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Abstract. Codd’s relational model describes just one possible world. To better cope with incom-
plete information, extended database models allow several possible worlds. Vague tables are one
such convenient extended model where attributes accept sets of possible values (e.g., the manager
is either Jill or Bob). However, conceptual database design in such cases remains an open problem.
In particular, there is no canonical definition of functional dependencies (FDs) over possible worlds
(e.g., each employee has just one manager). We identify several desirable properties that the se-
mantics of such FDs should meet including Armstrong’s axioms, the independence from irrelevant
attributes, seamless satisfaction and implied by strong satisfaction. We show that we can define FDs
such that they have all our desirable properties over vague tables. However, we also show that no
notion of FD can satisfy all our desirable properties over a more general model (disjunctive tables).
Our work formalizes a trade-off between having a general model and having well-behaved FDs.
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1. Introduction

We often still teach database design like we did decades ago. Yet many of the underlying assumptions
made by database textbooks are fading. For example, it is no longer always possible to assume that
information systems are strongly consistent when even a modest organization might have hundreds of
different databases hosted all over the world. Our information systems have to reflect different viewpoints
and accommodate uncertainties and disagreements.

Nevertheless, we must maintain basic relationships between attributes if we hope to use the data. One
such fundamental relationship is given by functional dependencies (hereafter, FDs). For example, we
may know that all employees have only one superior (written “employee→ superior”). Mathematically,
we require that the relation between employee and superior be a function: each possible employee must
have one and only one superior.

Identifying such relationships is part of conceptual design: determining what belongs in the database
and how it should be structured. Conceptual design under the assumption that we have complete infor-
mation might be considered a solved problem.

Unfortunately, our knowledge is often incomplete [2]—and that is even more apparent today with
our highly distributed and heterogeneous systems. When merging two databases, we might find that one
assigns Jill as John’s superior, whereas the other assigns Bob as John’s superior. Such a discrepancy
may come, for instance, when an update was propagated to one database but not yet to the other. We
can reasonably assume that John’s superior is either Jill or Bob but it may be impossible to clear up the
ambiguity quickly. These problems are frequent and costly: Brodie and Liu [11] estimated that 40% of
the cost associated with information systems is due to data integration problems.

What should we do in such cases? One possibility is to declare John’s superior to be unknown. We
might represent an unknown value as a nullmarker in a traditional relational database [12]. Thankfully,
FDs can be enforced despite null markers [3].

However, using null markers is not always satisfactory. In our example with John and his superior,
we expect the superior to be either Jill or Bob. We want the database to retain this information while
enforcing FDs. That is, we want to allow sets of possible values (John’s superior is either Jill or Bob):
we call the result a vague table.

Such a proposal is not new: several models of incomplete information beside vague tables have been
proposed, each with different expressiveness and properties (see Das Sarma et al. [14] for an overview1)
Yet there is no agreed-upon concept of FDs for databases with incomplete information. This leaves
practitioners and textbooks with little guidance. But without such guidance, practical implementations
are often ad hoc.

We approach the problem of defining a suitable notion of FD over incomplete information from a
novel perspective. As there are already a variety of proposed definitions over a diversity of models of
incomplete information, we first attempt to come up with a list of desirable properties that the definition
of a practical concept of FD might have, regardless of the type of model involved. We justify each
property on intuitive grounds. We then review several past proposals and show that they do not satisfy
some of these desirable properties. This leaves open the question of whether a notion of FD can exist
that has all the desired properties over some model of incomplete information. We show that there
cannot be such a notion over one such model (disjunctive tables). We then propose a definition of FD

1In Das Sarma et al. [14] and other works, vague tables are called attribute-or tables.
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over vague tables, P-functional dependency or PFD, that has a simple interpretation and provides all our
desirable properties over vague tables. In this sense, PFDs serve as an example to show that our desirable
properties can be satisfied over vague tables.

We emphasize that the issue under discussion here is the intended interpretation of X → Y under
different models. Thus, in the following, references to a ’concept’ or ’notion’ of FD refer to the semantics
of FDs; we explore the characteristics that a ’desirable’ semantics should have in order to develop a
viewpoint that allow us to analyze and compare existing definitions as well as our own.

The fact that a concept of FD over disjunctive tables cannot have all the desired properties is in
agreement with the observation in Das Sarma et al. [14] that more expressive models tend to be more
complex and more difficult to reason about. Our results show that it may also be difficult to come up with
a notion of FD that achieves general intuitive agreement over disjunctive tables or more sophisticated
models. Hence, this motivates the study and application of more restrictive models like vague tables, in
spite of their expressive shortcomings.

2. Related Work

There is a large body of work on FDs for extended models. We can distinguish three main approaches:

1. work that deals with incomplete data by using nulls or sets of possible values (including disjunc-
tive databases) [20, 22];

2. work that adds information other than values (such as possibilistic/probabilistic databases) [7, 9,
10, 29, 24];

3. and work that does not deal with simple values (fuzzy databases, where values can be fuzzy func-
tions) [25, 26, 13, 23, 5].

In the first approach, it is common to consider the database as denoting a set of possible worlds. This
line of research has applied the tools of modal logic to the study of data dependencies [15].

The second approach, based on possibilistic and probabilistic databases, can be considered an exten-
sion of the the possible worlds framework [7, 9, 10]. However, Link and Prade [22] assign possibilities
to tuples, not to values. Based on these possibilistic tuples, possible worlds are generated as a nested
chain: the smallest world is the one with only fully possible tuples; the largest world contains all tuples.
Certainty degrees are attached to standard FDs, based on the possibility degree of the smallest world in
which they are violated.

Work on fuzzy databases is of a different nature, in that database values are not considered atomic
entities, but they are fuzzy (membership) functions over some base set [4]. For instance, given a domain
Age, the fuzzy values young and infant can be seen as functions giving a degree of membership to each
value in Age. These functions can even be modified, e.g., the function very young can be considered as
modification (a translation of sorts) of young. Thus, when considering an FD X → Y , and two tuples
t1, t2 in some table, we usually need to decide whether t1[A] = t2[A] (for some A ∈ X ∪ Y). In the
case of fuzzy databases (when t1[A] and t2[A] can be fuzzy functions), we need to rely on fuzzy logic
to determine their degree of similarity—in other words, we have no equality relation as a crisp, binary
relation [27]. The exact concept of FD depends on the underlying fuzzy logic being adopted [25].
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Table 1: Standard, vague and disjunctive tuples. Standard tuples are instances of vague and disjunctive
tuples.

term definition

standard tuple one known value per attribute: (John, Jill)
vague tuple some attributes may have a choice of values: (John, {Jill,Bob})

disjunctive tuple disjunction of standard tuples: (John, Jill) || (John,Bob)

3. Background

There has been much work on FDs over incomplete information. The most common model for incom-
plete information over relational databases allows tables with null markers. However, when something
is known about the missing value, it might be preferable to keep track of the various possible worlds, as
advocated by Imielinski et al. [16, 17]. For example, we can use disjunctive databases, in which a tuple
is a disjunction of (regular) tuples, showing the different possible values that a tuple can take. Consider
the problem where Jill or Bob could be John’s superior. We can indicate these possibilities with the dis-
junctive tuple (John, Jill) || (John,Bob) which indicates that both tuples, (John, Jill) and (John,Bob), are
possible. A convenient alternative is the vague table where individual attributes can be set-valued, indi-
cating the possible values of an attribute in a given tuple. For example, we might write (John, {Jill,Bob})
to indicate that John’s superior might be Jill or Bob. In the rest of this section, we formalize these
concepts.

