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Abstract: In addition to transmitter functions, many neuroamines have trophic or ontogenetic
regulatory effects important to both normal and disordered brain development. In previous work
(Mejia et al., 2002), we showed that pharmacologically inhibiting monoamine oxidase (MAO) activity
during murine gestation increases the prevalence of behaviors thought to reflect impulsivity and
aggression. The goal of the present study was to determine the extent to which this treatment
influences dopamine and serotonin innervation of murine cortical and subcortical areas, as measured
by regional density of dopamine (DAT) and serotonin transporters (SERT). We measured DAT and
SERT densities at 3 developmental times (PND 14, 35 and 90) following inhibition of MAO A, or MAO
B or both throughout murine gestation and early post-natal development. DAT binding was unaltered
within the nigrostriatal pathway, but concurrent inhibition of MAO-A and MAO-B significantly and
specifically reduced SERT binding by 10–25% in both the frontal cortex and raphe nuclei. Low levels
of SERT binding persisted (PND 35, 90) after the termination (PND 21) of exposure to MAO inhibitors
and was most marked in brain structures germane to the previously described behavioral changes.
The relatively modest level of enzyme inhibition (25–40%) required to produce these effects mandates
care in the use of any compound which might inhibit MAO activity during gestation.

Keywords: serotonin transporter; dopamine transporter; neurodevelopment; MAO inhibition;
aggression; anxiety

1. Introduction

Low levels of serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) are thought
to be associated with aggression and impulsivity [1–8]. A striking example of this relationship is a
single Dutch kindred [9,10] in which approximately half of the male offspring displayed mild mental
retardation and aggressive impulsive behavior linked to a point mutation of the monoamine MAO-A
gene [10]. MAO-A is one of two isoforms of MAO which selectively oxidizes serotonin, norepinephrine
and epinephrine, the other being MAO-B which preferentially oxidizes phenylethylamine with both
isoforms having the ability to oxidize dopamine [11]. Inhibition of MAO has been successfully
used as an antidepressant in adults and is not known to cause aggressive impulsive behavior [12].
In affected individuals of the Dutch kindred, MAO-A activity was ablated, and levels of serotonin
and serotonin metabolites were abnormally high, thus providing a paradox with respect to the “low
serotonin-elevated aggression” model [10,13].
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Mice genetically engineered to be deficient in MAO-A and/or MAO-B activity [14–18] reinforce the
deterministic nature of this mutation. Male MAO-A knockout mice exhibit enhanced context-related
aggression together with increases in monoamines during development [14,19,20] possibly reflecting
an inherent inability to appropriately assess social cues. Anatomically, MAO-A knockout mice
have reduced levels of the serotonin transporter (SERT) in the dorsal raphe [17], as well as higher
somatosensory and lower entorhinal cortical activation as compared to wildtype controls [21].
These anatomical alterations are accompanied with modified gene expression associated with
neurodevelopment, apoptosis, and cognitive function which may be related to the behavioral and
anatomical abnormalities reported with altered serotonin levels during development [22]. By contrast,
MAO-B knockout mice display neither aberrant behavior nor detectable changes in monoamines,
with the exception of increased levels of phenylethylamine [23]. MAO-A/B double knockout mice have
even higher levels of serotonin than MAO-A knockouts, and also have increased levels of dopamine
and norepinephrine. Accompanying the neurochemical changes, these mice exhibit abnormal fear
conditioning and alterations in hippocampal long-term potentiation [18]. Similar to the MAO-A
knockout mice, MAO-A/B knockout mice display increased aggression and anxiety-like behaviors
and have been proposed as a model of autism spectrum disorder [15,16,22,24].

Perinatal partial inhibition of MAO-A/B by clorgyline (MAO-A selective) and deprenyl (MAO-B
selective) also induces pervasive aberrant behavior in both mice and rats [25,26]. Perinatal inhibition
of MAO in rats increased impulsivity-related behaviors in the passive avoidance paradigm, aggressive
behavior toward cage-mates and handlers, impaired visual function, and reduced cortical serotonin
innervation [25]. Perinatal inhibition of MAO-A/B in mice results in elevated aggressive behavior and
a tendency toward impulsive responding, which extends beyond the point of MAO inhibition [26].

