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Abstract—Unobtrusive monitoring of the heart rate (HR) is
essential for improving medical intervention. A new generation
of mattress-based fiber optic sensor (FOS) is emerging for HR
monitoring. The use of this FOS mattress for medical diagnosis
requires appropriate advanced signal processing algorithms. In
our study, we aim to weigh the performances of a novel and
cheaper microbend FOS mattress by applying ballistocardiogram
and HR extraction algorithms. Therefore, our study targets
comparing four types of HR extraction algorithms on the
FOS mattress, namely MODWT, CEEMDAN, cepstrum and
clustering. The goal is to select, based on their accuracy and
computational speed, the most suitable one for online or offline
application purposes. Results of applying these four chosen
algorithms on the FOS mattress show that the cepstrum is the
most accurate algorithm with a mean absolute error (MAE) of
4.62 ± 1.68 BPM. However, the cepstrum is more appropriate
for offline monitoring with a runtime of 662.9 ms for a 10-
second signal segment. The results also show that the Maximal
Overlap Direct Wavelet Transform (MODWT) is more efficient
with a runtime of 4.1 milliseconds for online purposes, but with a
slightly bigger MAE (6.87±1.94 BPM). Both methods proved to
be as efficient on the new mattress technology as past intelligent
mattresses.

Index Terms—Biomedical monitoring, Biomedical transducers,
Error analysis, Performance analysis, Estimation, Signal process-
ing algorithms, Heart rate

I. INTRODUCTION

Monitoring of a patient’s vital signs is crucial. Vital signs
are paramount to establish accurate diagnoses over medical
problems a person may have. It has been proven, by Donaldson
et al.[1], that diagnoses from short time monitoring are a
source of medical errors. These errors happen when long-term
information is missing. As a consequence, it is recommended
to have continuous monitoring of the vital signs to ensure an
optimal diagnosis of a patient’s state [2]. A new generation
of sensor-based mattress is able to unobtrusively monitor vital
signs such as the heart rate (HR). These intelligent mattresses
(e.g., based on strain gauge, piezoelectric, fiber bragg grating,
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Fig. 1: Microbend FOS principle. The light passing through
the microbend FOS is modulated by the deformations in the
optical fiber due to the displacement of the micro-benders.

etc.) have shown promising results in extracting the HR.
The strain gauge or hydraulic sensor [3] was mostly used
to monitor respiratory and cardiac activity as well as body
movements. The piezoelectric sensor [4][5] implemented in a
mattress can also monitor the HR. These intelligent mattresse
solutions often either lack sensitivity or are too expensive.
Recently, an interesting microbend fiber optic sensor (FOS)
has been developed. This microbend FOS provides a new way
of acquiring the mechanical activity of the human body. It is
achieved through the intensity attenuation of the light passing
through an optic fiber in response to a mechanical stimulus on
the fiber [6]. Figure 1 shows the principle of the microbend
FOS.

The FOS sensor is sensitive to small movements and has the
ability to retrieve the ballistocardiogram (BCG) signal. This
signal is present in the range of indiscernible motions coming
from the human body. The BCG measures the ballistic forces
generated by the heart, that is, the mechanical response of the
body when the heart ejects the blood into the vascular tree.
Analog to the electrocardiogram (ECG) and its well-known
QRS complex, the BCG possesses the IJK complex, as seen
in figure 2. It is, therefore, possible to extract information like
the interval between two heartbeats to characterize the heart
rate. However, this signal is corrupted because of the so-called
motion artifacts. Filtrating the motion artifacts that occur when
a person makes even the slightest movement requires advanced
signal processing techniques.

In this work, we experiment the performances of this new
mattress by applying four types of algorithms to retrieve the978-1-5386-8173-2/18/$31.00 c©2018 IEEE
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Fig. 2: Shape of a BCG signal and the IJK complex.

HR from the motions sensed on the FOS mattress, namely
complete ensemble empirical mode decomposition with adap-
tative noise (CEEMDAN) [7], clustering [8], cepstrum [3], and
the Maximal overlap direct wavelet transform (MODWT). The
MODWT is the only one already applied on a microbend FOS
mattress in a previous work [9]. Our aim is to recommend
the methods that are more adapted to offline or online signal
processing applications in the case of heart rate extraction.

