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1. Introduction

Principal component analysis (PCA) is generally used to reduce the dimensionality of data
sets, because it tends to summarise the meaningful information in the early axes whereas
errors and noise remain in the later trivial ones. However, determining the correct number of
components has remained a long-standing challenge. Over the last fifty years, thorough eval-
uations lead researchers, particularly in the biological and psychological literature, to adopt
and spread the use of parallel analysis (PA; Horn 1965) and minimum average partial correla-
tion (MAP; Velicer 1976). There is a growing consensus that both stopping rules are optimal
solutions to identify the correct number of components (Peres-Neto, Jackson, and Somers
2005; Zwick and Velicer 1982, 1986; Velicer, Eaton, and Fava 2000) and their algorithms are
readily implemented in SPSS, SAS, R and MATLAB (O’Connor 2000; Courtney 2013; Dinno
2009).

Despite the extensive effort to evaluate the two methods’ performances, some issues have
not been fully investigated. Until now, MAP and PA have been reported as accurate with arti-
ficial correlation matrices in which loadings were similar between components, axes were
orthogonal to each other, all factors were at least modestly salient (loadings over 0.50), and
in which components contained relatively the same number of variables (Zwick and Velicer
1986; Peres-Neto, Jackson, and Somers 2005; Garrido, Abad, and Ponsoda 2011; Velicer 1976;
Zwick and Velicer 1982; Guadagnoli and Velicer 1988; Velicer, Eaton, and Fava 2000). In other
words, they were often tested with components structures for which identifying the correct
dimensionality is evident using almost any stopping rule.
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Even though MAP and PA seem adequate, evidence show that they are generally inaccurate
with oblique structures (Beauducel 2001; Peres-Neto, Jackson, and Somers 2005; Garrido,
Abad, and Ponsoda 2011). An oblique structure refers to a situation in which a correlation
between some factors exists, that is, factors are not orthogonal to each other. They are also
seemingly more natural and found in several real-life data sets. Previous studies have also
shown that both stopping rules were prone to underestimate the number of components
(except when unique variables exist), therefore missing some meaningful components. An
explanation lies in that, as the component structure becomes more oblique, variance is
attributed to the earliest axes. While the latter dimensions should remain meaningful, this
decreases their eigenvalues, making them harder to detect.

Since MAP and PA are widely spread as optimal stopping rules despite having been sys-
tematically evaluated with oblique component structures, it is essential to verify the extent
to which they remain accurate as the factors become correlated, especially since this would
impact conclusions drawn from studies in the fields of psychology and psychometrics, but
also biology and genetics. For instance, Shriner (2011, 2012) found that MAP is suitable for
genome-wide genotype data, has smaller bias and smaller variance in estimating the number
of components to retain, and is better than the Tracy-Widom distribution (Tracy and Widom
1993) developed form random matrix theory (Wigner 1955). Thus, the purpose of the present
simulations is to evaluate the power of MAP and PA and their accuracy to identify the correct
number of components in data sets containing oblique structures.

2. Method

We will first describe the two stopping rules. Thereafter, the Monte Carlo simulations used to
investigate their ability to detect the correct number of components will be described.

2.1. Parallel analysis

PA was developed by Horn (Horn 1965) as an alternative to Kaiser’s eigenvalues-greater-
than-one rule (Kaiser 1960). The purpose of PA is to account for sampling error. Since PCA
optimizes the variance in a given dimension, the first eigenvalues should catch some error
variance. PA is the computation of the average eigenvalues over 100 to 1000 repetitions of
multivariate random data for which the correlation matrices are an identity matrix. The first
few eigenvalues higher than the average eigenvalues at their respective ranks are considered
to contain meaningful information. Several variations of PA exists, but only the original (i.e.,
Horn 1965) will be consider herein.

