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Abstract
Discrete wavelet transform (DWT) has been widely used as a useful tool in denoising

geophysical data for its outstanding feature of detecting singularities and transients. In
this paper, we develop a new strategy of denoising borehole transient electromagnetic
(BHTEM) data. The principle idea of the denoising process is keeping those coefficients
which are necessary to reconstruct the signal unchanged and setting others to zero. In our
case, according to results of modeling, only the first eight detail coefficients are needed.
The method has been validated on both synthetic and field BHTEM raw data. Besides the
DWT, complementary measures are introduced accordingly. For simple data set, a curve
fitting technique is employed to smooth the signal furthermore. For field BHTEM raw
data the correlation analysis is carried out to identify and correct distorted transients. The
efficiency and reliability of the method are proven by the results.
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1. Introduction
The transient electromagnetic (TEM) methods are an indispensable tool in geophysical

exploration, especially for metallic ore deposits discovery. A TEM survey can be
conducted on different platforms: on the earth’s surface (ground TEM), on an airplane
(ATEM), and down to a borehole (BHTEM). The BHTEM, after more than three decades
of development, has become a routinely used approach in searching for concealed
deposits around boreholes and deep located economic targets. In contrast to conventional
borehole logging, which studies in detail the properties of rocks intersected by the
borehole, BHTEM investigates a large volume of earth around the borehole. Therefore, it
increases significantly the effective detection radius. In a BHTEM survey, one or
multiple large transmitter loops are laid out on the surface and a receiver moves
downhole (Lamontagne and Milkereit, 2007). A typical configuration of BHTEM s

illustrated in Figure 1.
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Flgure 1: Geoelectric cross section illustrating the application of the BHTEM in
exploring deep targets (adapted from Dyck, 1981).

In processing TEM data, noise is always a major problem to cause misinterpretation.
While denoising is essential, an almighty denoising method does not exist, because data
collected by different TEM methods suffer from different kinds of noise. For airborne
TEM surveys, the data are often contaminated by the motion-induced noise (due to the
movement of the receiving coil and wind) and sferics. Wang et al. (2013) proposed a
wavelet-based method to correct the movement-induced baseline drift. In addition, Nenna
and Pidlisecky (2013) used the continuous wavelet transform (CWT) to identify culture
noise and topographic features in an ATEM groundwater survey. Bouchedda et al. (2010)
also used the wavelet transform in ATEM data enhancement by reducing the sferics. For
ground TEM, the effect of cultural noise, such as noise induced by the nearby building

and power lines becomes more apparent. Ji et al. (2016) combine the wavelet threshold



method and stationary wavelet transform to remove background noise and random spikes
from TEM data.

In BHTEM, the situation is different from that of ATEM and ground TEM. On one hand,
because of the screen effect of the earth, the intensity of sferics and cultural noise is
reduced in the borehole. On the other hand, the sensor may rotate, the pathway of a
borehole may be not smooth, fluid may exist, and underground infrastructures interfere
with the primary EM field in deep mine area; they all could be sources of noise for
BHTEM measurement. These features of BHTEM lead to a need for an efficient
denoising method. We present a new strategy of denoising for BHTEM raw data in this
paper. The proposed method is mainly based on discrete wavelet transform (DWT), and
two complementary methods are involved according to features of the data set. The curve
fitting method is used when the measurement is not repeated, like in theoretical studies.
For repeated measurements, like in most field surveys, we use the correlation analysis to

remove residual noises.

2. Methods

2.1 Discrete wavelet transform (DWT)
Similar to the Fourier transform (FT), which transforms a time domain signal into a sum

of triangular functions, the wavelet transform (WT) decomposes a signal into different
scale components. In comparison with the FT, the WT retains the time information of an
event, which is lost in the FT. This is a key advantage of the WT in analyzing non-
stationary signals. The theory of the WT and its numerical implementation have been
documented in detail in many literatures (Daubechies, 1992; Kumar, 1997). A brief

introduction is given below.