Following, we review in section 2 the four main families
of algorithms used in extracting the HR. In section 3, we
describe how we implemented these algorithms from these
four main families. In section 4, we present the results of
applying these algorithms on the FOS mattress with 6 healthy
subjects. In section 5, we assess the performances of the
new mattress according to these advanced signal processing
techniques. Subsequently, it is possible to propose recommen-
dations for future use of the mattress depending on the required
computational speed and accuracy of the application.

II. RELATED WORKS

The biggest sources of noise in extracting the BCG are
the motion artifacts. These artifacts interfere with the mea-
surements when the subject does even the smallest motion.
To extract the BCG in all these sources of noise, numerous
digital signal processing tools have been used. In this study,
we investigated the following four main families of signal
processing tools: 1) Wavelet transform (WT), 2) Empirical
mode decomposition (EMD), 3) Clustering and 4) Cepstrum.
Our study is limited to these algorithms because they are
representative of their respective families and the most used
in the literature.

A. Wavelet transform

WT is often used for signal denoising as well as for feature
extraction. Its strength relies on its ability to split the signal
into multiple frequency components. As a result, we gain a
spectro-temporal representation of this signal. Jin et al. [10]
detected the heart rate with a peak searching algorithm using
Donoho and Johnstone’s [11] wavelet shrinking method with
a Symlet-8 wavelet basis. Sadek et al. [9] implemented the
MODWT to extract the BCG signal from a microbend FOS.

B. Empirical Mode Decomposition

The EMD is a modified method derived from the Hilbert
Transform called the Hilbert-Huang transform [12]. This
method decomposes a given signal in finite and smaller "intrin-
sic mode functions"(IMF). It then allows seeing instantaneous
frequencies as a function of time. Pinheiro et al. [13] also
decomposed the BCG time series into few components and
found the BCG in motionless recordings to recover part
of the heartbeat information. Following the ensemble EMD
(EEMD) procedure, Song et al. [14] extracted the BCG for
cardiovascular classification. Sadek et al. [7] used an enhanced
version of EEMD, CEEMDAN, to extract the BCG from an
FBG sensor. At the ninth decomposition component of the
CEEMDAN, they retrieved the heart rate with an error as little
as 6.81± 1.15 BPM.

C. Clustering

Machine learning (ML), with its recent popularity, has also
been applied to extract vital signs from an unobtrusive sensor.
Cluster analysis, a branch of ML, examines unlabeled samples,
by either constructing a hierarchical structure or forming a set
of groups. Clustering is generally used to train a prototype
model of the heartbeat. Brüser et al. [8] extracted the heart
rate with a k-means clustering algorithm. Paalasmaa and Ranta
[15] also used a clustering algorithm but with an ideal signal
which they generated.

D. Cepstrum

The cepstrum is a processing technique often used for
speech processing in the domain of the quefrencies [16]. The
cepstrum is the inverse Fourier transform of the logarithmic
spectrum of a signal. With this representation, we can uncover
the fundamental periods of a signal, that is, the time occurrence
of certain signals including HR. The cepstrum has been
applied with good results to estimate the heart rate. Brüser et
al. [3] recorded the mean of the spectrum on different sensors
with a sliding window. They then converted it to the cepstrum
domain. Zhu et al. [17] used the same approach by extracting
the cepstrum from a sliding window algorithm. They then
filtered the cepstrum to make easier finding the heart rate peak.

In the next section, we explain the methods we used to
extract the HR from an FOS mattress.

III. METHODOLOGY

We present in this section our experimental setup with
the FOS mattress and the approach we used to assess its
performances. We also examine the custom peak-searching
algorithm used to extract the HR from the BCG, as well as
the metric used to compare the algorithms we implemented.

The FOS mattress was fixed on the back of a regular office
chair, as shown in figure 3. The system used for collecting
data includes a small FOS mattress and a module to gather
optical data coming from the mattress. The raw data is sampled
at 50 Hz by the module. As a ground truth, this study uses
the clinically validated Hexoskin intelligent textile (see figure
4). The Hexoskin is embedded with cardiac sensors giving

94



Fig. 3: Experimental setup

Fig. 4: The Hexoskin smart textile

an accurate HR of its wearer [18][19]. During the whole
experiment, the subject was wearing the Hexoskin and was
asked to sit still on the chair for a duration of 5 minutes.
During this time, a Raspberry Pi 3B records the data streamed
on the serial port of the FOS’s module. Figure 5 shows an
example of BCG signal and ECG reference signal. The whole
data is subsequently processed in MATLAB R2017a with the
exception of the MODWT algorithm being implemented using
python 3.5. In total, 30 minutes of recordings are used to
compare methods across themselves.