Deprivation of MAO during development provides a reliable and reproducible model in which to
investigate pervasive aggressive and impulsive behaviors [25,26], but the absence of these behaviors
in persons treated post-pubertally with MAO inhibitors [27] suggests that a direct causal relationship
between MAO inhibition and aggressive behavior is unlikely. An alternative explanation would
be that perinatal MAO inhibition has complex effects on the developing neural systems [28,29] as
developmental expression and activity of MAO-A precedes that of MAO-B and therefore inhibition
could differentially affect neural networks [30,31]. This study aims to investigate relative dopamine
and serotonin innervation of cortical and subcortical areas following perinatal murine MAO inhibition
(A, B or A/B).

2. Materials and Methods

2.1. Subjects

CD1 timed-pregnant mice (n = 4/group) were purchased from Charles River Laboratory and were
received one day after impregnation. After one day of acclimation, the animals were weighed and
minipumps were prepared for each animal. The following day, under ketamine/xylazine anaesthesia
the pregnant dams were implanted with ALZET osmotic minipumps (model 1002; two-week pump)
filled with clorgyline (MAO-A inhibited group), L-deprenyl (MAO-B inhibited group), a combination
of clorgyline and L-deprenyl (MAO-AB inhibited group), or 0.9% sterile saline (control group).
The delivery rate for each pump was 0.25 µL/hour so that each dam would receive 0.25 mg/kg/day
deprenyl, 1 mg/kg/day clorgyline, or the two drugs in combination. The animals were subjected
to MAO inhibition in utero and then to a lower level of MAO inhibition due to the presence of the
inhibitors in the dams’ milk. In order to maintain MAO inhibition for a total of 6 weeks (3 weeks
of foetal development and 3 weeks of post-natal development) the minipumps had to be replaced.
To prevent interference with the mother-infant bonding period, the initial pumps were surgically
replaced on E17, two days before parturition (ALZA model 2004; four-week pump). Male pups from
each treatment group were randomly assigned to the post-natal (PND) 14, 35, and 90-day groups.
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With respect to postnatal exposure to MAO inhibitors (MAO-I), the PND 14 group still had active
inhibition (through the mother’s milk) at the time of sacrifice, but this terminated at PND 21.

All studies were done in accordance with the guidelines of the Canadian Council of Animal Care,
and were reviewed and approved by the University Animal Care Committee of McGill University.

2.2. Behavioral Assessment

Neurological Assessment: Neurological evaluations were performed as previously described [26].
Briefly, a random sample of the pups (n = 51) from both the PND 35 or PND 90 time points, were
evaluated between 30 and 40 post-natal days on 14 tests according to standard procedures [32] in
order to identify early signs of neurological impairment. Briefly, subjects were observed for 1. Pivoting
behavior (circular locomotion caused by side motion of the front legs with hind legs essentially
inactive), 2. Straight walking (locomotion in an approximate straight line with all four legs involved),
3. Righting reflex (turning to rest in a normal position on all four legs after being placed on the side
by the experimenter), 4. Back righting (turning to rest in a normal position on all four legs after
being placed on the back the by the experimenter), 5. Rooting reflex (pushing forward after bilateral
stimulation of the face area), 6. Cliff drop aversion (withdrawing from the edge of a surface when the
forepaws are placed over the edge), 7. Grab reflex (foot flexion with grasping of a metal rod when
the plantar surface is stroked by the rod), 8. Front placing (raising and placing foot on the table top
when dorsum of foot is placed in contact on the edge of the table top while the animal is suspended
by loose skin from the back of the neck during testing), 9. Crossed extensor (flexion of hind limb
when pinched and extension of opposite hind limb), 10. Bar holding (grasping a wooden pencil with
the front legs and paws and supporting their own weight), 11. Auditory startle (immediate flight
or “freezing reaction” following hand clap of experimenter), 12. Eyes open (post-natal time of eye
opening), 13. Hyperreactivity (overreaction to novel stimuli, i.e., the “popcorn stage” where the animal
displays exaggerated freezing or jumping elicited by external noise and/or movements), and 14. Mass
reaction (exaggerated squirming and rolling with occasional whole body convulsion following tail
pinch). Behaviors were assessed on a 3–4 point scale that ranged from absent of behavior to full
response. Total time for neurological tests was less than 30 min for each subject.

