where L(0) is the log-likelihood function of data # according
to each model, m is the number of clusters and n is the size
of the dataset? In our case € corresponds, in each plane, to the
knee kinematic data. The knee point in the BIC curve, which
corresponds to the local maximum with highest probability is
used to approximate the number £ of clusters.

2) The Elbow method: This method searches the optimal
number of clusters by minimizing the total intra-cluster vari-
ation (or the total within-cluster sum of the square) [12]:

K

min()_ W(Cy)) @)

k=1

where CY, is the & th cluster and W (C},) is the within-cluster
variation.
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D. Clustering using DBSCAN algorithm

DBSCAN (density-based spatial clustering of applications
with noise) is the pioneer of the density-based clustering
family [13], which considers clusters as dense regions sep-
arated by low-density regions. DBSCAN is able to detect
clusters of arbitrary shapes in the presence of noise and does
not need the number of clusters as a prior knowledge. The
DBSCAN algorithm basically requires two parameters: the e-
neighborhood which is the minimum distance between two
points and the MinPts which is the minimum number of
points to form a dense region. The choice of these parameters
can be guided by the estimation of the number of clusters.

E. Cluster Validation

The cluster validation has been performed in terms of
connectivity, Dunn index, and silhouette index.

1) Connectivity : Given a particular clustering partition
{C = C4,...,Ck} of the N observations into K disjoint
clusters, the connectivity verifies the existence of the nearest
neighbors elements in the same cluster C'x. This measure is
also considered as the degree of clusters connectedness [14].
The connectivity takes its values between 0 and infinity, the
minimum values are privileged.

2) Dunn Index: The Dunn index is described by [14]:

Dunmn — IninlSiSjSK d(CZ, CJ)

3

maxj<;<K |Cl|

where d(C;, Cj) is the distance between clusters C; and C;
and |C;| is the size of the cluster C;. Dunn index evaluates
the partitions while taking into account the distribution of
objects inside classes as it is the ratio of minimum inter-cluster
distance and the maximum cluster size. Larger Dunn index
values are explained by a better clusters separation (high inter-
cluster distances) and a compact cluster (small cluster sizes).

3) Silhouette index: The silhouette value for the i** object
x;, is defined as:

b(z;) — a(w;)

max a(x;), b(x;)

S(x;) = 4
where a(x;) represents the average distance between the object
x; and all objects belonging to the same cluster of x; , b(x;)
is the smallest average distance of z; to all points in the
other cluster. The silhouette value ranges from -1 to +1. A
high silhouette value indicates that the sample has been well
clustered, if most points have a high silhouette value, then
the clustering solution is appropriate. If s(z;) is negative, the
sample has been misclassified, then the clustering solution
may have either too many or too few clusters. The silhouette
clustering evaluation criterion can be used with any distance
metric.

F. Statistical analysis

We performed a statistical analysis to examine the dif-
ferences between the identified patterns using a t-test. The
implementation of this statistical processing was done via
SPSS 20.0 (Statistical Package for Social Sciences)l. A P-
value of 0.05 was set as the criterion for statistical significance.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We implemented all aspects of knee kinematic data clus-
tering including the non-linear dimensionality reduction using
Isometric mapping, the number of clusters, the clustering using
DBSCAN and cluster validation. The determined clusters are
analyzed based on a clinical interpretation (Section III).

A. Estimation of the number of clusters

Fig 3 illustrates the curve of BIC and Elbow for flex-
ion/extension (Fig 3 (a)), abduction/adduction (Fig 3 (b)), and
internal/external rotation (Fig 3 (c)). In all cases, the optimal
value of k is situated in the interval [2, 4]. Indeed, from k = 2,
the BIC tends to change slowly and remain less changing as
compared to other k’s. Therefore, we limited the number of
clusters to k = 2 for knee kinematics pattern identification.
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Fig. 3. Estimation of clusters number

B. Dimensionality reduction and clustering

Table I summarizes the DBSCAN parameters tuning and
the cluster validation criteria, i.e., the silhouette, Dunn index,
and cluster connectivity. These values show the effectiveness
of the dimensionality reduction and clustering methods.

C. Knee kinematic pattern description

Once the clusters are formed, knee kinematic patterns are
obtained by averaging the elements of each cluster. Fig. 4
shows the mean of each cluster describing the knee gait
pattern. The analyses of the flexion/extension patterns of the
Fig. 4 (a) show that the extremum amplitudes of the two
clusters are observed at the same times: the maximum of the
stance phase (14% of the GC), minimum of the stance phase
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TABLE I
EFFECTIVENESS OF THE METHOD USING DIMENSIONALITY REDUCTION
AND CLUSTERING

Parameters Cluster validation criteria
tuning
Planes € MinPts| Connectivity Dunn index Silhouette
Sagittal 13 5 0 1,1e+16 1
Frontal 1 5 0 1,3e+16 1
Transverse | 12 5 0 1.4e+16 1

(50% of the GC), and the maximum the swing phase (80%
of the GC). However, a shift of about 10° is observed at the
initial contact (1% of the gait cycle) and during the stance
phase (1% — 60% of the GC). The offset decrease during
the swing phase. Statistical analysis shows that there is a
significant difference between these two patterns except during
the initial swing and mid swing phase (66% to 86% of the
GC). Figure 4 (b) shows that the two identified patterns of the
sagittal plan are different. This is confirmed by the statistical
analysis which shows a significant difference during all the
gait cycle. The two patterns of internal/external rotations (Fig.
4 (c)) are much more offset during the swing phase : The first
pattern (Pattern 1) describes individuals a more rotated knee
during the swing phase than the second pattern (Pattern 2).
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Fig. 4. Knee kinematic pattern

Moreover, we performed a gender-based analysis which
shows that the men and women knee patterns are balanced
between the two clusters in all of the three planes. Also,
for 80% of participants, the right and left knees have been
regrouped in the same cluster. This result could be of a very
important clinical usefulness because, usually, in a surgical

situation, the pathological knee is treated based the counter
lateral knee.

IV. CONCLUSION

This study investigated nonlinear data dimensionality re-
duction and density-based clustering to determine knee kine-
matic data representative patterns of healthy knee gait. The
analysis identified two representation patterns for each of the
flexion/extension (sagital plane), Adduction/abduction (frontal
plane) and the tibial internal/external rotation (transverse
plane). Clustering quality is evaluated via general criteria,
namely the silhouette width, Dunn index, and connectivity. For
further understanding, the study can be extended to bi-plan and
tri-plan analysis, i.e., the analysis of the combination of the
abduction/adduction, flexion/extension, and internal/external
kinematic data simultaneously.
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