A. Preprocessing

All raw signals were preprocessed with a bidirectional
Butterworth bandpass filter ranging from 0.5 to 10 Hz. The
exception being CEEMDAN with a high pass frequency of 1.0
Hz because it was more sensitive to low-frequency respiratory
artifacts.

B. Peak searching algorithm

To extract the HR from the BCG, we apply a custom
peak-searching algorithm inspired from Mack et al. [20] on
the MODWT, CEEMDAN, clustering and cepstrum methods,
using a 10-seconds sliding window. A peak extraction algo-
rithm is necessary since the HR extraction methods being
compared do not extract the heart rate, but only the BCG. We
used a peak-searching algorithm that sets higher and lower
boundaries to the HR [17][20]. The peak detection threshold

is automatically adjusted if the quantity of detected peaks is
outside boundaries. This algorithm is shown at algorithm 1

Algorithm 1 Peak-searching Algorithm

1: procedure GET NUMBER OF PEAKS IN WINDOW
2: Width← Width of window
3: Timeserie← Segment of signal with a size ofwidth
4: Threshold← Minimum amplitude of peaks
5: Step← Step to adjust threshold
6: loop:
7: Numpeaks← Peaks over Threshold in Timeserie
8: if numpeaks <= 40 BPM then
9: Threshold← Threshold− Step

10: goto loop.
11: else if numpeaks >= 180 BPM then
12: Threshold← Threshold + Step
13: goto loop.
14: close;

C. HR extraction methods

1) MODWT: MODWT is one of the methods that
yielded good results in the past. We exploited MATLAB
to implement MODWT. The approach we use is similar to
that of Sadek et al. [9]. The 4th level smooth coefficients of
the wavelet decomposition are used to extract the BCG. We
then apply the peak searching algorithm described earlier.

2) CEEMDAN: The literature also revealed frequent
methods making use of the EMD. The CEEMDAN is an
optimized method frequently used for EMD. The CEEMDAN,
in particular, shows excellent results in extracting the HR from
still subjects [9]. We use the CEEMDAN algorithm provided
by Torres et al. [21] and we set the parameters according to
a noise standard deviation of 0.2, a number of realizations
of 100 and a maximum number of iterations of 30[7].
Finally, we apply the same custom peak searching algorithm.

3) Clustering: As for the third method, we apply the ML
method proposed by Brüser et al. [8] for the FOS mattress. We
take features of the signal and then use Principal Component
Analysis (PCA) to reduce their dimensionality. Subsequently,
we use clustering to create groups with the two most
important principal components as the axes. The resulting
feature prototype, which should describe best a heartbeat,
is thus returned. Our implementation uses only the cross
correlation between the prototype to find group of features
akin to a heartbeat. That is, a local maxima is most related
to a heartbeat when the correlation is big. Subsequently,
we extract the peaks of the signal to characterize the HR.

4) Cepstrum: The cepstrum method as seen increased inter-
est in extracting vital signs. Using the cepstrum of the filtered
data, we implement the method of Zhu et al.[17] on the FOS
mattress. That is, we transform a sliding 10-seconds window
for each segment of the signal to the cepstral domain. For each
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Fig. 5: An example of ECG reference signal with R-Peaks,
compared to BCG signal with J-Peaks

transformed window, we look for the highest peak between a
period of 40 and 180 BPM [17].

D. Experimental setup

This study was reviewed and approved by the TELUQ, ETS
and CHUM institutional review board (IRB). We recruited 6
subjects, three men and three women, each between 20 and
35 years old from the CHUM research center by a general
invitation. Subjects are all in good health and have no prior
medical conditions that may impact the quality of their vital
signs.

E. Validation

The first measure used to assess the quality of each method
is the Mean Absolute Error (MAE). This quantity is used in
statistics to measure how close a prediction is to the actual
outcome.

MAE =
1

n

∑
|yi − ŷi| (1)

where

yi = Ground truth value and ŷi = Estimated value

The second measure, the Computational Speed (CS), is used
to quantify the time cost of the operations realized by the
system while running one of the algorithms. We record the
time before and after running the algorithm to estimate the
execution time.

In the next section, we examine the results of the four
algorithms we implemented and explain their performances.