Behavioural Tests: Mouse pups assigned to the PND 90 time point (n = 6/treatment group) were
behaviourally tested between 30 and 40 days of post-natal life in an Omnitech animal activity monitor
between 8:30 a.m. and 11:30 a.m. for three minutes in order to determine total locomotor activity levels,
time spent in the centre and margins of the open field and to detect aberrant locomotor behaviour such
as excessive stereotypies.

2.3. Brain Preparation

Mouse pups were sacrificed at 14, 35, or 90 days of age (n = 6/treatment group/time point) by
cervical dislocation followed by decapitation. The brains were then quickly removed and frozen at
−80 ◦C in 2-methylbutane. Serial sagittal sections (20 µm) were used to identify levels of DAT and
serotonin transporter SERT autoradiographically.

2.4. Autoradiography

Sagittal sections (20 µm) were thaw mounted on gelatin-coated slides and stored at −80 ◦C.
Quantification of DAT binding sites was performed by incubating sections in a sub-saturating
concentration of 125I-RTI-55, a high affinity analogue of cocaine, according to standard protocols [33,34].
Briefly, sections were thawed and then incubated for two hours at room temperature with 10 pM
125I-RTI-55 (NEN/Perkin-Elmer) diluted in a buffer containing 10 mM sodium phosphate, 120 mM
sodium chloride, 0.1 M sucrose, and 50 nM citalopram (pH 7.4). Citalopram was used to mask SERT
during both incubation and washing. The sections were washed 3 times in buffer at 4 ◦C, dipped in
double deionized water to remove buffer salts, dried and exposed to BioMax MS film for 3 days along
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with a 125I radioactive standard. Non-specific binding was defined as residual 125I-RTI-55 bound in the
presence of 10 µM GBR12909.

Quantification of SERT binding sites was performed under the same conditions used for DAT,
with a few notable exceptions. DAT was occluded with 1 µM GBR12935 in the incubation and wash
buffer rather than citalopram. The concentration of labelled ligand (10 pM 125I-RTI-55) remained the
same. Non-specific binding was defined as residual 125I-RTI-55 bound in the presence of 100 nM
citalopram [34,35].

2.5. Image Analysis

Quantification of the autoradiographic studies was performed using the public domain NIH
Image program (developed at the U.S. National Institute of Health and available on the internet at
http://rsb.info.nih.gov/nih-image/). Optical density readings from autoradiographs were
transformed into fmol/mg bound using 125I microscale standards (Amersham), which were exposed
on each film.

2.6. Data Analysis

Unless specified otherwise, data were evaluated with a two-way (treatment × time) analysis of
variance, performed using StatView on a Macintosh computer. Significant findings (p < 0.05) were
followed by Fisher’s post-hoc (PSLD) test.

3. Results

Neurological test: Scores obtained on the neurological tests confirm previous results (Mejia et al.,
2002) in that neurological status did not differ (F3,47 = 1.2, p = 0.32) between the four groups.

Open field test: Locomotor activity in the open field test was not significantly changed by treatment
(F3,20 = 1.12, p = 0.366). Stereotypy was also unaffected by treatment (F3,20 = 1.55, p = 0.23). Exploratory
patterns, measured as time spent in the center of the enclosure as compared to time spent exploring
the margins (F3,20 = 0.68, p = 0.57), were also not altered by MAO exposure (Table 1).

Table 1. Motor Activity at PND 35 in MAO-inhibited and Control Mice.

