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Multilevel modeling has been considered a promising statistical tool in the field of the experimental
analysis of behavior and may serve as a convenient statistical analysis for matching behavior because it
structures data in groups (or levels) to account simultaneously for the within-subject and between-
subject variances. Heretofore, researchers have sometimes pooled data erroneously from different sub-
jects in a single analysis by using average ratios, average response and reinforcer rates, aggregation of
subjects, etc. Unfortunately, this leads to loss of information and biased estimations, which can severely
undermine generalization of the results. Instead, a multilevel approach is advocated to combine several
subjects’ matching behavior. A reanalysis of previous data on matching behavior is provided to illustrate
the method and point out its advantages. It illustrates that multilevel regression leads to better estima-
tions, is more convenient, and offers more behavioral information. We hope this paper will encourage
the use of multilevel modeling in the statistical practices of behavior analysts.
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The purpose of the science of behavior is to
find order; that is, to identify certain events
that stand in lawful relation to others (Skinner,
1953). By manipulating conditions specified by
a phenomenon, we can predict that an event
will occur. Precise measurement and mathe-
matical models provide a common framework
for understanding behavioral phenomena
(Mazur, 2006) and, hopefully, for predicting
behavior. Mathematical modeling allows us to
formulate theories precisely, unambiguously,
and clearly by using straightforward formal lan-
guage. It also allows comparison between
opposing models and the development of new
and more powerful models. Although it may be
difficult to acquire such language, it was the
cornerstone for the development of the quanti-
tative analysis of behavior and the matching law
(Mazur, 2006). These exemplify the effective-
ness of mathematical models for discovering
and exploring the laws that govern behavior.

The Matching Law

There is a long tradition within behavior anal-
ysis of studying a subject’s choices between two
options. The concurrent schedule is defined as
the well-known schedule of reinforcement in
which behavior analysts can study decision pro-
cesses. In such situations, the subject has to
choose between two options, each of which are
associated with its own differential reinforcer
rate, generally a variable interval or a random
interval schedule of reinforcement. Over numer-
ous sessions, the subject can choose continu-
ously between alternatives. In this procedure, a
behavioral pattern known as matching behavior
emerges. This is well described by a simple equa-
tion, often referred to as the matching law:

b1
b2

=
r1
r2
, ð1Þ

where b refers to response rate, r to reinforcer
rate, and the indices (1 and 2) specify the two
options. The matching law states that the ratio of
two response rates matches the ratio of their
respective reinforcer rates and will tend toward
an equilibrium (Herrnstein, 1961). Accordingly,
the equilibrium will remain even if the reinforcer
rate ratio changes. In this case, the subject’s
behavior will adjust to the new ratio. Over the
course of five decades, there have been a tremen-
dous number of studies on potential explanations
for why the subject’s behavior reaches such an
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equilibrium (Davison & McCarthy, 1988; de Vil-
liers &Herrnstein, 1976;McDowell, 2013). In par-
allel, it has been found that a subject’s response
allocation systemically deviates fromEquation (1).
To account for the deviation, Baum (1974) pro-
posed the generalized matching law (GML). It
takes the following form:

b1
b2

= c
r1
r2

� �a

, ð2Þ

where a refers to sensitivity to reinforcement,
or the degree to which an organism adjusts its
response ratio according to the reinforcer
ratio, and c refers to the bias, or the behavioral
preference for one response (the numerator)
over the other (the denominator) when the
reinforcement rates are equal. For instance,
subjects’ behavior may follow Equation (1),
that is, match, a ≈ 1; or undermatch, a < 1; or
overmatch, a > 1; or may have a strong bias for
either alternative. The subject’s behavior thus
might not strictly match reinforcer ratios, but it
should do so given the parameters a and c.
The GML is generally presented in a log form:

log
b1
b2

� �
= a log

r1
r2

� �
+ logc, ð3Þ

a linear form of Equation (2) that can be eas-
ily analyzed using regression analysis. The GML
has been found to account for a variety of
behaviors, species, and operant situations
(Baum, 1979; Davison & McCarthy, 1988;
McDowell, 2013). This equation is generally pre-
ferred because it can be fitted by a least square
regression to obtain the bias, sensitivity, and
explained variance (R2). It also graphs itself
intuitively and elegantly. Figure 1 depicts Equa-
tion (2), the power function, in the top panel
and Equation (3), the linear function, in the
bottom panel. Sensitivity is the degree of the
slope in the bottom panel and the rate of
growth in the top panel. Bias is clearly percepti-
ble in the linear function as the intercept, the
point where the line crosses the abscissa. If the
bias is positive, the preference is for the behav-
ior in the numerator; if it is negative, the prefer-
ence is for the denominator. In the power
function, bias and sensitivity are not as easy to
interpret in the curvilinear slope. Still, the
results remain the same for both functions; sen-
sitivity, variance accounted for, and bias are
equal: logc = log(1.286) = .109, a bias toward b1.

Challenges That Arise When Pooling
Individual Models

Matching behavior is a single subject-
orientated model; that is, parameters of the
GML are unique to a given subject (Caron,
2013). These parameters can be different from
one subject to the other. Thus, one of the main
challenges is to make general claims regarding
matching behavior by considering how a spe-
cific subject behaves in the concurrent sched-
ule (the within-subject variance), while
accounting for the differences between sub-
jects’ matching behavior (the between-subjects
variance). In other terms, the challenge is how
to generalize the information known on a few
but extensively studied subjects over a long
period of time in order to build a global and
accurate portrait of matching behavior. For
instance, in a seminal paper by Baum and
Rachlin (1969), six pigeons had different sensi-
tivities (a = 1.09, 1.15, 1.29, .98, .84, .63) and
different biases (logc = -.29, -.49, -.06, -.27, -.25,
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Fig. 1. Depiction of Equation (2) and Equation (3).
Top panel: Equation (2) is the power function representa-
tion of the GML. The variable y refers to the response rate
ratios and x corresponds to the reinforcer rate ratios.
Bottom panel: Equation (3) is the linear representation.
The variable y refers to the log response rate ratios and x
corresponds to the log reinforcer rate ratios.
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-.12), even though they were all placed in the
same operant situations (a concurrent schedule
in which being on the left or right side of the
apparatus was associated with a variable-interval
schedule). In the same operant situation, two
subjects’ behavior undermatched, whereas
three others overmatched, and the degree to
which they did varied. Thus, while it would be
simple to claim that the group’s parameter esti-
mate is the simple average of the subject
parameter estimates (that is a = .997 and logc =
-.247), this approach is misleading because it
ignores the characteristics of each subject’s
data that affect the precision of each estimate.
One strategy to support a general claim

using a within-subject design is to pool subjects.
However, pooling has led to troublesome con-
clusions, since the use of direct aggregation of
data across subjects or averaged parameters
could not take into account both within- and
between-subjects variances (Caron, 2013).
Depending on the case, researchers often
(a) pooled data across ratios so that each ratio
was analyzed independently; (b) pooled ratios
across subjects, reducing the between-subjects
variances and eliminating the variance induced
by the ratios; (c) averaged subjects’ behaviors
in a single mean for each ratio, thus eliminat-
ing the within-subject variances and potentially
overemphasizing unusual matching behavior
(Caron, 2013). Inappropriately pooling data
can conceal the number of different ratios
used, the number of data points by ratio, and
the variability (and consistency) between indi-
viduals, all of which are critical pieces of infor-
mation about the precision of the slope
(sensitivity) and the intercept (bias) that, when
lost, severely limit the results’ generalization.