IV. RESULTS AND DISCUSSION

For each method, we extract the MAE from the HR mea-
surements in order to quantify the deviation from the ground
truth. We also measure CS for a 10-second segment of the
signal on the 6 subjects to compare time efficiency across
methods (table I).

Fig. 6: MAE on all subjects for all methods

Subject MAE(Average) MAE(Std) CS(ms)(Average)

MODWT 6.87 1.94 4.1
Cepstrum 4.62 1.68 662.9
Clustering 12.76 9.53 99.6

CEEMDAN 7.85 4.34 2236.7

TABLE I: Average performance of the algorithms on all
subjects. MAE is in beats per minute (BPM)

For each algorithm, the MAE is computed in beats per
minute (BPM) and the computational speed (CS) in millisec-
onds (ms). For MODWT, the error (6.87 ± 1.94 BPM) is
one of the smallest. These results confirm the findings of
Sadek et al. [9], showing that MODWT has good efficiency
in extracting clear heartbeat peaks from the BCG. A simple
peak searching algorithm applied to the output of the wavelet
transform is enough to obtain satisfying results. Woever, it
sometimes detects more or fewer peaks than there really is.
This is due to the simplistic search of peaks and could use
more peak selection heuristics. Nonetheless, it offers the best
CS from all with an excellent 4.1 ms. This time performance
for MODWT is due to the signal going through an equivalent
bank of high pass and low pass filter when being processed,
thus making it faster than other algorithms.

CEEDMAN has higher MAE results (7.85±4.34 BPM) than
MODWT and has a much higher CS with a runtime of 2236.7
ms because it needs to perform several iterations to get the
result. These performances are lower but in accordance with
the results of Sadek et al. [7]. This difference could be due to
the information about the HR being in more than one intrinsic
mode function.

As for clustering, we observe that it has the worst MAE
among all methods, (12.76 ± 9.53 BPM). Results are worse
than what Brüser et al. found [8] because we used only
the cross-correlation in the processing step. It is, therefore,
important to implement fusion of HR markers. These markers
include cross-correlation results, euclidean distance and the
heart valve component as mentioned by Brüser et al. [8].
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Even with marker fusion, accuracy is still low because of the
difficulty in selecting the right cluster to represent the heart
beat. Currently, the values for clustering at table I show that
it is less preferable due to the poor accuracy obtained during
the experiment.

The cepstrum offers the best precision (4.62 ± 1.68 BPM)
of all. These results are even better than those from Zhu et
al. [17]. On the other hand, it is slower (662.9 ms) than most
methods because it must go through both direct and inverse
Fourier transforms. Still, this speed is not critical since it
would only apply an additional time shift in the estimated
heart rate in online applications. Using the same algorithm
with a GPU could increase the CS by a good margin. For
all methods, the peak searching algorithm should not only set
lower and higher boundaries but also filter intermediate peaks.
This filtering is to avoid counting a peak that comes too soon
after a sequence of equally-spaced peaks.

Finally, MODWT is more convenient with a runtime of
4.1 ms for online applications. Yet, clustering offers the best
trade-off in terms of robustness and computational cost. It is,
therefore, a better choice for offline analysis of the heart rate
variability.

V. CONCLUSION

Continuous and unobtrusive monitoring of vital signs is
imperative for establishing rigorous diagnoses. In this work,
we measured the performances of a new generation of fiber
optic sensor (FOS) mattress technology. We used four known
methods of heart rate extraction from the ballistocardiogram
(BCG) signal: 1) MODWT, 2) CEEMDAN, 3) Clustering and
4) Cepstrum. Our goal was to assess the performances of the
new mattress according to these advanced signal processing
techniques, in order to propose better recommendations for
future use of the mattress.

According to our experiments, we can classify each of
these methods according to 1) the mean absolute error (MAE)
of the heart rate estimate with a valid ground truth and
2) the computational time required to run said algorithms.
Results show that maximal overlap direct wavelet transform
(MODWT) and cepstrum show the best results among the four
tested algorithms. However, cepstrum has more computational
time and less MAE than MODWT and the others. It would
thus be more adapted to offline purposes whereas MODWT
would be a better choice for online applications. These results
establish good reasons for using the novel FOS technology for
continuous vital signs monitoring.

Considering these findings, the FOS mattress could be
adapted to the clinical context for better diagnoses. We are
working on a new study that involves a higher number of
subjects in a clinical context in order to help detect pathologies
such as heart failure. By acquiring a high quantity of data, we
will be able to use more robust machine learning algorithms.
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