Group Locomotor Activity Stereotypy Count Margin Time Center Time

A 1626 ± 135 cm 20.0 ± 2.1 157.3 ± 4.1 s 21.7 ± 4.1 s
B 1732 ± 173 cm 22.2 ± 2.4 150.2 ± 3.7 s 28.8 ± 3.7 s

AB 1571 ± 156 cm 18.3 ± 2.3 153.2 ± 4.1 s 25.8 ± 4.1 s
C 1970 ± 198 cm 15.5 ± 2.2 151.3 ± 3.2 s 27.7 ± 3.2 s

Behavioral measures (locomotor activity, incidence of stereotypies, performance in an open field test) were obtained
as described in detail in Methods. Neither average locomotor activity (F3,20 = 1.12, p = 0.37) nor number of
stereotypies (F3,20 = 1.55, p = 0.23) differed between experimental groups. Time spent along the sides (margin time;
F3,20 = 0.68, p = 0.57) or in the center of the open field also did not vary across groups (F3,20 = 0.681, p = 0.57). Data
are presented as mean ± standard error. A, monoamine oxidase (MAO) A enzyme-inhibited mice (n = 6); B, MAO-B
enzyme-inhibited mice (n = 6); AB, MAO-A and MAO-B enzyme-inhibited mice (n = 6); C, control animals (n = 6).

Histological Analysis: In control subjects (as well as experimental) DAT and SERT densities
increased over time in all measured areas in agreement with other developmental studies [36–39].
Table 2 shows that SERT and DAT typically reached adult levels by 35 days of age in most brain areas.
In some brain stem regions (substantia nigra: DAT; raphe area: SERT), however, adult levels were
reached by 14 PND (F3,59 = 0.94, p > 0.05 and F2,51 = 2.96, p > 0.05 respectively).

http://rsb.info.nih.gov/nih-image/


Brain Sci. 2018, 8, 106 5 of 12

Table 2. Control Levels of Serotonin and Dopamine Transporters during Postnatal Development.

Serotonin Transporter, fmol/mg Tissue

PND Striatum Hippocampus Cortex Raphe Sub nigra
14 0.39 ± 0.07 0.42 ± 0.19 0.42 ± 0.14 1.54 ± 0.31 1.47 ± 0.23
35 1.03 ± 0.16 0.89 ± 0.15 0.73 ± 0.12 1.57 ± 0.18 2.31 ± 0.35
90 1.10 ± 0.10 0.95 ± 0.09 0.84 ± 0.09 1.7 ± 0.37 2.07 ± 0.18

Dopamine Transporter, fmol/mg Tissue

PND Nuc accumbens Striatum Loc coeruleus Sub nigra
14 1.29 ± 0.31 1.35 ± 0.18 0.91 ± 0.13 0.8 ± 0.09
35 1.30 ± 0.07 1.39 ± 0.06 0.75 ± 0.2 0.71 ± 0.06
90 1.64 ± 0.16 1.66 ± 0.13 0.61 ± 0.02 0.83 ± 0.15

Densities of SERT and DAT (expressed as fmol/mg tissue) were measured by radioreceptor binding, as described in
detail in Methods. In control animals, SERT density increased significantly between postnatal days 14 and 90 in
cortex (F2,13 = 18.87, p = 0.0001), hippocampus (F2,13 = 19.58, p = 0.0001), striatum (F2,14 = 60.93, p < 0.0001) and
substantia nigra (F2,14 = 14.05, p = 0.0004). Raphe levels of SERT did not increase significantly between days 14 and
90. There were no significant changes in DAT levels between 14 and 90 days post-natal.