3.1. Vague and Disjunctive Tables

Fix a schema A1, . . . , An as a list of attributes with attached domains dom(Ai) (i = 1, 2, . . . , n). We assume
that all domains are equivalence relations under the equality (=). The schema corresponding to table R
is written sch(R). We consider three types of tuples (see Table 1):

• A standard tuple is a tuple as in the conventional relational algebra. Formally, it is a total function
from the schema to the Cartesian product of the domains, with t[Ai] ∈ dom(Ai). For example,
(John, Jill) might represent such a tuple.

• A vague tuple is like a standard tuple where entries are non-empty sets of values. Formally, a
vague tuple is a total function from the schema to the Cartesian product of the finite powerset of
the domains (e.g., (John, {Jill,Bob})): i.e. we have that t[Ai] ⊂ dom(Ai) and t[Ai] is finite. For
simplicity, we write singletons as elements, i.e. John instead of {John}. We consider a standard
tuple to be an instance of vague tuple.

• A disjunctive tuple is a finite disjunction of standard tuples: e.g.,

(John, Jill) || (John,Bob).

We consider a standard tuple to be an instance of a disjunctive tuple.
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A standard table is a set of standard tuples, and likewise for vague and disjunctive tables.
As usual, we can restrict tuples to a subset of attributes from the schema. Given a table R, a tuple

t ∈ R, and a set of attributes X ⊆ sch(R), the tuple t[X] is the projection of t on the attributes of X. For
example, given t = (John, Jill), we have that t[Employee] = (John). If t is a standard (vague, disjunctive)
tuple, so is t[X]. Given a table R, the set of all its tuples projected on X is denoted πX(R) = {t[X] | t ∈ R}.
For example, given the two-tuple vague table R made from two attributes A and B, {(a, {b1, b2}), (a, b3)},
we have that πA(R) is given by the single tuple (a) whereas πB(R) is given by the two tuples ({b1, b2}) and
(b3).

Valuations are defined for vague and disjunctive tuples. A valuation for a vague tuple is a total
function that chooses a single value from dom(Ai) for each t[Ai]. E.g., (John, Jill) is a valuation of
(John, {Jill,Bob}). A valuation for a disjunctive tuple is a function that chooses one disjunct per tuple.
For example, (John, Jill) is a valuation of (John, Jill) || (John,Bob). In all cases, a valuation yields a
standard tuple.

Given two tuples t, t′, let t ∪ t′ be a new tuple that represents the union of all valuations and let t ∩ t′

be a new tuple representing the intersection of the valuations from t and t′. The union of vague (resp.
disjunctive) tuples is a vague (resp. disjunctive) tuple. The intersection is either the empty set or a vague
(resp. disjunctive) tuple. E.g., (John, {Bill,Bob}) ∪ ({John, Julie},Bill) = ({John, Julie}, {Bill,Bob}) and
(John, {Bill,Bob}) ∩ ({John, Julie},Bill) = (John,Bill).

Valuations are extended to vague and disjunctive tables in the usual way, with the specification that
duplicates are effectively removed in the process so that a table is always a set of tuples—as in the
traditional relational model. Hence, each valuation on a vague or disjunctive table yields a standard
table, called a possible world. The set of all valuations for table T is denoted val(T ), hence val(T ) is the
set of all possible worlds.

Two standard tuples are equal if all attribute values are equal: t = t′ if and only if t[A] = t′[A] for
all attributes A. For vague and disjunctive tuples, two tuples are equal if they have the same possible
valuations. As indicated by the next lemma, we can check the equality between two vague tuples on
an attribute-by-attribute basis, but not for disjunctive tuples. Indeed, let t1 = (a, b)||(a′, b′) and t1 =

(a′, b)||(a, b′), then t1[A] = t2[A] for both attributes A whereas clearly t1 and t2 are not equal.

Lemma 3.1. Two vague or two standard tuples t1, t2 are equal on X (t1[X] = t2[X]) if and only if t1[A] =

t2[A] for all attributes A ∈ X. This result is false for disjunctive tables.

This distinction between vague and disjunctive tuples is relevant for FDs. One of Armstrong’s axioms
(augmentation) says that if t[X] = t′[X] implies t[Y] = t′[Y], then t[XZ] = t′[XZ] implies t[YZ] = t′[YZ].
We can generalize this result over all models where equality can be determined attribute-by-attribute.
Indeed, suppose that t[X] = t′[X] implies t[Y] = t′[Y]. We have that t[XZ] = t′[XZ] if and only
if t[X] = t′[X] ∧ t[Z] = t′[Z] which implies that t[Y] = t′[Y] ∧ t[Z] = t′[Z] which is equivalent to
t[YZ] = t′[YZ]. Unfortunately, the last step may fail in a model where we cannot check equality attribute-
by-attribute like disjunctive tables.

Two tables are equivalent if they have the same set of possible worlds. In this sense, vague tables are
a subtype of disjunctive tables.

Lemma 3.2. The standard, vague and disjunctive models form a strict hierarchy. That is,

1. For any standard table T , there is a vague table T ′ that is equivalent to it. The reverse does not
hold.
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Table 2: Functional dependencies X → Y .

term definition

Standard FD only defined over a standard
table

Weak FD (→W) Defined over incomplete tables
( [17])

Strong FD (→S ) Defined over incomplete tables
( [17])

Vertical FD (→V ) Defined over incomplete tables;
introduced by Das Sarma et
al. [28]

PFD (→PFD) Defined over incomplete tables;
introduced here (see Defini-
tion 6.1.)

2. For any vague table T , there is a disjunctive table T ′ that is equivalent to it. The reverse does not
hold.

Tables with null (or unknown) markers [21, 3, 19] can be considered as a special case of vague table
if the domains are finite. In effect, a tuple over schema A1, . . . , Ai, . . . , An with values

(a1, . . . , null, . . . , an)

can be considered as a shortcut for (a1, . . . , dom(Ai), . . . , an). However, it is standard to assume infinite
domains, in which case tables with null markers are incomparable to vague or disjunctive tables.

Vague tables are one of the simplest models of incomplete information and, as such, they have well-
known expressive shortcomings. For instance, a formalism is complete if it can represent any finite set of
possible worlds; vague tables are not complete. Also, a formalism is closed (under the relational algebra)
if the result of applying (relational algebra) operators to instances of the formalism always results in
instances in the formalism. However, the relational join of two vague tables is not necessarily a vague
table. Hence, more powerful formalisms, like c-tables, have been proposed [17]. However, such models
are hard to reason with; in particular, there is no agreed-upon concept of FD for such sophisticated
models. In fact, our research shows that a concept of FD that meets some intuitive requirements does not
exist even for disjunctive tables, let alone more general models like c-tables.

3.2. Functional Dependencies

An FD over a given schema R is an expression X → Y with X,Y ⊆ sch(R). A standard table satisfies an
FD in the standard way: X → Y is satisfied by R if and only if whenever two tuples t1, t2 of R are such that
t1[X] = t2[X] then t1[Y] = t2[Y]. Of course, this definition is only directly applicable to standard tables
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(without null markers or set-valued attributes2). Table 2 summarizes the main FD types we consider.