Multilevel Regression of Matching Behavior

A more recent statistical technique that has
been either unavailable or not widely dissemi-
nated in the field, which is probably explained
by the uneasy relationship between behavior
analysis and statistics (Young, 2017b), is multile-
vel modeling. Multilevel modeling (see de
Leeuw & Meijer, 2008; Finch, Bolin & Kelley,
2014; Gelman & Hill, 2006; Hox, 2010) is rele-
vant when (a) the observations are correlated
or clustered over a certain dimension (spatial,
nonspatial, or, for the current discussion, tem-
poral); (b) the studied processes operate simul-
taneously at more than one level (behavior,

individual, phylogenetic, etc.); and (c) there is
an interest in describing the variability and het-
erogeneity in the population. This statistical
analysis has been recognized already as a prom-
ising tool for the experimental analysis of behav-
ior, such as discounting (Young, 2017a, 2018).

Multilevel modeling structures data in
groups or levels. Such data is the bread and
butter of behavior analysts, since behavioral
data are nested within subjects. Within-subject
design may also arise as the result of a specific
research design, operant situations, pre- and
postintervention observations, different topo-
graphical responses, or different reinforce-
ment schedules. In within-subject design,
though, the average correlation between rein-
forcers and behaviors of a subject may be dif-
ferent from that of another one. When this
assumption of the independence of observa-
tions is violated, the estimates of standard
errors of traditional statistics (i.e. regressions)
decrease, which then increase the outlying
errors to reveal spurious results (Hox, 2010).
If this is the case, it is necessary to use a multi-
level regression. The most interesting property
of multilevel modeling for matching behavior
is that it accounts simultaneously for the
within-subject and the between-subjects vari-
ances. In matching behavior, this involves esti-
mating the model’s parameters (a and logc)
for all subjects, but also a general estimate
shared among subjects simultaneously. This
results in more stable estimates of subjects’
matching behavior because the complete data
set (all behavior ratios and reinforcer ratios of
all subjects) is considered when estimating
both the group and subject parameters.

Modeling repeated measures data can be
envisioned on a continuum between nonpool-
ing and complete pooling of data. At the non-
pooling pole, each subject’s behaviors are
analyzed independently, that is, a regression by
subject, which is generally what has been done
in the past for matching behavior (in Fig. 1, for
instance). Comparatively, complete pooling
gathers all response and reinforcer ratios
together, regardless of the source of behavior.
This analysis is carried in a single regression
where all subjects’ behaviors are pooled or
combined together. These two ideas are pre-
sented in Figure 2. Dashes, circles, and crosses
correspond to data sets from three different
subjects. In the top panel, each subject’s behav-
ior was fitted using Equation (3) which
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corresponds to three nonpooled regressions
(each subject is analyzed independently).
There is a variety of matching behavior: One
subject’s behavior slightly undermatched and
showed no preference, while the behavior of
the other two strongly overmatched and
showed a strong preference for the first option
(b1). This analysis did not consider the
between-subjects variance; the variability poten-
tially shared among subjects’ behavior was
ignored. The bottom panel (dashed line)
shows the pooled estimates that could be
obtained if all subjects’ behavior was analyzed
in a single regression, that is, all data is merged
in a single data set regardless of who emitted
which responses. It represents a rough average
of matching behavior among subjects but does
not consider the within-subject variance, the
precision of the subject’s matching behavior,
and it assumes incorrectly that each observa-
tion is independent.

Multilevel modeling constitutes a step further
in the capacity to combine several subjects’
behavior, as it stands between these two poles.
The parameters of all subjects are considered in
order to infer group characteristics using both
the behavioral (within) and the subject
(between) levels simultaneously (Gelman & Hill,
2006). Using maximum likelihood (or Bayesian
estimation methods, depending on the software
used), the analysis solves a series of equations
that estimate the model’s parameters by treating
all subjects’ matching equations and pooled esti-
mates together.