In addition to the main effect of age, there was also a main effect of MAO inhibition on SERT
binding in the raphe (F3,51 = 6.07, p = 0.0015; Figure 1). In this structure, post-hoc analysis showed
significant pairwise differences between groups (AB versus C (p < 0.0001), B versus C (p < 0.01), and AB
versus A (p < 0.01)). Reduced raphe SERT binding of group AB is apparent at each developmental
time point (−27.4%, −18.8% and −27.7%, as compared to control, at PND 14, 35 and 90, respectively.
Cortical reductions of SERT was also apparent after MAO inhibition (F3,52 = 3.59, p = 0.02; Figure 1)
with significant pairwise differences between groups AB versus C (p = 0.0004), AB versus B (p < 0.05),
and AB versus A (p < 0.02). For this region, the reduction relative to control (9.5% at PND 14, 19.2% at
PND 35 and 26.2% at PND 90) appeared to be progressive (Table 3). There were no significant effects
of treatment on SERT density in the other structures examined (hippocampus, striatum, substantia
nigra) and no interaction of time × treatment in any region.
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Figure 1. SERT Binding Densities. MAO inhibition with combined clorgyline and deprenyl (AB),
as described in detail in the text, reduced SERT binding in the cortex (F3,52 = 3.59, p = 0.02) and the
raphe nuclei (F3,51 = 6.07, p = 0.0015) in both a time- and treatment-dependent fashion. Significant
pairwise time x treatment effects (p < 0.05) are indicated by *. In the cortex, AB was significantly
different from all other groups (post-hoc p < 0.05); in raphe, AB was significantly different from C and
A, and B was also significantly different from C (post-hoc p < 0.05). Six animals were examined for
each treatment and each time point; error bars S.E.M.



Brain Sci. 2018, 8, 106 6 of 12

The effects of MAO inhibition on DAT expression during early development was much less
marked than those reported for SERT. Two-way ANOVA failed to detect significant differences in
DAT densities between groups (Table 3) in the striatum (F3,61 = 0.76, p = 0.52), nucleus accumbens
(F3,52 = 0.35, p = 0.79), medial forebrain bundle (F3,48 = 0.78, p = 0.51) or substantia nigra (F3,59 = 0.94,
p = 0.43).

Table 3. Regional SERT and DAT levels.

Serotonin Transporter (fmol/mg Tissue) Dopamine Transporter (fmol/mg Tissue)
Striatum Hippocampus Cortex Raphe Sub Nigra Nuc. Accumbens Striatum Sub Nigra

PND 14
C 0.39 ± 0.07 0.42 ± 0.19 0.42 ± 0.14 1.54 ± 0.31 1.47 ± 0.23 1.29 ± 0.31 1.35 ± 0.18 0.80 ± 0.09
A 0.44 ± 0.11 0.51 ± 0.10 0.44 ± 0.04 1.33 ± 0.32 1.22 ± 0.23 0.96 ± 0.30 1.17 ± 0.15 0.60 ± 0.08
B 0.40 ± 0.12 0.50 ± 0.09 0.45 ± 0.09 1.15 ± 0.16 1.23 ± 0.14 1.11 ± 0.30 1.38 ± 0.41 0.82 ± 0.19

AB 0.39 ± 0.18 0.49 ± 0.12 0.38 ± 0.08 1.11 ± 0.24 1.29 ± 0.34 0.84 ± 0.21 1.11 ± 0.14 0.60 ± 0.12

PND 35
C 1.03 ± 0.16 0.89 ± 0.15 0.73 ± 0.12 1.57 ± 0.18 2.31 ± 0.35 1.30 ± 0.07 1.39 ± 0.06 0.71 ± 0.06
A 1.01 ± 0.19 0.84 ± 0.22 0.73 ± 0.15 1.52 ± 0.26 2.21 ± 0.32 1.71 ± 0.59 1.70 ± 0.70 0.73 ± 0.31
B 0.98 ± 0.13 0.79 ± 0.16 0.70 ± 0.09 1.60 ± 0.21 2.29 ± 0.28 1.69 ± 0.53 1.71 ± 0.53 0.75 ± 0.28

AB 0.89 ± 0.13 0.89 ± 0.26 0.59 ± 0.21 1.27 ± 0.46 2.04 ± 0.40 1.71 ± 1.03 1.64 ± 0.74 0.72 ± 0.33

PND 90
C 1.10 ± 0.10 0.95 ± 0.09 0.84 ± 0.09 1.7 ± 0.37 2.07 ± 0.18 1.64 ± 0.16 1.66 ± 0.13 0.83 ± 0.15
A 0.97 ± 0.15 0.79 ± 0.09 0.67 ± 0.10 1.52 ± 0.26 1.96 ± 0.14 1.46 ± 0.29 1.59 ± 0.33 0.76 ± 0.26
B 0.99 ± 0.15 0.90 ± 0.09 0.72 ± 0.08 1.33 ± 0.11 2.03 ± 0.06 1.73 ± 0.19 1.85 ± 0.35 0.86 ± 0.32