Weak and Strong FDs For vague or disjunctive tables, we have weak and strong satisfaction based on
possible worlds:

Definition 3.1. (Strong and weak satisfaction)

• An FD X → Y on a vague or disjunctive table T is strongly satisfied (in symbols, X →S Y) if for
all valuations µ ∈ val(T ), µ satisfies X → Y in the standard sense.

• An FD X → Y on a vague or disjunctive table T is weakly satisfied (in symbols, X →W Y) if for
some valuation µ ∈ val(T ), µ satisfies X → Y in the standard sense.

In the conventional setting, a set of FDs is satisfied if and only if each FD, taken individually, is satis-
fied. In the context of weak satisfaction, this definition is unsatisfactory, (see Section 5 and Fig. 1 for
examples), hence the next definition.

Definition 3.2. (Seamless satisfaction) A set of FDs F is seamlessly satisfied (or holds seamlessly) on a
vague or disjunctive table T if there is a valuation µ ∈ val(T ) such that µ satisfies all f ∈ F .

Seamless satisfaction is not a new idea. In the context of tables with unknown values, Levene and
Loizou introduced this concept without a specific name (i.e. “satisfaction of a set of FDs”) [21, 19]. We
compare Levene and Loizou’s approach to ours in Section 2.

Vertical FDs Das Sarma et al. [28] define vertical FDs in the context of disjunctive tables. To explain
this concept, we need some additional notation. Given a disjunctive tuple t and a standard subtuple ā,
let t[X = ā] = {t′ ∈ t | t′[X] = ā}, that is, the selection of the disjuncts of t that agree with ā on the
attributes in X (if there are none, this denotes the empty set). Further, let t[X = ā][Y] be the projection of
the disjuncts in t[X = ā] on Y: t[X = ā][Y] = {t′[Y] | t′ ∈ t[X = ā]}. As an example, let t be a disjunctive
tuple over schema (employee, superior) with data ({John, Peter}, {Jill, Bob}). Then t[superior] results in
a tuple over schema (superior) with data ({Jill, Bob}); t[employee = John] results in a tuple over schema
(employee, superior) with data (John, {Jill, Bob}); and t[employee = John][superior] results in a tuple
over schema (superior) with data ({Jill, Bob}). To simplify the notation, we treat disjunctive tuples as
sets of tuples when convenient.

With these auxiliary concepts, we can define vertical FDs as follows. (See Fig. 4 for an example.)

Definition 3.3. The vertical FD X →V Y holds over a disjunctive table R if for any two tuples t1, t23,

1. we have that t1[X = ā][Y] = t2[X = ā][Y] for all ā ∈ t1[X] ∩ t2[X] and

2. t1[X = ā][Y − X] as a set of disjuncts is the Cartesian product t1[X = ā][Y − X] =
∏

A∈Y−X t1[X =

ā][A], and

3. the multivalued dependency X � Y − X holds.
2We can extend the equality relation = to sets, but we reserve the equality symbol = for elements from a domain.
3While this is not the original definition of [28], it can easily be shown to be equivalent to it, and is in a much more convenient
form for our purposes here.
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Fuzzy Functional Dependencies An exhaustive review of FDs over fuzzy databases is beyond our
scope: instead, see Bosc et al. [6]. For illustrative purposes, we nevertheless consider one notion of FD
over fuzzy sets.

Raju and Majumdar [27] define fuzzy functional dependencies (FFD) over fuzzy sets. We can readily
adapt their definition to our context. Their approach starts with the introduction of a (fuzzy) resemblance
relation. Resemblance relations µEQ associate pairs of values to values in [0, 1] with the intuition that
two input pairs are most alike when their resemblance is 1. Raju and Majumdar require reflexivity
(µEQ(a, a) = 1) and symmetry (µEQ(a, b) = µEQ(b, a)). Though Raju and Majumdar allow database
designers to introduce their own, we use the resemblance relation proposed by Raju and Majumdar [27,
Example 5.1]: given two sets a and b, we define

µEQ(a, b) = max(|a ∩ b|/|a|, |a ∩ b|/|b|)

The value of µEQ(a, b) is always in [0, 1]. We have that µEQ(a, b) = 0 if and only if a is disjoint from b.
We have that µEQ(a, b) = 1 if and only if a is contained in b, or b is contained in a. When a and b are
tuple-valued, following Raju and Majumdar, we use the minimum of the resemblance relations on each
attribute: µEQ((a1, . . . , an), (b1, . . . , bn)) = min(µ1

EQ(a1, b1), . . . , µn
EQ(an, bn)) where µ1

EQ, . . . , µ
n
EQ are the

resemblance relations on attributes 1, . . . , n.

Definition 3.4. The Raju-Majumdar FFD X →RM Y holds if, for any two tuples t, t′, µEQ(t[Y], t′[Y]) ≥
µEQ(t[X], t′[X]).

Armstrong’s axioms We expect FDs to behave in certain ways: if A → B and B → C, we expect
A→ C to hold. This is one of the properties known as Armstrong’s axioms:

Definition 3.5. For standard FDs, Armstrong’s axioms are the following:

1. Reflexivity: If Y ⊆ X, then X → Y .

2. Augmentation: we have that X → Y implies XZ → YZ.

3. Transitivity: If X → Y and Y → Z, then X → Z.

These axioms, guaranteed to hold in a standard table, characterize the behavior of FDs. Many in-
tuitive properties can be derived from Armstrong’s axioms such as the splitting (or decomposition) rule
(X → Y implies X → Z if Z ⊂ Y) and the combining (or union) rule (X → Y and X → Z implies
X → Y ∪ Z).

Unfortunately, Armstrong’s axioms are no longer valid when working with vague or disjunctive
tables in the weak interpretation. In contrast, they hold for strong, fuzzy and vertical FDs.

4. Desirable Properties of Functional Dependencies

There are already multiple notions of FD over models of incomplete information. We consider what
constraints should exist on such notion.

We examine the case of a designer faced with a table R, and an FD X → Y in R, and ask whether
any characteristics of the FD would help the designer determine if X → Y indeed holds in R, or what it
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would take to enforce it or, if faced with more than one FD, how the FDs as a whole behave. We believe
that the following are likely to be helpful in such a scenario:

1. Whether any given FD X → Y holds should depend only of X ∪ Y (independence from irrelevant
attributes). Thus, in checking X → Y against some existing data, it should be possible to restrict
attention and disregard the rest of the schema.

To illustrate, imagine that we consider the FD employee → superior. Suppose that we add a
new attribute (e.g., the employee’s email address): it would seem counter-intuitive that this new,
otherwise irrelevant attribute, could invalidate the FD. In a distributed and dynamic setting, where
attributes can be created or removed suddenly, or where some attributes may only be accessed
remotely, it would be inconvenient to have to check all attributes to enforce any one FD.

Formally, we require that the FD X → Y holds on R if and only if it holds on πX∪Y (R). In particular,
adding a new attribute to a table should not violate existing FDs.

This property should not be taken for granted. For example, strong FDs do not satisfy this condi-
tion: the table with schema (employee, department, manager) made of two tuples

(Joe,Engineering, {Gauss,Newton}),

(Jack,Engineering, {Gauss,Newton})

fails to satisfy department→S manager but its projection on {department,manager} does.4

2. If an FD is satisfied in all possible worlds, then the FD should be satisfied (implied by strong
satisfaction). Intuitively, if the FD holds in all possible worlds, then it certainly should hold. In
particular, an FD should always hold in a table with a single tuple. Not all notions of FD that have
been proposed satisfy this property: vertical FDs do not have this property, as pointed out by Das
Sarma et al. [28].