A brief digression here to acknowledge,
first, that Equation (3) can be rewritten as

log
b1,s
b2,s

� �
= as log

r1,s
r2,s

� �
+ logcs ð4Þ

in which b1 and b2 indicate the number of
behaviors emitted by a subject s (indices for
sessions are not added to Equation [4]), to
emphasis that sensitivity (as) and bias (logcs)
are random variables fixed within an individ-
ual (specific to a given subject), but parame-
terized in the population (vary across subjects
in a random, but predictive manner). We may
theorize that these variables vary between indi-
viduals according to a Gaussian distribution
with population means μa and μlogc and their
corresponding variances–covariances σ2a , σ

2
logc ,

and ρσaσlogc, such that

as
logcs

� �
e μa

μlogc
,

σ2a ρσaσ logc
ρσaσ logc σ2logc

 ! !
:

ð5Þ

This is an assumption for the multilevel
model and not for the subjects themselves:
This could be empirically falsified or theorized
otherwise. From Equation (5), slopes (as) and
intercepts (logcs) are random coefficients that
are free to vary across subjects and differ
according to their given means and variance–
covariance matrix. According to the central
limit theorem, we expect that with a suffi-
ciently large number of subjects and behav-
ioral observations, sensitivity and bias should
tend toward μa and μlogc and their correspond-
ing variance toward σ2a and σ2logc . The parame-

ters can be interpreted from a phylogenetic
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Fig. 2. Illustration of the nonpooled and completely
pooled regressions. In equations, the variable y refers to
the log response rate ratios and x corresponds to the log
reinforcer rate ratios. Top panel: The nonpooled regres-
sions (full lines) correspond to three regressions for each
subject (dashes, circles, and crosses). Bottom panel: The
completely pooled model (dash line) shows the regression
when all response and reinforcer ratios are combined into
one data set regardless of the subject.
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perspective (matching behavior could be sta-
ble within a given species), or by the analysis
of different operant situations (matching
behavior can be stable within specific sched-
ules of reinforcement). This could be devel-
oped in a research program. We shall now
close this digression to pursue the discussion
on the continuum between nonpooling and
complete pooling of data.
Multilevel modeling uses a weighted average

of the nonpooling estimates of a subject and the
population mean (a hyperparameter similar to
complete pooling) to shrink (defined loosely, to
improve an estimate by combining it with other
information) the parameters (Gelman & Hill,
2006). Shrinkage leads to arguably better esti-
mates and more accurate predictions than indi-
vidual averages as they are closer to the true
parameter in the population (Copas, 1983;
Efron & Morris, 1977). The weight is sensitive to
the number of data by subject ns, the variance of
the dependent variable (i.e., the response ratio,
σ2log b1

b2ð Þ), and the population variance σ2a , that

is, the variance of the hyperparameter (popu-
lation sensitivity). The weight is a general case
distinguishing the complete pooling estimate
(when σ2a ! 0), that is, when all subjects are
pooled, from the nonpooling model (when
σ2a ! ∞). Shrinkage is carried relative to how
accurate our guesses appear to be (Greenland,
2000). The method accounts for the consis-
tency of matching behavior (notably, sample
size and the response ratio variance), as well
as the convergence toward the subjects’ aver-
age (Gelman & Hill, 2006). There is less
shrinkage when the variance of the hyperpara-
meter is small (subjects show similar pattern of
matching behavior), more shrinkage when
there is more noise in the response rate ratios
within subjects, and more shrinkage for sub-
jects with fewer data points (potentially less
consistent matching behavior).
There are other strong benefits to consider-

ing multilevel modeling for matching behavior
(see for instance Young, 2017a, 2018; for a
comprehensive overview, but also handbooks
on multilevel modelling cited earlier). First,
since it relies on maximum likelihood
(or Bayesian estimation), it compensates for
missing values and design imbalance. It can
thus increase power (the probability of reject-
ing the absence of an effect when there is a
true effect) by minimizing the rejection of

subjects and increasing the accuracy of esti-
mates. Second, multilevel analysis weighs sub-
jects according to the consistency of the
subject’s behavior. The behavior of subjects
observed frequently (high number of data
points) will have more weight in the estima-
tion than subjects providing noisy, improbable,
or limited data, or those with matching behav-
ior severely departing from the sample. Third,
it leads to more power by combining all obser-
vations from all subjects. Rather than having a
certain of amount of data points for each
regression, it considers all data points from all
the regressions at the same time. It also
decreases the type I error rate (finding a sig-
nificant relation when there is none) by reduc-
ing the number of tests. Instead of realizing a
regression by subject (and a pooled regres-
sion), a single instance of analysis is conducted
rather than the number of subjects plus one,
thus not inflating the type I error rate deliber-
ately. Finally, multilevel analysis is easily imple-
mented in several statistical programs such
as R, Python, Matlab, Mplus, and SPSS. It is
worth noting that the statistical software han-
dles all technical computations automatically;
the user must prepare the data and imple-
ment the correct syntax to produce the
desired results.