2.2. Minimum average partial correlation

MAP was developed specifically for principal component analyses (Velicer 1976). It is com-
puted by successively partialling out A,,, the component loading matrix that contains the first
1 to m components, from R, the original correlation matrix, to obtain C,,, the partial covari-
ance matrix;

Cn=R—A,AT, (1)
The partial correlation matrix, R,,*, is given by;

RY =D :C,D?, )
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where
D = diag(C,,). (3)

The MAP criterion is given by the average square of the partial correlations in R,,,*;

MAP,, ZZ ”’" (4)

lljlp(p

i#]

where p is the number of variables. This procedure ends when p — 1 components have been
partialled out. To test the first component, Velicer (1976) suggested to compare MAP; to
MAP, which is obtained by;

MAP, = Z Z (5)

11]1p(p

i#j

If MAPy < MAP;, no component should be retained.

The number of components to retain, 1, is the component where the average squared par-
tial correlations reached is minimum, i.e., when m™ component = min(MAP,,). It is worthy
to note that several variations of MAP exist (Velicer, Eaton, and Fava 2000; Garrido, Abad,
and Ponsoda 2011). Only the original will be used throughout the current study (i.e.,Velicer
1976), since the differences between outcomes are negligible.

Although many studies suggest one or the other, MAP is considered more theoretically
sound than PA (Velicer, Eaton, and Fava 2000). MAP involves assessing to what extent each
successive R,,* is similar to the identity matrix of size p, i.e., how likely it is that all meaning-
ful correlations have been partialed out of R. As such, MAP assesses the effect of removing
successive eigenvalues, whereas PA only implements a null model. Therefore, PA is adequate
to test the first eigenvalue but its validity is compromised for later ones (Turner 1998; Achim
2017).

2.3. Simulation method

A series of Monte Carlo simulations was carried out. Five correlation matrices were chosen to
assess the influence of the component structure. Figure 1 provides a visual representation of
the correlation matrices which was inspired by Peres-Neto et al. (2005). Each matrix is com-
posed of nine descriptors and three components. Matrices 1, 2, and 3 contain three compo-
nents expressed in three variables each. Matrices 4 and 5 contain three components expressed
in four, three and two variables respectively. It is worthy to note that the number of descriptors
was not varied, because increasing their number while maintaining the same number of com-
ponents decreases the difficulty of finding the correct amount of components by cumulating
more non-trivial signals in the earlier axes.

In order to generate oblique structures, correlations between variables belonging to differ-
ent underlying components were added (0.10 and 0.30). Finally, to evaluate the influence of
sample size, the sample size was systematically varied to some specified values, n = 16, 32, 64,
128, 256, and 512.
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Figure 1. Visual representation correlation matrices of the population. The size of squares correspond to the
proportion of variables per component (see the text for more information). Outside squares correspond to
the level of correlations between components. Inspired by Peres-Neto et al. (2005).

2.4. Data generation

Simulations were carried out in Matlab (2012a). The steps were as follow: (1) generate an arti-
ficial data set from a multivariate normal distribution with a specified population correlation
matrix and a specified sample size; (2) carry a PCA on the data sets; (3) apply PA and MAP
and record the number of detected components; (4) compute the agreement or the disagree-
ment between both stopping rules; (5) repeat steps 1, 2, 3 and 4 a total of 1000 times; (6) sum
frequency with which the correct number of components was identified divided by the num-
ber of replications (power). Finally, (7) repeat previous steps for the five correlation matrices,
the three levels of correlation between components and the six levels of sample size.

3. Results

An overall assessment of MAP and PA is presented in Table 1. The results show that MAP
was the better of the two stopping rules. It retained the correct number of axes 62% of the
time, across all simulated conditions. When PA was correct, MAP was also right 89% of the
time. However, when MAP was correct, PA was also correct only 41% of the time. MAP
was also more likely than PA to overestimate the number of components whereas PA has
a stronger tendency to underestimate. This result is in agreement with past methodological
literature showing that PA is more likely to underestimate the number of components with
correlated components (Turner 1998; Beauducel 2001). Both methods will now be discussed
independently.