The one-dimensional continuous wavelet transform (CWT) of a signal f(t) is given by
w(s, D) = [, f(O¥5(0)dt, @
where s and t are the scale parameter and the translation along the time axis, repectiviely,
and the = is the complex conjugate operator. ¥, (t) is the scaled and translated version
of the mother wavelet ¢
Wio(6) = =9 (5D, )
Through equantions (1) and (2) we can see that in the one-dimensional CWT the signal is
analyzed by functions generated by sacling and translating the mother wavelet. In
discrete wavelet transform (DWT), a scaling function (¢) is introduced
$1c(t) = 272 (2Tt — k).
And the DWT of the signal f(t) is wrriten as
f®) = Xii—oo An (B)* () + XL D o D (R) ¥ (8), ©)
where Ay, is the approximation coefficients at level N, and D; is the detail coefficients at
level j. Ay can be obtained through inner product of the signal and the scaling function;
and D; is computed via inner product of the signal and the wavelet function
Av(R) = [2F ) - dwi(®),
D (k) = 7, f(1) - ¥y (D).
The application of denoising with the DWT is generally implemented by comparing the
detail coefficients with a threshold value: if the absolute value of the coefficient is not

smaller than the threshold, it is kept unchanged; otherwise, it will be changed accordingly:

set to zero (hard thresholding) or shrink towards zero (soft thresholding). However, in our



method the strategy of processing the detail coefficients to eliminate noise is determined
according to the characteristic of the BHTEM signal, which decays rapidly just after the
power-off, and then slowly diminishes to zero. By combining this transient characteristic
and the fact that detail coefficients in DWT represent the transient events, it is reasonable
to hypothesize that there will be only a few non-zero detail coefficients corresponding to
the duration of the fast decay process in each decomposition level. Therefore, our
strategy is: detail coefficients corresponding to the fast decay process are kept unchanged,
and others are set to zero. The key question is which and how many detail coefficients are
needed to reconstruct the signal.

To find out the answer, a series of numerical modeling has been implemented. During the
process of modeling we found that only the first several detail coefficients from each
level are not zero. To reconstruct the signal, only these non-zero coefficients are needed.
However, coefficients needed from different levels are different. For example, with a
decomposition level of 10 the first several detail coefficients needed from each level to
properly reconstruct the signal are: 6,7,7,8,8,8,8,8,8,8 (level 1 to level 10). But they may
be influenced by the decomposition level. Based on our modeling the signal can be
perfectly reconstructed with the first eight coefficients of each level for all decomposition
levels. Hence, in the process of denoising of our method we keep the first eight
coefficients of each level and set all others to zero. Figure 2 shows that the signal
reconstructed with the first eight detail coefficients perfectly coincides with the original
signal; however, if coefficients kept are less than eight, the reconstructed signal will be

distorted, which is resulted from insufficient information.
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Figure 2: Comparison of the original signal and the reconstructed signal

The performance of wavelet denoising largely depends on two factors: selection of the
mother wavelet and the number of decomposition levels. The symlets family is chosen
for their orthogonality and near symmetry properties. To find out which specific wavelet
in the symlets family is the most suitable one, an iterative comparison of trial and error is
implemented. The noisy signal used in this process is synthesized by adding noises
(Figure 5) to the signal (Figure 4). According to the results, ‘sym5’ is selected. In
addition, a low decomposition level can lead to inferior denoising results; while, a too
high decomposition level may introduce distortions. Different decomposition levels are
attempted by using ‘sym5’, it is the tenth decomposition level gives us the best result
(Table 2). The signal-to-noise ratio (SNR), which is calculated by Equation (4), of trying
different wavelets and decomposition levels are listed in Table 1 and Table 2,

respectively.

SNR = 10 x logyo -2t )

Proise



where Pgigna; and Ppoise are the power of the signal and the power of the noise,
respectively. Given a signal s(n), (n = 1,2,3,---,N, N is the total amount of samplings.)

the power of this signal is P = %ZLls(n)z.

Table 1: Applying different wavelets on a noisy signal with an SNR of 15dB.

Wavelet ‘syml’ ‘sym?2’ ‘sym3’ ‘sym4’ symS5’ ‘sym6’ ‘sym7’

SNR(dB) 33.39 33.47 34.27 35.71 35.72 29.00 19.23

Table 2: Trying different decomposition levels on a noisy signal with an SNR of 15dB.

Decomposition 6 7 8 9 10 11 12
level

SNR(dB) 26.89 | 2797 | 32.79 | 3517 | 3572 | 3571 | 35.39

The DWT based method stated above can reject most part of the noise; however, it has an
inherent weakness. The first eight coefficients, which are kept unchanged, can also be
contaminated by noise. The reason of letting these eight coefficients unprocessed is that it
is difficult to obtain a proper estimation of the threshold for them. These residual noises
may influence the decay process of the signal and thus affect the estimation of the time
constant of the target. Therefore, complementary measures are needed to suppress the
influence of the residuals.