3. If an FD is satisfied , it should be satisfied in some possible world (implies weak satisfaction). A
situation in which the FD is deemed to hold in the vague or disjunctive table, and no valuation is
capable of satisfying the FD might be quite puzzling (and frustrating) for the designer.

4. A set of FDs should satisfy Armstrong’s axioms (Armstrong satisfaction). In particular, we con-
sider that transitivity has a strong intuitive and historical appeal. Though it might be possible to
design database systems with the help of FDs but without Armstrong’s axioms, we are not aware
of any framework that supports such work.

5. If all the FDs in a set are satisfied, then there should be a possible world where they are all jointly
satisfied (seamless satisfaction). This can be considered as a strong version of the property implies
weak satisfaction.

Consider the case of a designer that is looking at a table R and a set of FDs F. The designer may
be satisfied that each individual FD in F could reasonably hold in R, perhaps even determine that
there are cases where each FD holds. But if there is no single possible world where all FDs hold,

4The result would be different if the tables were multisets instead of sets [8]. In such instances, the projection operator might
not prune duplicates and neither strong FDs would be satisfied. However, we wish to recover the standard relational algebra
when all tuples happen to be standard tuples and we therefore require tables to be sets of tuples.
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this implies that if we were to completely remove all uncertainty on the table, the table would be
inconsistent with F. This goes against the intuition that, in satisfying each individual FD, the table
should also satisfy the set F—and knowing more about the data in the table should not damage
this process.

We posit that the semantics of any notion of FD should be constrained by these basic requirements.
Beyond these semantic considerations, we look into practical issues of efficiency in section 7.

4.1. Conservativity, Completeness and Soundness

We have left out one other important property because it is implied by our properties. We say that a
notion of FD satisfies conservativity if the standard notion of FD is strictly equivalent to the novel notion
of FD when R is a standard table. More formally, given a new FD denoted X →new Y , then when R
is a standard table, the standard FD X → Y holds if and only if X →new Y holds. Vertical FDs satisfy
conservativity [14, Theorem 4.6]. The following lemma shows that any notion of FD satisfying two of
our properties automatically satisfies conservativity.

Lemma 4.1. The properties implied by strong satisfaction and implies weak satisfaction imply conser-
vativity.

Proof:
Consider a standard table R. Write the new notion of FD as X →new Y and suppose that it is both implied
by strong satisfaction and implies weak satisfaction.

Suppose that X → Y holds, then it holds in all possible worlds because R is a standard table, and by
implied by strong satisfaction, we have that X →new Y holds.

Suppose that X →new Y holds, then by implies weak satisfaction, we have that X → Y must hold in
at least one possible world, but because R is a standard table and there is only one possible world, we
have that X → Y must hold in the standard sense. ut

Our desirable properties are not dependent on a particular model of incomplete information. Since
vague tables are a subset of disjunctive tables, all notions of FD that do not satisfy a given property on
vague tables also fail to satisfy it on disjunctive tables or any generalization thereof. This is important
given the number of different models for incomplete information, each one with different expressive
power and characteristics.

A different list of properties could be chosen on intuitive grounds. Our properties are slanted towards
those that, we believe, would facilitate the task of a designer in practical settings. Other analyses may
call for a different list of properties. Moreover, these properties are not required, but we view them as
desirable.

Beyond these properties, it is common to require that a new concept of FD comes with a set of axioms
which is sound and complete:

• A set of axioms is sound if for any R and a set of FDs satisfied by R, any FD derived from these
FDs using the axioms holds in R.

• A set of axioms is complete if for any set of FDs, if an FD is true in every R satisfying this set of
FDs, then this FD can be derived from the set of FDs using the axioms.
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For example, Armstrong’s axioms form a sound and complete set for standard tables. The following
lemma generalizes this fact.

Lemma 4.2. Armstrong’s axioms form a sound and complete set for any notion of FD satisfying both
Armstrong’s axioms and conservativity.

It is immediate from the preceding lemma and Lemma 4.1 that our desirable properties imply that
Armstrong’s axioms are a sound and complete set of axioms.

Lemma 4.3. Armstrong’s axioms form a sound and complete set for any notion of FD satisfying our
desirable properties.

5. Comparing Existing Notions of Functional Dependencies and Proposed
Desirable Properties

In this section, we examine how previously proposed notions of FD fare with respect to the list of desired
properties.

Strong FDs can be restrictive, e.g., given a schema “employee, department,manager” subject to
“employee→S department” and “department→S manager”, then a table with the two tuples

(Joe,Engineering, {Gauss,Newton}),

(Jack,Engineering, {Gauss,Newton})

fails to satisfy “department →S manager”—even though it may seem intuitive that it should. Indeed
a projection on the attributes “department” and “manager” (i.e. (Engineering, {Gauss,Newton})) would
satisfy the strong FD. Hence, adding an otherwise irrelevant attribute (“employee”) can violate the FD
“department→S manager”. An FD can only hold strongly under some constrained scenarios.

Thus we might be tempted to consider weak FDs as a viable alternative: if there is a possible world
where the FDs are satisfied, then maybe the data is allowable. However, recall that we defined weak FDs
individually; in actual database design, sets of FDs are considered. Thus, we have to consider situations
where a set of FDs is satisfied, and ask if they can be satisfied seamlessly. Consider Fig. 1: in Fig. 1a,
there are possible worlds where FDs A→ B and B→ C are satisfied, but both together cannot since there
is no valuation of this vague table satisfying both FDs. The same problem happens in Figs. 1b and 1c.

Thus, weak FDs, as illustrated by Fig. 1, do not have seamless satisfaction. Moreover, the weak
interpretation does not satisfy Armstrong’s axioms. For instance, transitivity does not hold under the
weak interpretation: we can check in Fig. 1a that A→W B and B→W C hold, but A→w C does not.

Vertical FDs Das Sarma et al.’s vertical FDs satisfy seamless satisfaction and satisfy Armstrong’s
axioms [28]. We see two issues:

• Vertical FDs fails to provide independence from irrelevant attributes. Indeed, they depend on
multivalued dependencies. The problem with multivalued dependencies is that they break the
rule that X → Y can be checked strictly by looking at the attributes in X ∪ Y (independence
from irrelevant attributes). Consider the schema A, B,C and the table made of this single tuple
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A B C

a1 {b1,b2} c1
a1 {b2,b3} c2

(a) A→ B and B→ C

A B C

a1 b2 c1
a1 {b2,b3} c2
a2 b3 c2

(b) A→ B and C → B

A B C

a1 b2 c1
a2 b2 c1
{a1,a2} {b2,b3} {c2,c3}

a3 b3 c2
a3 b3 c3

(c) A→ B and C → B

Figure 1: Examples of vague tables with accompanying FDs

(a1, b1, c1) || (a1, b2, c2). The vertical FD A→V B is not satisfied because of the C attribute. (If we
project the tuple on the attributes A and B, the FD A→V B is satisfied.) Das Sarma et al. provided
such an example themselves [28, Example 4.5].

• Vertical FDs are not implied by strong satisfaction: that is, an FD may hold in every single possible
world of a table, and yet it does not hold as a vertical FD. Our example with the single tuple
(a1, b1, c1) || (a1, b2, c2) illustrates this exact problem.