Table 2 shows the performance of PA to determine the correct dimensionality of data sets.
Regarding results from matrix 1, the method performed well when sample size was higher
than 30 and when each component was salient (loadings over 0.70), regardless of the corre-
lation between axes. However, for all other matrices, PA was barely able to detect the correct
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Table 1. Overall performance of parallel analysis (PA) and the minimum average partial correlation (MAP) to
determine the correct number of components.

MAP
PA 0 1 2 3 4 Total
1 8 9255 3001 463 6 12733
2 566 5224 12318 2317 55 20480
3 ma7 6443 14706 22980 72 55348
4 723 252 13 82 1 nn
5 166 49 12 4 231
6 22 8 1 1 32
7 3 1 1 5
Total 12635 21232 30152 25847 134 90000

Note. Values of zero are left blank. Boldface represents the identification of the correct number of components (3). Italic repre-
sents agreement between MAP and PA.

amount of components. Worse, in matrix 3, 4, and 5, its best performances were below 15%
of correct identification. With the exception of matrix 1, it failed to find the appropriate solu-
tion less than half the time in several cases. These results clearly show that when using harder
component structures (less salient component saturation, loading below 0.50, or obliqueness,
correlation between components) stopping rules lose their reliability. Finally, the dimension-
ality determined by PA was underestimated 37% of the time. That means that, if PA finds
meaningful axes, they are likely to be real ones. However, PA will systematically fail to find
less, but still meaningful, components.

Table 3 shows the performance of MAP in identifying the correct number of meaningful
axes. MAP had its best performances with highly saturated components (matrix 1) regardless
of the oblique structure. MAP had a poor performance, when the oblique structure was 0.30.
Moreover, it was likely to underestimate the number of axes. Notwithstanding these results,
Table 3 shows that the power of MAP was high when sample size was at least of 128 and
when the correlation between components was below not exceed 0.30. However, its efficiency,
restricted to specific sets of circumstances, does not redeem the loss of meaningful informa-
tion. Yet, except for the easiest conditions (i.e., correlation matrix 1), MAP did have a better
overall performance than PA.

Table 2. Power (proportion of correct identification) of parallel analysis (PA) according to correlation matri-
ces, correlations between components (corr. comp.), and sample size.

Sample size
Matrix corr.comp. 16 32 64 128 256 512
1 0.00 70 98 1 1 1 1
0.10 7 .98 1 1 1 1
0.30 .55 .89 .99 1 1 1
2 0.00 17 30 45 54 49 .52
0.10 13 28 46 .65 77 .94
0.30 .05 .03 .01
3 0.00 14 19 21 .10 .02
0.10 13 a7 18 n .04 .01
0.30 .07 .02
4 0.00 n 23 17 .09 .02
0.10 12 20 18 12 .05
0.30 .05 .02
5 0.00 .07 .09 .06 .01
0.10 .08 .10 .06 .04 .01
0.30 .03

Note. Values of zeros are left blank.
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Table 3. Power (proportion of correct identification) of the minimum average partial correlation (MAP)
according to correlation matrices, correlation between components (corr. comp.), and sample size.

Sample size

Matrix corr. comp. 16 32 64 128 256 512

1 0.00 61 95 1 1 1 1
0.10 53 .89 1 1 1 1
0.30 21 37 .65 .92 1 1

2 0.00 45 81 .99 1 1 1
0.10 40 66 .93 1 1 1
0.30 12 .05 .06 .07 n 22

3 0.00 38 69 .94 1 1 1
0.10 32 53 77 .95 1 1
0.30 .08 .03 .01

4 0.00 39 67 .93 1 1 1
0.10 32 52 79 .95 1 1
0.30 n .02 .01 .01

5 0.00 40 73 .96 1 1 1
0.10 37 55 .83 .98 1 1
0.30 13 .03 .01

Note. Values of zeros are left blank.

It is worthy to note that, in some oblique case (especially .3), increasing the sample size
decreased the power of both stopping rules. This is likely due to the fact that empirical eigen-
values were getting closer to the population eigenvalues and that the third eigenvalue of matri-
ces 3, 4 and 5 were under unity, see Table 4.