Comparing Nonpooled, Pooled and Multilevel
Regressions of Matching Behavior

To illustrate the use of multilevel modeling,
data1 collected by Davison and Hogsden (1984)
was used. The current analysis will allow for
direct comparison of individual (nonpooled)
matching behavior and matching behavior ana-
lyzed via multilevel modeling.2 The purpose of
the study was to investigate mixed versus fixed
reinforcers’ durations. Six pigeons were trained
on 34 different concurrent variable-interval
schedules of reinforcement. The schedule asso-
ciated with the left key was unusual; it was asso-
ciated with two states differentially reinforced,

1The rdata file is available in the supplementary
material.

2We use the data from Davison and Hogsden (1984)
reported in the appendix (and available in the supplemen-
tary files), even though it would be more interesting to
have the complete data set. The data reported are aver-
ages of the last five sessions; thus, some within-subject vari-
ance has been lost. Still, the data is interesting due to its
well-carried design.
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which were not discriminatively signaled, and
determined probabilistically. This was the
mixed component. The duration of the right
key was fixed. Please refer to Table 1 of the tar-
get paper (p. 172) for more information on
the conditions. The study was also divided into
five parts. Parts 1 and 3 were the conditions for
comparing the mixed versus the fixed rein-
forcers’ durations. Part 2 maintained constant
probability between the states of the left key,
and reinforcer durations in state 2 were varied.
Parts 4 and 5 were control conditions in which,
respectively, only the variable interval schedules
and only the reinforcers’ durations were varied.
Because manipulation of reinforcer rates were
isolated in Part 4 (without probabilities or dura-
tion of reinforcement being varied which intro-
duce additional complexities), only this part
will be analyzed.
All the analyses were carried in R (R Core

Team, 2017), using the usuallm function for non-
pooled and pooled regression and thelmer func-
tion in the lme4 package (Bates, Maechler,
Bolker & Walker, 2015) for the multilevel model-
ing. The standard errors for multilevel regression

were computed using the arm package
(Gelman & Su, 2015). The variance accounted
for was computed using the MuMIn package
(Barto�n, 2018), which determines the conditional
variance explainedby themodel (but seeRights&
Sterba, 2018, for a discussion on explained vari-
ances inmultilevel models). The regressions were
performed on the log response ratios and the log
reinforcer ratios. The numerator was associated
with the right key and the denominator with the
left key. The function summary, a generic func-
tion producing result summaries of variousmodel
fitting functions such as lm and lmer), was used.
The nonpooled regressions were carried out for
each subject independently of the others. The
pooled analysis consisted of a regression includ-
ing all subjects regardless of their identifier (com-
plete pooling). The multilevel analysis was
conducted by following this syntax with the Wilk-
inson’s notation:Multilevel = lmer(logRe-
spRateRatio~logReinRateRatio+(log-
ReinRateRatio+1|id)). The variable
logRespRateRatio refers to the log response
rate ratios, and logReinRateRatio corre-
sponds to the log reinforcer rate ratios. The “|”
specifies the level (the random effect) which is
the subjects’ identifier, id, in this case. The output
Multilevel contains the results of the multile-
vel regression which can be extracted with the
command coef, se.coef and r.squar-
edGLMM. The R syntax for implementing all the
analyses shown herein is provided in the
appendix.