Raju-Majumdar FFDs There are several different notions of FDs on fuzzy databases. In general,
fuzzy FDs are appealing in part because they satisfy Armstrong’s axioms. However, some notions are
too weak in the sense that they fail to provide seamless satisfaction. Consider the fuzzy FDs proposed
by Raju and Majumdar [27]. Let us consider Fig. 1b. Both A →RM B and C →RM B are satisfied (see
Definition 3.4). Indeed, let us consider A →RM B. We have that µEQ(t[A], t′[A]) is greater than 0 only
when t, t′ are the first two tuples. Yet in this case, µEQ(t[B], t′[B]) = 1 because b2 is contained in {b2,b3}.
Thus the FFD A →RM B holds. By a symmetrical argument C →RM B holds as well. But there is no
possible world where the table from Fig. 1b satisfies both A→ B and C → B. Fig. 1c is another example
of the same phenomenon but where no two tuples have exactly the same values for attribute A, or attribute
C. In fact, Fig. 1c shows that the issue persists even if one replaces µEQ(a, b) = max(|a∩b|/|a|, |a∩b|/|b|)
with µEQ(a, b) = min(|a ∩ b|/|a|, |a ∩ b|/|b|). Thus, the problem does not arise with just one particular
resemblance relation, and hence is not limited to Definition 3.4. While other notions of fuzzy FD may
fare better, care is needed when choosing a particular definition of fuzzy FDs if seamless satisfaction is
desired.

We can summarize our examination of existing definitions as follows (see Table 3):

• Strong and vertical FDs fail to satisfy independence from irrelevant attributes.

• Vertical FDs are not implied by strong satisfaction.

• Weak FDs fail to satisfy Armstrong’s axioms and seamless satisfaction.

• Though a detailed investigation of fuzzy FDs is beyond our scope, we have shown that some fuzzy
FDs fail to provide seamless satisfaction [6].
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Table 3: Properties of the various types of functions dependencies. IIA is short for independence from
irrelevant attributes, SS is short for strong satisfaction, WS is short for weak satisfaction, Armstrong is
short for Armstrong satisfaction, Seamless is short for Seamless satisfaction. We do not include fuzzy
FDs in this table since they rely on different models.

FD type Model type IIA SS WS Armstrong Seamless

Strong disj. or vague No Yes Yes Yes Yes

Weak disj. or vague Yes Yes Yes No No

Vertical disjunctive No No Yes Yes Yes

PFD
disjunctive Yes Yes Yes No No

vague Yes Yes Yes Yes Yes

6. The Influence of the Table Type on FD Properties

In view of the negative results of the previous subsections, the question arises as to whether it is possible
for a notion of FD over tables for incomplete information to have all the desirable properties. It turns
out that the answer depends crucially on the type of table being considered. In the next subsection, we
show that it is not possible to satisfy all properties over disjunctive tables. However, we then show that
it is possible to satisfy all the properties over vague tables by giving a new notion of FD, P-functional
dependency (PFD) that has all the properties. We then show, in Section 6.3, how PFDs are different from
other notions of FD, and provide sound and complete axioms for them over vague tables.

6.1. Properties over Disjunctive Tables

Satisfaction of all desired properties over disjunctive tables is impossible:

Theorem 6.1. Over disjunctive tables, there cannot be a notion of FD (denoted X →magic Y) satisfying
the following three properties

• implied by strong satisfaction: if the FD X → Y holds strongly (X →S Y) then X →magic Y holds,

• independence from irrelevant attributes : X →magic Y holds over R if and only if it holds over
πX∪Y (R); and

• seamless satisfaction: given a set of FDs X →magic Y , each holding in some possible world, there
must be a world where all X → Y hold in the standard sense.

Proof:
Consider any notion of FD satisfying the properties implied by strong satisfaction, independence from
irrelevant attributes and seamless satisfaction over disjunctive tables. Let us call this form of FD
“magic”. Observe that the projection of the table from Fig. 2 to (A, B) is the single disjunctive tu-
ple (a1, b1) || (a1, b2). By the property implied by strong satisfaction, we have that A →magic B must
be satisfied on this projection. By the independence from irrelevant attributes, we must have that
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R(A, B,C,D)

(a1, b1, c1, d1) || (a1, b2, c1, d2)
(a1, b2, c1, d1) || (a1, b1, c1, d2)

Figure 2: Disjunctive table satisfying both A →PFD B and C →PFD D such that no valuation of the table
satisfying the FDs is possible.

R(A, B,C)

(a, b, c) || (a, b′, c′)
(a, b′, c) || (a, b, c′)

Figure 3: Table R: Disjunctive table satisfying A→PDF C but not AB→PDF CB.

A →magic B holds over the original table. Similarly, the projection of the table on (C,D) is the sin-
gle tuple (c1, d1) || (c1, d2) and, again by the property implied by strong satisfaction, we must have that
C →magic D is satisfied on this projection. Again, by the independence from irrelevant attributes, we
have that C →magic D holds over the original table. Yet there is no possible world implied by the table
where both A→ B and C → D are satisfied, thus contradicting seamless satisfaction. ut

6.2. P-Functional Dependencies (PFD)

We are looking for a concept of FD that has all the desirable properties: independence from irrelevant
attributes, implied by strong satisfaction, satisfaction of Armstrong’s axioms, seamless satisfaction and
computationally inexpensive. Moreover, we want a concise and convenient definition to show that our
desirable properties can indeed be satisfied without a contrived definition.

Our intuition is as follows: given an FD X → Y with X and Y disjoint, we want that whenever t1[X]
and t2[X] may be equal in some possible world, then t1[Y] and t2[Y] must be identical. We propose our
concept of functional dependencies of possible worlds, P-functional dependency, or PFD for short. (See
Subsection 3.2 for our notation.)

Definition 6.1. A PFD X →PFD Y holds in R whenever for any two tuples t1, t2, t1[X = ā][Y] = t2[X =

ā][Y] for all ā ∈ t1[X] ∩ t2[X].

For example, to check that the PDF “employee →PFD superior” holds, we might begin by checking
that the superiors given to John are the same in every pair of tuples t, t′:

t[employee = John][superior]

= t′[employee = John][superior].

We would then repeat this check for every possible employee. Of course, more efficient implementations
using indexes are possible (see Section 7).

As we show in Theorem 6.4, no notion of FD can satisfy all our desirable properties over disjunctive
tables: PFDs are no exception. PFDs fail to satisfy Armstrong’s axioms and seamless satisfaction over
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ID U(SSN, Name)

r1 (1,Tom) || (1, Thomas)
r2 (1,Tom) || (1,Thomas) || (2,Tom)||(2,Thomas)

Figure 4: Table U: the vertical FD SSN→V Name does not hold while the PFD SSN→PFD Name does.

disjunctive tables. This is first illustrated by Fig. 3 where A →PDF C holds but not AB →PDF CB
which violates the augmentation axiom. Moreover, PFDs do not imply the existence of a seamless
valuation over disjunctive tables. Consider the example of a 2-tuple disjunctive table in Figure 2. The
FDs A→PFD B and C →PFD D hold, but no seamless valuation exists satisfying these two FDs.

Over vague tables (and only over vague tables) PFDs satisfy the following technical lemma that
allows us to reduce any PFD X →PFD Y to an equivalent set of PFDs of the form X →PFD A where A is
a singleton disjoint from X.