4, Discussion

The purpose of the current study was to evaluate the ability of MAP and PA to detect the cor-
rect number of meaningful axes from a PCA when the correlation matrices contain an oblique
structure. Their failures are generally reported, but largely undiscussed in the methodological
literature (Garrido, Abad, and Ponsoda 2011; Peres-Neto, Jackson, and Somers 2005). The
current study used Monte Carlo simulations to investigate the performance of MAP and PA.

Table 4. The first five eigenvalues of the population according to correlation matrices, correlations between
components.

Components

Matrix corr. comp. | Il 1] \Y \'

1 0.00 2.40 240 240 0.30 0.30
0.10 3.00 210 210 0.30 0.30
0.30 4.20 150 150 0.30 0.30

2 0.00 2.00 2.00 2.00 0.50 0.50
0.10 2.60 170 170 0.50 0.50
0.30 3.80 110 110 0.50 0.50

3 0.00 2.40 2.00 1.60 0.70 0.70
0.10 271 1.87 142 0.70 0.70
0.30 3.84 131 0.85 0.70 0.70

4 0.00 3.10 2.00 130 0.70 0.50
0.10 326 193 121 0.70 0.50
0.30 4.16 143 0.81 0.70 0.50

5 0.00 2.00 1.90 170 0.70 0.70
0.10 248 1.62 150 0.70 0.70

0.30 3.64 110 0.86 0.70 0.70
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Opverall, MAP had a better overall performance than PA. Both had their best performances
with highly saturated components (matrix 1) regardless of the oblique structure and both
had poor performance, when the oblique structure was 0.30. somewhat similar. PA had poor
performances in most of the conditions and failed to identify the correct number of com-
ponents half the times (except with matrix 1, where PA had better performance than MAP).
MAP was more likely to give correct results when the correlation matrix was modestly oblique
(0.10), but both stopping rules had poor performance when the structure was highly oblique
(0.30). This poor performance is explained by population eigenvalues of matrices 3, 4, and
5 being under unity (0.85, 0.81 and 0.86 respectively) when there was a correlation between
components. Moreover, as sample size increases, empirical eigenvalues were getting closer to
the population eigenvalues. PCA cannot take advantage of the sample variation, and smaller
eigenvalues become increasingly harder to identify. In the current cases, the obliqueness of
the third component is taken into account by the first ones, reducing its own eigenvalue.

Two other results of the current study to the methodological literature are worth noting.
First, a sample size of at least 100 was sufficient for MAP to identify the correct dimensional-
ity when there were no oblique structures. In agreement with previous studies, MAP and PA
were likely to underestimate the number of component. PA errors nearly always consisted in
an underestimate of the number of axes whereas MAP produced a non-negligible proportion
of overestimates. Second, low ratios of variables by components are generally considered hard
conditions, leading to poor performances in counting components, but were not particularly
determinant in the current study. It can be stated that 4:1 is just over the recommended mini-
mum of variables by component (Velicer et al. 2000), however, three variables is generally seen
as sufficient to consider an axe as meaningful (Fabrigar et al. 1999) whereas two might lead
to unreliable estimations (see doublet factors; Mulaik 2009). Yet, given that the recommenda-
tion goes for both stopping rules, and that MAP had good performances, this only brings it
stronger support.

The current results show that a visual inspection of the correlation matrix is necessary to
verify if any oblique structure exists. In these circumstances, researchers are likely to miss the
real dimensionality of the data sets; they should avoid PA and MAP in order to prevent loss of
information. The results also call on the necessity to systematically investigate the influence of
oblique structures (especially when meaningful axes’ eigenvalue are below unity) and on the
need to develop new stopping rules taking obliqueness into account, and being less depen-
dent on eigenvalues (i.e., by taking loadings into account) or less vulnerable when meaningful
eigenvalues fall below unity. Present results show that stopping rules may lose their reliability
when they face harder-to-detect component structures.
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