A summary of the results is presented in
Table 1. Multilevel regression suggests that all
pigeons approximately undermatched their
responses’ rate ratios as a function of reinforcer
rate ratios. The exception is bird 4, whose
behavior overmatched. The six pigeons were
sensitive to reinforcement, and data suggest that
they might undermatch (a ≈ .867) response
rate ratios to reinforcer rate ratios. All but the
fifth pigeon presented a bias for the first behav-
ior (b1), the right key; four pigeons showed a
strong bias toward the right key. It is worth not-
ing that multilevel modeling allows for a direct
comparison between subjects and their average.
Standard errors at both the within- and
between-subject levels showed the quality of
those estimates, as usual, but now they
expressed, at the between-subject level, the
expected deviance among subjects. For instance,
sensitivity was .867 CI[.769; .965] and each sub-
ject’s sensitivity fell between these bounds with

Table 1

Summary of subjects’ matching behavior in Davison and
Hogsden (1984)

Nonpooled regressions

Id a (s.e.) logc (s.e.) R2

1 .723 (.052) .248 (.072) .980
2 .726 (.049) .039 (.067) .982
3 .901 (.027) .248 (.045) .997
4 1.049 (.051) .305 (.077) .991
5 .923 (.070) -.108 (.091) .978
6 .873 (.072) .313 (.113) .973
Average .866 (.054) .174 (.078) .983*
Pooled
regression

.873 (.032) .171 (.047) .956

Multilevel regressions

Id a (s.e.) logc (s.e.) R2

1 .758 (.051) .220 (.070)
2 .753 (.051) .061 (.070)
3 .897 (.044) .233 (.070)
4 1.016 (.048) .285 (.071)
5 .899 (.054) -.040 (.070)
6 .876 (.046) .281 (.070)
Fixed .867 (.050) .173 (.070) .978

Note. s.e. = Standard error.
*Because r and r2 are not distributed normally, we com-
puted this value as the square of the arctangent of the
average of the inverse hyperbolic tangent of the correla-
tions among subjects.
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the exception of pigeon 4. The hyperparameter
for bias was .173 CI[.036; .310], with pigeon 5 dif-
fering statistically from other pigeons.
Regarding the different regression methods,

there were slight differences between the aver-
ages of nonpooled, completely pooled, and
multilevel regressions. The parameter estimates
were very similar across techniques. This sug-
gests that multilevel estimates are in agreement
with pooled and nonpooled data, which should
reassure unconvinced readers. They should not
point to contradictory outcomes, only to better
estimation. For the current analysis, since there
were a lot of data, and that matching behavior
was consistent for each subject, shrinkage was
minimal. There were some differences in the
standard error of the the group parameter esti-
mates, especially for the completely pooled
regression. For complete pooling, the standard
errors were artificially smaller because the
regression does not account for the dependen-
cies between responses of subjects.
In accordance with previous conclusions

reached by Davison and Hogsden (1984), the
data formPart 4 support theGML in the designed
experiment. Explained variance was high
(97.8%), and in the higher range than what is
generally expected in studies on matching behav-
ior, namely, 80% (Caron, 2017; McDowell, 2013).
Even though comparisons of variances accounted
for can be troublesome formultilevel models (see
Rights & Sterba, 2018) and they should be done
with caution, multilevel modeling leads to mar-
ginally better results (97.8%) than the pooled
regressions (95.6%) and slightly lower ones than
nonpooled regressions (98.3%). This can be
explained by a better accounting for the within-
subject variance (when compared to pooled
regression) and for the between-subject variance
(when comparing the nonpooled regressions).
Multilevel modeling was sensitive enough to cap-
ture both the within- and between-subject vari-
ance, thus neither underestimating nor
overestimating the results.
With only fairly small differences between the

three regression methods in Table 1, we might
ask which should be trusted more. We should
start by acknowledging that we do not know the
answer to this question, as we do not know the
population parameters. However, we can argue
four reasons in favor of a multilevel modeling
approach. First, multilevel modeling requires a
single analysis to produce all the desired parame-
ter estimates, whereas the others required