Lemma 6.2. Over vague tables, X →PFD Y holds if and only if X →PFD A for all attributes A ∈ Y − X.
Moreover, we can check that such PFD X →PFD Y where Y is disjoint from X holds by checking that
whenever t1[X] ∩ t2[X] then t1[Y] = t2[Y].

The proof of this Lemma is left for the Appendix.

PFDs vs. Vertical FDs There are differences between vertical FDs and PFDs. Consider the Table U in
Fig. 4. In this table, the vertical FD SSN→V Name does not hold, but the PFD SSN→PFD Name does.

If one compares the definitions of PFDs and vertical FDs, it is immediate that vertical FDs are strictly
stronger than PFDs.

Corollary 6.3. If X →V Y then X →PFD Y .

PFDs vs. Fuzzy FDs Recall that a fuzzy Raju-Majumdar FD holds whenever

µEQ(t[Y], t′[Y]) ≥ µEQ(t[X], t′[X])

for all pairs of tuples t′, t′. We can express PFDs is similar terms. For simplicity, suppose that X and Y
are disjoint (X ∩ Y = ∅). Consider the PFD X →PFD Y . The FD applies to tuples t and t′ if and only
if there exists ā ∈ t[X] ∩ t′[X]; and in such cases t[Y] = t′[Y]. In turn, over vague tables, there exists
such a ā if and only if µEQ(t[X], t′[X]) > 0. Thus, an FD holds if whenever µEQ(t[X], t′[X]) > 0 then
t[Y] = t′[Y]. This is strictly stronger than µEQ(t[Y], t′[Y]) ≥ µEQ(t[X], t′[X]). In other words, PFDs are
stronger than Raju-Majumdar fuzzy FDs.

6.3. PFDs and the Desirable Properties

In this section, we show that PFDs, in addition to being concisely defined, have all the properties listed
in Section 4 over vague tables, establishing Theorem 6.4.

Theorem 6.4. PFDs satisfy the following properties over vague tables:
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1. independence from irrelevant attributes,

2. implied by strong satisfaction,

3. implies weak satisfaction,

4. Armstrong satisfaction,

5. seamless satisfaction,

We check each property separately.

Independence from Irrelevant Attributes A PFD is independent from irrelevant attributes; by ex-
amining our definition, we can check X →PFD Y either by looking on R or on πX∪Y (R) alone. That is,
X →PFD Y holds in R if and only if it holds in πX∪Y (R).

Between Strong and Weak We also have that the new definition is “in between” strong and weak
satisfaction: X →S Y ⇒ X →PFD Y and X →PFD Y ⇒ X →W Y .

Lemma 6.5. (Implied by strong satisfaction) X →S Y ⇒ X →PFD Y .

Lemma 6.6. (Implies weak satisfaction) X →PFD Y ⇒ X →W Y .

Armstrong satisfaction While augmentation is not satisfied over disjunctive tables, PFDs satisfy all
of Armstrong’s axioms over vague tables.

Lemma 6.7. (Armstrong satisfaction) PFDs obey Armstrong’s axioms over vague tables.

The proofs of the previous lemmas are in the Appendix. Together, these lemmas provide an addi-
tional, important result: Armstrong’s axioms are a sound and complete set for PFDs over vague tables.

Lemma 6.8. Armstrong’s axioms are a sound and complete set for PFDs over vague tables.

Proof:
Lemma 6.5 and Lemma 6.6 together imply, thanks to Lemma 4.1 that PFDs are conservative. This,
together with the previous Lemma and Lemma 4.2, establishes the result. ut

Seamless Satisfaction on Vague Tables Seamless satisfaction only holds on vague tables.

Lemma 6.9. (Seamless satisfaction) If each PFD in a set of PFDs is satisfied over vague table T , then
the set is seamlessly satisfied over T .

Proof:
The proof follows through a construction, see Algorithm 1. The algorithm terminates since it iterates
once over each attribute, and then it loops once over each tuple. The algorithm only modifies the input
table in the loop at lines 15–17. We can check by inspection that if the PFDs held before this loop,
then they are still satisfied afterward. When the algorithm terminates, what remains is a valuation. This
concludes the proof. ut
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Example 6.10. As a simple example of application of Algorithm 1, consider the following vague table
R(A, B,C), {(a1, {b1, b2}, c1), (a1, {b1, b2}, c2), (a2, {b1, b2}, c2)}, subjected to two PFDs: A →PFD B and
C →PFD B. The algorithm visits all attributes in sequence. It may first consider the attribute (A). It
would then seek all FDs that determine A: in this instance, there are none. It would then visit each tuple
t in sequence and check if t[A] contains more than one value. In this instance, it would find none. The
algorithm could then check attribute C and do nothing again. It may then move to attribute (B). It would
seek all FDs that determine B. In this instance, there are two: A →PFD B and C →PFD B. Consequently,
it would set X = {{A}, {C}} to keep track of the determining sets of attributes (the LHS of FDs). Then it
visits the tuples t in sequence, looking for a tuple such that t[B] contains more than one value. It would
encounter t = (a1, {b1, b2}, c1). It would then pick any one value for attribute B, e.g., b1 (the choice can
be randomized). It would then store t in the initially empty set s. It would then visit all tuples t′ in R, and
check if there is a possible world where t′[X] might agree with t′′[X] for some t′′ ∈ s and some X ∈ X;
when that is true, it would add the tuple to s. In this instance, it would add both remaining tuples in s, so
that all tuples from R end up in s. It would then modify all tuples t′ ∈ s so that t′[B] = b1. The algorithm
would terminate with the standard table (a1, b1, c1), (a1, b1, c2), (a2, b1, c2).

Algorithm 1 Valuation algorithm for vague tables.

1: input: A set of PFDs F , of the form X → Y . Assume without loss of generality that Y ∩ X = ∅ and
Y is a singleton (see Lemma 6.2).

2: input: A vague table R satisfying the PFDs
3: output: A valuation of R that satisfies all PFDs in F
4: for each attribute A in the schema of R do
5: Given A, identify all the FDs in F of the form X → A for some set of attributes X. Call X the set

of all sets of attributes X.
6: for each tuple t in R do
7: if t[A] contains more than one attribute value then
8: Select any one attribute value a in t[A].
9: Let s be a set containing initially t

10: for each tuple t′ in R do
11: if there is a possible world where t′[X] is equal to t′′[X] for some X in X and t′′ in s then
12: add t′ to s
13: end if
14: end for
15: for each tuple t′ in s do
16: set t′[A] to the singleton containing a
17: end for
18: end if
19: end for
20: end for
21: return R
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7. Efficiency Issues

In addition to the above constraints on the semantics of FDs, there is another aspect that has considerable
practical impact: computational efficiency. Checking that an FD holds should be reasonably inexpensive
computationally (computationally practical). At a minimum, the problem should not be NP-hard; ideally,
it should be practical to check the FD over large datasets. This means that the designer knows it is
possible to enforce the FDs in a realistic database. For our purposes, we identify “practical” with sub-
quadratic running times, e.g., linearithmic (O

(
n log n

)
where n is the number of tuples). It turns out that

there are some difficult problems in regard to this issue, as we show next.

7.1. Checking Weak Seamless Satisfaction in Vague Tables is NP-complete

We have seen that weak FDs fail to satisfy Armstrong’s axioms (indeed, weak FDs are not transitive).
A closely related problem is that weak FDs do not enforce seamless satisfaction. However, we could
separately require that sets of FDs must be jointly satisfied, and then transitivity would no longer be an
issue. Unfortunately, this might be computationally unfeasible, as the next theorem shows.