2.2 Curve fitting technique (CFT)

When the signal is a simple data set, which means the measurement is not repeated many
times. This refers to theoretical studies or field measurements with limited time and/or
budgets. In this case, the curve fitting technique (CFT) is used as a complementary

measure to improve the denoising result.




In consideration of the transient characteristics of the BHTEM data, the following
exponential equation is considered as the fitting model (Nabighian and Macnae, 1991):
s) =a-e’t", ®)
where o and t are parameters to be determined, they denote the gain parameter and the
time constant of the conductor, respectively.
The fitting function is calculated via the least square criterion. The CFT is used for post-
processing of BHTEM in an effort to reduce the influence of the residual perturbation
after DWT process. To constrain the fitting result, fractions of perturbation in the signal
are identified and excluded from the fitting process.
2.3 Correlation analysis
Generally, in a BHTEM field survey, the measurement is repeated many times at each
survey point. Each measurement is called a transient. In the end, all transients are stacked
into one record to reduce random noise. Since repeated measurements at a certain survey
point are basically recording signals from the same source, without distortion there
should be a strong linear correlation between all transients. However, as we mentioned
previously, during the measurement of BHTEM the sensor may rotate and/or vibrate
because of the liquid flow or obstacles in the borehole. This rotation and/or vibration will
distort certain transients during the measurement. So if certain transients have bad
correlations with other transients, they are considered as distorted transients.
To find out the distorted transients, we use correlation analysis. The Pearson correlation
coefficient is chosen because of its invariance, i.e., the coefficient is not affected by
separate changes in the two variables in location and scale. For example, if one variable

X is changed to X + {3, and the another variable Y is changed to AY + y, where a, §3, A,



and y are constants, and o, A > 0, the correlation coefficient will not be changed. The

coefficient between two variables X and Y is calculated by the formula:

XY
Pxy = cov ), (6)

Ox0y

where, cov(X, Y) calculates the covariance between variables X and Y; ox and oy are the
standard deviation of X and Y, respectively.

The correlation coefficient calculated by equation (6) ranges from -1 to 1. The value of 1
means there is a perfect linear relationship between the two variables. The value of -1
implies that the two variables still have a linear relationship, but they change in the
opposite direction. When the correlation coefficient equals to zero, there is no linear
correlation between the two variables.

After the distorted transient is identified with the help of correlation analysis, it is
replaced by linear interpolation using other transients. The interpolation is carried out
sampling by sampling, i.e., we first take the first sampling of undistorted transients to do
linear interpolation to replace the first sampling of the distorted transient. Then we repeat

this process on other samplings until the entire distorted transient is replaced.

3. Method validation
To verify the reliability of the method, it has been tested on both synthetic and field

BHTEM data.

3.1 Application on synthetic data

The synthetic BHTEM data (Figure 4) are generated using Loki, which is a 3D forward
modeling program (Raiche et al., 2007). The model (Figure 3) used to generate the data
contains a prismatic conductor (5 ohm'm) in a homogeneous half-space (3000 ohm'm).

Three types of noise (Figure 5) are added to the synthetic data. Except for the sferics,



which is from field measurements, the other two types of noise are generated by Matlab.

The SNR, computed by equation (4), of the noisy signal (Figure 6) is 15dB.
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Figure 3: The model used to generate synthetic data. (a) Top view of the model. (b)
Cross-section view of the model.

10°

nT/s
8—\.

10° :
1072 10° 10° 10*
Time(ms)

Figure 4. A BHTEM signal generated by Loki with the model shown in Figure 3.
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Figure 5: Three types of noise added to synthetic data. From top to bottom: random noise,
sferics, and noise from the power line (50 and 60 Hz).
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Figure 6: Generated noisy signal with an SNR of 15dB.



To test our method, the noisy signal is first processed with the DWT. Figure 7 presents
the result. After this process, most part of the noise has been removed; the SNR is
significantly improved from 15dB to 35dB. However, a small portion of noise remained.

The signal is further processed by CFT, and the comparison is shown in Figure 8.
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Figure 7: Denoising result when only using DWT.
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Figure 8: Comparison of denoising results.