AB 0.90 ± 0.09 0.89 ± 0.14 0.63 ± 0.12 1.23 ± 0.28 1.96 ± 0.14 1.59 ± 0.28 1.75 ± 0.33 0.77 ± 0.27

Densities of SERT and DAT (fmol/mg tissue) were measured across different regions as describe in the methods.
There was main effect of MAO inhibition on SERT binding in the raphe (F3,51 = 6.07, p = 0.0015; AB versus C,
p < 0.0001; B versus C, p < 0.01; and AB versus A, p < 0.01) and cortex (F3,52 = 3.59, p = 0.02; AB versus C, p = 0.0004;
AB versus B, p < 0.05; and AB versus A, p < 0.02). There were no significant effects of treatment on SERT binding
in the hippocampus, striatum or substania nigra or on DAT expression in the striatum, nucleus accumbens or
substantia nigra.

4. Discussion

MAO inhibitors are often used in the treatment of atypical depression and anxiety disorders,
and even though they alter the levels of neurotransmitters in the brain [40,41], they have not been
reported to increase aggressive behavior in adults [27]. By contrast, alterations in endogenous
levels of neurotransmitters during the prenatal developmental period may have very different
consequences [42]. Clinically, gestational exposure to selective serotonin reuptake inhibitors (SSRIs) is
associated with adolescent diagnosis of depression and speech disorders [43,44] with a potential for
an elevated risk of autism spectrum disorder diagnosis [45–47] although this remains controversial.
A key issue is that, during development, serotonin most particularly has trophic effects that influence
the ontogenesis of neurons and the organization of the nervous system [29,48–52]. This influence may
occur either locally or through the maternal-placental-fetal forebrain pathway [53]. Levels of neural
serotonin, in turn, are strongly influenced by the level of activity of the degradative enzyme MAO,
which in turn is under complex developmental regulation [54].

Previous research from this laboratory shows that combined inhibition of MAO-A and B activity
during murine development results in behaviors interpreted as aggressive and impulsive [26]. Selective
inhibition of either MAO-A or MAO-B produced lower intensity behavioral alterations. In the present
study, we evaluated the effect of these treatments on transporters of dopamine and serotonin, as these
proteins have a major role in controlling available levels of the neurotransmitters. Consistent with
the hypothesized effect, combined MAO-A/B inhibition significantly and specifically reduced SERT
binding in the cortex and raphe nucleus throughout development and into adulthood, even when
MAO inhibitors were no longer being administered (PNDs 35 and 90). Persistent effects were restricted
to cortex and raphe nuclei, suggesting a relative vulnerability of these regions to early insult. Prenatal
inhibition of MAO did not significantly affect DAT binding, although there was a transient effect
(p < 0.05) toward decreased binding at PND 14 in striatum and nucleus accumbens after MAO-A or
combined MAO-AB administration. More detailed evaluation of this effect would require further
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investigation. The relative overall lack of an MAO effect on DAT maybe due to the primary deamination
of dopamine through catechol-O-methyl transferase pathway [55–57].

The present studies used the same protocol for developmental inhibition of MAO activity as
that reported previously [26]. In that study, radiochemical analysis of mouse brain showed that
treatment with clorgyline (MAO-A group) reduced MAO-A activity by 25% and MAO-B activity by
29%, while deprenyl treatment (MAO-B group) was less effective (MAO-A: −15%, MAO-B: −28%).
The experimental group treated with both clorgyline and deprenyl showed the highest inhibition of
both enzymes, with 41% and 42% inhibition for MAO-A and MAO-B, respectively [26]. The present
findings suggest that the critical level of MAO inhibition, which subserves SERT reduction, is in
25–40% range.