Proposition 7.1. Consider any set of weak FDs F over some vague table. Determining whether such a
set F holds seamlessly is NP-complete.

Proof:
We prove that the problem is NP-complete by reducing the 3-Dimensional Matching (3DM) problem
to it. The 3DM problem can be described as follows. We have disjoint sets X, Y , and Z, each having
cardinality n. Moreover, we have a set of triples T in X ×Y ×Z. We want to determine whether there is a
subset of T of triples such that each element of X ∪ Y ∪ Z is included in exactly one tuple. This problem
is an NP-complete problem ([18]).

Start with any 3DM instance. We want to reduce it to our problem. Given table T , we create a table
T ′ with 4 attributes, one for each of X, Y , Z, and then a fourth one which contains a tuple identifier for
each tuple in T . We abuse the notation and call these attributes X,Y,Z,T . We then populate T ′ from T
as follows: given a value x of X (resp. Y and Z) insert the tuple (x,Y,Z, t) where Y (resp. Z) is the set
of all values in Y (resp. Z) and t is the list of tuple identifiers for tuples containing x in T . We end up
with a table with 3n tuples. Given the set of FDs {X → T ,Y → T ,Z → T}, determining whether there
is a valuation of this table that respects the set is equivalent to the 3DM problem. Indeed, the valuation
must map each value x ∈ X (resp. y ∈ Y , x ∈ Z) to one, and only one, tuple identifier because of the FD
X → T (resp. Y → T ,Z → T). By construction, each tuple identifier corresponds to one and only one
value of attribute X (resp. Y , Z), so the relationship between the n values of X (resp. Y , Z) and the n tuple
identifiers is bijective. Hence, such a valuation must contain n distinct tuples, and the set of these distinct
tuples corresponds to a subset of the original table T .

This concludes the proof. ut

To illustrate the proof, let us consider an actual example. We have that X = {a, b, c}, Y = {1, 2, 3}
and Z = {A, B,C}. Let T be the table in Fig. 5a. First, we add tuple identifiers: see Fig. 5b. And then
we transform the result into vague table T ′ with the procedure given in the proof (see Fig. 5c). Finding
a standard table where all the FDs X → T , Y → T , Z → T hold (as in Fig. 5d) is equivalent to finding a
solution to the 3DM problem on the original instance.
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X Y Z

a 2 B
b 1 A
c 3 C
a 1 B
b 3 B

(a) Set of triples T in
X × Y × Z

X Y Z T

a 2 B t1
b 1 A t2
c 3 C t3
a 1 B t4
b 3 B t5

(b) Table T with tuples iden-
tifiers

X Y Z T

a Y Z {t1, t4}
b Y Z {t2, t5}
c Y Z t3
X 1 Z {t4, t2}
X 2 Z t1
X 3 Z {t3, t5}
X Y A t2
X Y B {t4, t1, t5}
X Y C t3

(c) Vague table T ′

X Y Z T

a 2 B t1
b 1 A t2
c 3 C t3
b 1 A t2
a 2 B t1
c 3 C t3
b 1 A t2
a 2 B t1
c 3 C t3

(d) Valuation of T ′ satisfying
X → T , Y → T , and Z → T

Figure 5: Illustration of the proof of Proposition 7.1

Since vague tables are a subset of disjunctive databases, we immediately have the following corollary.

Corollary 7.2. Seamless satisfaction of standard FDs in disjunctive databases is NP-complete.

Hence, weak FDs are probably not appropriate if we desire seamless satisfaction. However, if we are
willing to restrict the set of FDs to those with “monodependence” [21, 19], then seamless satisfaction is
ensured. But as we explain in Section 2, monodependency is quite restrictive.

Even if we were willing to solve potentially difficult computational problems to enforce seamless
satisfaction with weak FDs, an approach that enforces seamless satisfaction by processing all FDs at
once would fail to meet our independence from irrelevant attributes property.

7.2. PFDs Are Computationally Practical

The above leaves an important question open: is the new concept of PFD computationally practical, at
least in some model? We can show that deciding whether PFDs hold in a vague table can be determined
efficiently. This is achieved by indexing the table based on the attributes on the left-hand-side of the
PFD.

Recall that a PFD X →PFD Y holds if and only if for any two tuples t, t′, and any possible values ā of
X, we have that t[X = ā][Y] = t′[X = ā][Y]. Thus if we build a map from the possible values ā of t[X]
for all tuples t, and the corresponding values t[X = ā][Y], then we can readily check if any new tuple
satisfy the PFD.

Let us formalize the process. Given an initially empty vague (or disjunctive) table R, let MX,Y (R)
be an initially empty map (e.g., a hash table) from standard tuples over X to pairs of values: one vague
(or disjunctive) tuples over Y and one non-negative integer counter. It suffices to be able to check that
insertions and removals do not violate the PFD—a tuple update can always be implemented as a removal
followed by an insertion.
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• When a new tuple t is inserted in R, we check if ā is present in MX,Y (R) for each ā ∈ t[X]. If it is
not, then we store the mapping ā→ (t[Y], 1) in MX,Y (R) where the number 1 indicates that exactly
one tuple supports the relation. If ā is present MX,Y (R), we check that the stored value agrees with
t[Y], if it does not, then R does not satisfy the PFD (and so we must reject tuple t), if it does, simply
increment the counter by one.

• When a tuple t is removed from R, for each ā ∈ t[X], we get the corresponding mapping in MX,Y (R)
and decrement the counter. If the counter falls to zero, we remove the corresponding mapping from
MX,Y (R).

If we use a hash table as the underlying data structure for MX,Y (R), then the insertions and removals
require only expected linear time with respect to the number of distinct valuations of t[X].

Thus we have shown that PFDs can be enforced efficiently on vague tables. Further physical designs
issues are outside our scope and left as future work.

8. Comparison with Prior Work

A notion of seamless satisfaction was introduced by Levene and Loizou [21, 19] without a name (it
was called “satisfaction of a set of FDs”) for tables with null markers. Levene and Loizou [19] also
introduced the related notion of additivity. A set F has additivity if satisfaction of each FD guarantees
satisfaction of the reduced cover of F as a set (G is a cover of F if and only if the closure of G is the
same as the closure of F; G is reduced if each FD is in a minimal form). Levene and Loizou prove that,
in the context of tables with null markers, a set of FDs F is additive if and only if it is monodependent.
Monodependency means that, in the closure of F, each attribute is determined only by one FD, and
there are no non-trivial cycles in the set (a cycle XB → A and YA → B is trivial if either Y → B
or (X ∩ Y)A → B). We can check in polynomial time whether a set of FDs is monodependent by
constructing a canonical cover of the set [19]. However, monodependency is defined on the closure of
the set of FDs; as a consequence, sets like {A → B, B → C} are not monodependent. Thus, while quite
powerful, the notion of monodependence is also restrictive. In contrast to this approach, we work with
the set of FDs as given, without relying on a notion of closure. We also use a more general framework,
focusing on vague and disjunctive tables. In this sense, we are following a suggestion of Levene and
Loizou [19, p. 13], who write: “It would be an interesting research topic to extend the results presented
herein to or-sets, i.e. allowing, instead of any occurrence of unk, a finite set of possible values, one of
which is the true value.” We have shown that checking seamless satisfaction in vague tables (hence, in
disjunctive tables) is NP-complete. Also, we have shown that a set of FDs cannot be seamlessly satisfied
over disjunctive tables if such set must also be subject to the properties implied by strong satisfaction
and independence from irrelevant attributes. Thus, our work can be seen as an initial step in developing
Levene and Loizou’s research suggestion.