To give a quantitative evaluation of the effectiveness of the method, apart from the SNR
two more statistic parameters are calculated. They are the relative error, Equation (7), and
the mean squared error (MSE), Equation (8).

’
_ |Xn—Xn
8x, = [0

'n=1'2'3,"',N; (7)

n

1 1\2.
MSE(x) = § Xh-1 (a — X0)?; (8)
where x and x' represent the original noise-free signal and the denoised signal,
respectively. N is the total number of the samplings. The relative error curves are shown

in Figure 9, and the MSE and SNR are listed in Table 3.
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Figure 9: Relative error curves, (a) the error curve of the noisy signal, (b) the error curve
of the denoised signal when only DWT is used, (c) the error curve of the denoised signal
after DWT and CFT.



Table 3: A comparison of MSE and SNR.

Signal MSE SNR(dB)
Noisy signal 0.044 15.0
Signal processed by DWT 3.702 x 10~* 35.7

Signal processed by DWT and

-4
CET 0.907 x 10 41.8

According to the relative error curves and the MSE and SNR values, the DWT method
can effectively remove the most part of the noise; the CFT further improves the signal-to-
noise ratio by removing local residual noise.

3.2 Application on field data

Abitibi Geophysics Inc. provided the field data used in this study. The sensor used in the
measurement is the DigiAtlantis, which is a product of ElectroMagnetic Imaging
Technology (EMIT). It can acquire simultaneously three components (coaxial component
A; component U which is perpendicular to A, and component V which is perpendicular to
the A-U plane). The sampling frequency of the measurement is 24 kHz, and the base
frequency is 0.25 Hz; the duty cycle is 0.5. The recorded raw data is in mV (not
converted to nT), which is different from the synthetic data as shown before.

Based on the synthetic model, 8 detail coefficients were kept unchanged during the
process of denoising with the DWT. We do first verify with field data if 8 detail
coefficients are still the right number. Figure 10 shows the results that use less or more
than 8 detail coefficients to process the noisy data (randomly choosing one measurement

of VV-component). The conclusion is unchanged.
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Figure 10: An example comparing results obtained with different numbers of detail

coefficients.

BHTEM field data are much more complicated than synthetic data. The measurement at

each survey station is repeated for up to hundreds of times to improve data quality. But

during the period of measurement, other sorts of noise, in addition to the three types

considered in the

synthetic data processing, may come from the electronic instability and

the movement of the sensor. Certain measurements will be distorted by these noises.

Fortunately, the repeated measurement mechanism provides us with a way to identify the

distorted measurements and then correct them accordingly. The strategy of processing

BHTEM field data will be slightly different from that of processing the synthetic data.

Detailed steps of processing real BHTEM field data are as follows.

1. Denoise raw data using the DWT. Since every transient could be affected

differently by the noise, every transient is denoised individually using the DWT.

After processed via DWT some transients could be still distorted. The biggest

advantage

transients

of denoising raw data instead of stacked data is that those distorted

can be identified and corrected afterward. This can reduce distortion

and preserve useful information.



2. Identify distorted transients through correlation analysis. We take a certain
percentage of the measurement, which has the worst linear correlation with other
transients, as distorted transients; and replace these distorted transients via linear
interpolation.

3. Stacking processed raw data. Stacking is a fundamental and rudimentary process
to reduce noise in TEM data processing. It is a process of averaging a series of
transients. As it is a process of averaging, it has a limited effect on reducing non-
random noise. Examples are presented later to demonstrate the advantage of using
denoised raw data to stack. In this study, Halverson stacking is chosen for its
ability to remove linear drift (Kingman et al., 2004).

Since the three components (A, U, and V) may be affected differently by noise, three
examples are presented separately below, one example for each component. Please keep
in mind that these examples are chosen to represent different scenarios, they are not
necessarily from the same survey point.

Component-A: There are 128 transients in the recording (Figure 11). From the figure, the
signal can be divided into two segments based on the drift situation. The first segment,
which has no drift, consists of the first 34 transients. The second segment, which drifts
linearly, is composed of the last 94 transients. Each segment is processed separately.