There are conflicting reports regarding the ontogeny of SERT binding. Tarazi et al. [38] examined
SERT densities in the striatum of rats at 7 developmental time-points ranging from PND 7–60 and
found that SERT increases steadily throughout development. However, Galineau et al. [37] describe a
tri-phasic pattern of development in rats where SERT binding is maximal between PND 0–14, receding
between PND 14–28, followed by a plateau in binding through adulthood. Control samples drawn
from the present study suggest that the SERT ontogeny in mice best resembles the developmental
profile described by Tarazi et al. [38]. SERT densities in the raphe are near adult levels by PND 14,
and in all other areas examined SERT densities increase through to adulthood.

Our previous work showed that perinatal MAO inhibition increased aggressive behaviors, most
noticeable in MAO-A/B treated subjects [26]. Neurologically, pups used in the present study, like those
reported by Mejia et al. [26], were physically unaffected by treatment regime. Likewise, motor activity
was not different between experimental groups in either the current or previous study [26]. There were
also no differences between groups with respect to the behavioral measurements of stereotypies
and exploratory behaviour. During development, serotonin displays both positive and negative
autoregulation of neuronal terminal density, particularly in the cortex [54,58].

Although neither dopamine nor serotonin were measured directly in this study, the inhibition of
MAO-A, especially during early embryogenesis, can be inferred to increase brain levels of serotonin.
Furthermore, since DAT levels were largely unaffected, the alterations seen in SERT levels reinforces the
idea that the changes of SERT are not specifically the consequences of MAOA/B blockade, but rather
a potential alteration in serotonin autoregulation, which occurs through both direct and indirect
pathways. The indirect pathway involves the astroglial-derived S-ß100 protein, which is released
following serotonin stimulation of the 5-HT1A receptor [59,60]. S-ß100 then increases outgrowth of
neurites on serotonin neurons [61,62]. Although physiological concentrations of serotonin promote
synaptogenesis, Chubakov et al. [63] found that both under- and over-stimulation during rat embryonic
development (E12-17) decreased 5-HT1A receptor densities [64,65]. In the direct pathway, growth is
inhibited by excess serotonin [66,67] stimulation of the 5-HT1B autoreceptor [54].

Elevated levels of serotonin during embryogenesis could thus decrease the density of 5-HT1A

receptors [64,65], reducing target cell differentiation [64,68,69]. Increased concentrations of serotonin
during development would also exacerbate negative autoregulation of the serotonin neuronal terminal
field, particularly in the cortex [54]. This decreased innervation of the cortex would contribute to the
impulsive and aggressive behavioral responses previously reported for this model [26].

With an estimated 8% of women using antidepressants that raise serotonin levels during
pregnancy [70,71], the association between elevated serotonin levels in utero and the risk for altered
neurodevelopment remains an important, albeit controversial topic [43–47,72–74]. The use of serotonin
specific reuptake inhibitors (SSRIs) has been weakly associated with delayed motor development [75]
and elevated corticotropin-releasing hormone levels [76] and has been proposed to be a risk for autism
spectrum disorder [77–80]. Although a causative relationship between the clinical use of SSRIs during
pregnancy and altered neurodevelopment has not been established, its use should be balanced against
the maternal benefits of antidepressants.
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5. Conclusions

The major finding reported here is that the prenatal inhibition of MAO-A and B significantly
and specifically reduced SERT binding by up to 25% in the cortex and raphe nucleus at defined
developmental stages, persisting into adulthood. This pattern of low SERT binding is consistent with
the behavioral changes previously described in this model [26]. The data suggest that inhibition of
MAO activity by 25–40% effectively alters serotonin innervation.

The developmental sensitivity to fluctuating levels of serotonin raises important issues regarding
the ingestion of psychoactive drugs during pregnancy. The current study not only warns about the
long-term effects of the use of certain antidepressants during pregnancy, but also of other drugs such as
cocaine, nicotine, and ethanol which inhibit MAO or increase extracellular levels of serotonin [81–84].
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