minimally seven (six nonpooled plus one pooled)
regressions. More analyses are needed if the
behavior of subjects is to be compared in these
regression methods but not in multilevel regres-
sion. Multilevel modeling thus reduces the type I
error rate. Second, during the estimation process,
multilevel modeling used all the information pro-
vided, like within- and between-subject variances,
but also all subjects’ data, to carry the computa-
tion, whereas the nonpooled and pooled regres-
sions only used subsets of variables and data. A
multilevel approach thus produces a more thor-
ough portrait of the data at a single glance. Third,
if we had access to more observations by condi-
tion (the appendix only shares the average of the
last five sessions), we could have accounted for a
second layer of analysis, that is, the within-
conditions (or within-part) variances, more
exhaustively. This last consideration explains the
general convergence between regression models.
Last, we can also recall other strong benefits men-
tioned previously, such as taking into account
missing values, design imbalance, the increase in
power, and weight of consistent and inconsistent
matching behavior. To sum up, we are much
more confident in the multilevel model and in
extending these results to other subjects. If sensi-
tivity and bias are constant within a population,
then multilevel modeling estimates will enable
better educated guesses regarding matching
behavior for comparable subjects.

Conclusion

The purpose of the current paper is to advo-
cate for better statistical inquiry of matching
behavior using multilevel analysis. Based on
the evidence showed in Table 1 the case for
multilevel analysis may not seem terribly con-
sequential, but it is just a better and simpler
method to analyze behavioral data. It provides
a theoretically grounded basis on which to esti-
mate matching behavior across several subjects
and to further generalize the results. It incor-
porates the differential validity of each sub-
ject’s data regarding consistency, sample size,
and unusual behavioral patterns. The method
has the advantages of not necessitating the
elimination of subjects, of increasing the
power of the analysis, and of being readily
implemented in many statistical software pro-
grams. As a cautionary reminder, though, it is
worth emphasizing that strong statistical ana-
lyses do not supersede strong experimental
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control; they only generate better educated
guesses regarding parameter estimates.
Although many researchers may not be well

acquainted with multilevel modeling, its
potential superiority regarding the handling of
repeated measures, as well as the substantial
increase of its appearance in research in the
past years, should encourage its use, especially
among behavior analysts. Multilevel analysis
provides an interesting avenue for pooling
subjects or operant situations. This is especially
relevant with regard to matching behavior,
since it permits better estimations of sensitivity
and bias. The examples carried herein support
the idea that multilevel analysis leads to better
estimations, is more robust regarding the
treatment of data, and can give more informa-
tion regarding behavior. It is a promising tool
to add to the arsenals of behavior analysts. We
hope this paper will encourage the use of this
statistical technique within behavior analysis,
in addition to stimulating statistical research
into problems specific to the field.
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#Preliminary steps
#load data
load(“DAVISON_HOGSDEN.RDATA”)
# Data found in the appendix of Davison & Hogsden (1984)
# in JEAB with the following column:
# “id”, “Part”, “Condition”, “Res_L”, “Res_R”, “Time_L”,
# “Time_R”, “Rei_L_S1”, “Rei_L_S2”, “Rei_R”,

# Creating the response and response rate ratios variables.
data$logReinRateRatio = log(Rei_R/(Rei_L_S1+Rei_L_S2))
data$logRespRateRatio = log(Res_R/Res_L)

# Choosing Part 4 only
mydata <- subset(data, Part == 4)

#Relevant libraries for multilevel modeling
require(lme4)
require(MuMIn)
require(arm)

###############################
#Pooled regression
Pooled = lm(logRespRateRatio~logReinRateRatio, data=mydata)
summary(Pooled)

###############################
#Nonpooled regressions
by(mydata, mydata$id, function(subjectData)
summary(lm(logRespRateRatio~logReinRateRatio, data=subjectData)))

###############################
#Multilevel regression

MultiLevel = lmer(logRespRateRatio~logReinRateRatio+(logReinRateRatio+1|id), data=mydata)

#Results
MultiLevel
summary(MultiLevel)
coef(MultiLevel)
#estimate

se.coef(MultiLevel)
#standard error

r.squaredGLMM(MultiLevel)
#explained variance
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