The noise level in this data set is very low. There is no obvious difference between the
original raw data (Figure 11(a)) and those denoised by the DWT (Figure 11(b)).
Nevertheless, the abrupt change of the drift situation causes the distortion of the 34th
transient, as red arrows indicate in Figure 11(a). The distortion is not corrected (Figure

11(b)) until the correlation analysis is implemented (Figure 11(c)).
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Figure 11: Raw data of component-A. (a) Original raw data, (b) denoised raw data, (c)
denoised raw data with distortion corrected.

Stacked signals for on-time transients and off-time transients are presented in Figure 12.
No apparent difference is spotted between stacked on-time signals when we use different
raw data sets, because the noise level is very low in this data set, and the only distorted
transient occurs in off-time transients. However, for stacked off-time signals, after the
distorted transient is corrected the stacked result is improved a lot. This example shows
that one single distorted transient will significantly affect the stacked result. It proves the

necessity to identify and correct the distorted transients.
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Figure 12: The stacked signals obtained by using different raw data sets of component-A.

Component-U: There are also 128 transients in this data set (Figure 13). The
segmentation of this data set is much more complicated than the previous example. Since
after distorted transients are identified, they will be replaced through linear interpolation
of other transients, we should keep the drift as linear as possible in each segment. The
data set is divided into five segments: (1) transients 1 to 12; (2) transients 13 to 44; (3)
transients 45 to 60; (4) transients 61 to 118; and (5) transients 119 to 128. Compared with

the previous example, the noise level in this data set is higher, and the distortion is more



severe. After denoised by the DWT most noise is eliminated (compare Figure 13(a) and
(b)), whereas, distortions remain unchanged (Figure 13(b)). After the distorted transients
in the data set are identified by correlation analysis, they have been corrected accordingly

(Figure 13(c)).
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Figure 13: Raw data of component-U. (a) Original raw data, (b) denoised raw data, (c)
denoised raw data with distortion corrected.

Figure 14 presents stacked signals for on-time transients and off-time transients.
Applying the DWT on the data set certainly improves the quality; however, there is no
apparent difference in the shape of the curve between signals stacked from original raw
data and the DWT denoised raw data. After distortions are remedied, stacked curves

become smoother and more reasonable.
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Figure 14: The stacked signals obtained by using different raw data sets of component-U.
Component-V: Same as data sets in the two previous examples, there are 128 transients
in this recording (Figure 15). No obvious change in drift situation is observed, so the data
set will be treated together, i.e., no segmentation is needed.
The most obvious feature of this data set is that the noise level is moderately high, the

amount of distorted transients is large, and the distortion is severe. Similarly, after the

application of DWT noise level is lowered a lot (compare Figure 15(a) and (b));



distortions remain unchanged (Figure 15(b)). Only after the use of correlation analysis

distorted transients in the data set are corrected effectively (Figure 15(c)).
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Figure 15: Raw data of component-V. (a) Original raw data, (b) denoised raw data, (c)
denoised raw data with distortion corrected.

As presented in the two previous examples, the denoising process with the DWT does
improve the quality of the signal, whereas it is not able to reduce the influence of
distorted transients on the result of stacking (Figure 16). The correlation analysis is

indispensable to identify distorted transients in a data set.



Original raw data
——— DWT denoised raw data
DWT+correlation analysis

0.6

on-time

055
05
€ oasf

04 [

0.35

0.3
10! 102 103

off-time

0.2

0.15

-0.05

10 10? 103
Time(ms)

Figure 16: The stacked signals obtained by using different raw data sets of component-V.
4. Conclusion

The presented wavelet-based technique combines the wavelet’s ability to detect transient
events and the unique characteristics of the BHTEM signal. The application of our
method is not limited by the nature of the noise; also there is no need to locate the noise
in the signal.

Applications on synthetic and survey data show that using the DWT alone can
considerably reduce the noise level, but the noise residual may still have negative

influences on future interpretations. Different complementary measures are taken to



reduce local residual noises. For simple data sets, the residual is caused mainly by the
noise retained in the unprocessed detail coefficients. In this case, we use the curve fitting
method to smooth the signal. For survey data with repeated measurements, the residual is
mainly because of distorted transients in the raw data. Those distortions can be caused by
the instability of the equipment and the oscillation of the sensor. To reduce its influence,
the correlation analysis is implemented.

One thing to be noticed is that the decomposition level and the wavelet in our method are
chosen based on characteristics of our data; adjustments are expected for different data

sets.
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Highlights :

e Applied on TEM raw data to eliminate noise and distortions.
e Complementary methods are introduced according to signal’s feature.