In other work on FDs with null markers [3], two interpretations are proposed: literal and super-
reflexive FDs. In this work, it is required that FDs be realizable, which is equivalent to implies weak
satisfaction, and to be strongly realizable, which is equivalent to seamless satisfaction. It is also required
that Armstrong satisfaction holds and that checking FDs be computationally practical. In a manner that
is reminiscent (but distinct) from Levene and Loizou [21, 19], sets of super-reflexive FDs must be cycle-
free and have at most one FD determining any one attribute, to support seamless satisfaction. However,
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unlike Levene and Loizou’s monodependency result, the conditions applied on the set of FDs as given,
and not to their closure: a chain of super-reflexive FDs such as A → B and B → C supports seamless
satisfaction.

Another area of research focuses on different models to represent incomplete information. There is
a trade-off between the expressivity and the complexity of such models: simple models are intuitively
easier to understand, but limited in what they can express, while complex models are expressive but
can be difficult to reason with. Since we are mostly interested in practical design applications, we have
focused on two models which are at the bottom and middle of the hierarchy of Das Sarma et al. [14]: our
vague tables are called attribute-or tables there, and are the simplest and less expressive model studied,
while disjunctive tables are in the middle, more powerful than vague tables but less powerful than models
like c-tables [17]. C-tables allow variables in tuples and arbitrary formulas over such variables, so as to
express constraints on the values that such variables can take.

In a different context (probabilistic XML), Amarilli found that determining whether a document is a
possible world given a probabilistic document is NP-hard [1]. Similarly, we determined NP-hardness for
checking seamless satisfaction.

9. Conclusion and Further Research

We have proposed a set of basic properties that we consider desirable for any definition of FDs to fulfill
from a conceptual design point of view. Our properties are independent of the underlying model of
incomplete information (see Section 4).

We have argued that such properties would make the conceptual design of the database easier in many
real-world scenarios. To our knowledge, no prior work has considered a comparable set of desiderata for
the semantics of FDs over incomplete information.

We have then examined several proposals in the literature, including weak and strong satisfaction,
the vertical FDs of Das Sarma et al. [28] and the fuzzy dependencies of Raju and Majumdar [27], and
shown that they do not satisfy one or more of the desired properties. In particular, we have proven
that checking whether a set of FDs is seamlessly satisfied under weak satisfaction is NP-complete (see
Proposition 7.1), thus not meeting the computational efficiency property. Finally, we introduced P-
Functional FDs (PFDs) as a simple notion of FD, and we have proven that PFDs have all the desired
properties on vague tables. Therefore we have shown that while no notion of FD can satisfy all our
desirable properties over disjunctive tables (Theorem 6.4), it is possible to satisfy all of them over vague
tables. Moreover, we have shown that Armstrong’s axioms form a complete and sound axiomatization
for PFDs over vague tables.

While we have argued intuitively for the desirability of the proposed properties, other sets of prop-
erties could be investigated. From a different perspective, it would be interesting to determine maximal
and practical useful sets of desirable properties that can be satisfied in powerful models of incomplete
information, like disjunctive databases and c-tables.
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Appendix

Proof of Lemma 6.2 Over vague tables, X →PFD Y holds if and only if X →PFD A for all attributes
A ∈ Y − X.

Proof:
By definition, if the X →PFD Y holds, then t1[X = ā][Y] = t2[X = ā][Y] for all ā ∈ t1[X] ∩ t2[X],
and therefore t1[X = ā][A] = t2[X = ā][A] for all A ∈ Y − X. Let us consider the reverse implication.
Suppose that X →PFD A for all attributes A ∈ Y − X. We have that t1[X = ā][A] = t2[X = ā][A] for all
ā ∈ t1[X] ∩ t2[X] not only for all A ∈ Y − X, but clearly for all A ∈ Y . Indeed, if A ∈ X ∩ Y , then both
t1[X = ā][A] and t1[X = ā][A] must agree with ā projected on A. By Lemma 3.1, the rest of the result
follows. ut
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Proof of Lemma 6.5 X →S Y ⇒ X →PFD Y .

Proof:
Assume X →S Y but X 6→PFD Y . Then there are tuples t1, t2 with t1[X = ā][Y] , t2[X = ā][Y] for
some ā ∈ t1[X = ā] ∩ t2[X = ā]. Assume without loss of generality that there is b̄ ∈ t1[X = ā][Y] and
b̄ < t2[X = ā][Y]. Then there is a possible world which assigns, to t1, āb̄ for t1[XY] and āc̄ for t2[XY],
c̄ , b̄ (since b̄ < t2[X = ā][Y]). In this world, X → Y does not hold (in standard form); hence X →S Y
fails. Contradiction. ut

Proof of Lemma 6.6 X →PFD Y ⇒ X →W Y .

Proof:
Assume X →PFD Y , and X 6→W Y . Then, there is no possible world where X → Y holds in a standard
manner. This can only happen if there are tuples t1, t2 with t1[X] ∩ t2[X] , ∅ and t1[Y] ∩ t2[Y] = ∅. But
then there is some ā ∈ t1[X] ∩ t2[X], and for that ā, we have that t1[X = ā][Y] , t2[X = ā][Y], hence
contradicting the assumption that X →PFD Y . ut

Proof of Lemma 6.7 PFDs obey Armstrong’s axioms over vague tables.

Proof:
(Reflexivity) To prove that X →PFD X, we unravel the definition: this means that for any two tuples t1,
t2, t1[X = ā][X] = t2[X = ā][X]. But for any t, t[X = ā][X] = {t[X] | t[X = ā]} = {t[X] | t[X] = ā} = {ā}.

(Augmentation) Assume X →PFD Y . Consider any two tuples t1 and t2 that agree on XZ, that is,
there are values ā for X and b̄ for Z such that āb̄ ∈ t1[XZ] ∩ t2[XZ]. Then we have that ā ∈ t1[X] ∩ t2[X].
By the assumption that X →PFD Y , this implies that t1[X = ā][Y] = t2[X = ā][Y]. Therefore, we have
t1[XZ = āb̄][Y] = t2[XZ = āb̄][Y]. Because the projection of t1[XZ = āb̄] and t2[XZ = āb̄] on Z must
agree with b̄, we finally have t1[XZ = āb̄][YZ] = t2[XZ = āb̄][YZ] establishing that XZ →PFD YZ.

(Transitivity) Suppose that X →PFD Y and Y →PFD Z hold over some vague table. If two tuples
t1, t2 agree on X with value x̄, then we want to show that t1[X = x̄][Z] is identical to t2[X = x̄][Z]. By
X →PFD Y , we have that t1[X = x̄][Y] is identical to t2[X = x̄][Y]. Both of these are equal to the same set
of tuples over Y . Consider that Y →PFD Z, and pick a tuple ȳ in t1[X = x̄][Y] = t2[X = x̄][Y]. We have
that t1[Y = ȳ][Z] is identical as a set to t2[Y = ȳ][Z]. We have that t1[X = x̄][Z] and t2[X = x̄][Z] are the
unions of t1[Y = ȳ][Z] and t2[Y = ȳ][Z] respectively over the tuples ȳ in t1[X = x̄][Y] = t2[X = x̄][Y];
they are therefore identical. ut
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