
Scaling up Web Service Composition with the Skyline Operator

Jing Lia, Yuhong Yanb

Dept. of Computer Science and Software Engineering
Concordia University

Montreal, Canada
Email: jing.li.hnu@gmail.coma

Email: yuhong@encs.concordia.cab

Daniel Lemire
LICEF Research Center, TELUQ

Université du Québec
Montreal, Canada

Email: lemire@gmail.com

Abstract—Web service composition enables the provision
of existing resources on the web without investing in new
infrastructure. However, searching an optimal composition
solution with both functional and non-functional requirements
is a computationally demanding problem: the time and space
requirements may be insufferable due to the high number of
available services. To alleviate this problem, we propose the
application of a skyline operation to reduce the search space
and improve the scalability.

We design a system to solve the composition problem with
two separate processes. The Graphplan approach finds a
solution in a short time, the database approach may take
longer time to find a solution, but the solution returned by this
approach always has fewer redundant services with a better
QoS value. Full Solution Indexing using Database (FSIDB)
approach pre-computes all services combinations and store
them as paths in a database. Partial pre-composing approach
chooses “popular” paths generated by FSIDB approach and
store them in a separate table. If the problem can be solved
by these paths, there is no need to search the table with whole
paths. We evaluate our approach with a web service challenge
dataset.

Keywords-Skyline operator; QoS-aware service composition;
database

I. INTRODUCTION

Service-oriented architecture (SOA) offers a platform for
supporting on-demand software systems. The core idea of
automated service composition is to select a set of ap-
propriate services and compose them to fulfill a complex
business task. As web services with similar functionality
increase, researchers consider non-functional properties of
web services, e.g., cost, availability, response time and
throughput, to better satisfy user’s requirement. Many in-
memory approaches based on different techniques have
been successfully employed in solving service composition
problem. These include Integer Linear programming [1],
beam-stack search [2] and the planning model [3]–[5].
For each user request, in-memory approaches construct a
search graph and search this graph for a solution. Thus, in-
memory approaches may be computationally expensive and
are limited by the search space.

To deal with this challenge, we pre-process services and
find a set of candidate services referred as “skyline services”

based on the Skyline operator [6], [7]. Generally, the skyline
operator returns all of the elements that are not dominated
by another element: an element dominates another one if it
is at least as good in every respect, and better in some way.
Intuitively, for every element not in the skyline, there is a
better element in the skyline, not matter what your criteria.
We find skyline services and design a parallel system to
solve service composition problem. Our approach allows us
to solve large composition problems with little storage and
increased speed.

Our system relies on two subsystems:
1) When an in-memory approach is practical, we use

Graphplan. The Graphplan approach constructs a plan-
ning graph and returns a solution in a short time.
However, the solution returned is not the optimal one
and may contain redundant services (a service is redun-
dant if all its outputs used by other services are also
produced by other services [8]).

2) Finally, a database approach relies on pre-computed ser-
vice combinations stored in a relational database. When
a user request comes, a SQL query is generated to query
the database for an optimal solution. A shortcoming
with this approach is that the time spent to search a
solution may be higher than the Graphplan approach if
the database stores a large number of paths.
Different users may have same requests. Thus we
store popular paths by using a Partial pre-composing
approach. If the user request can be solved by these
paths, this Partial-Pre-composing-Approach system can
return an optimal solution without constructing a search
graph.

The rest of this paper is organized as follows. Section II
describes preliminary knowledge and provides the back-
ground of this paper. The architecture of the proposed system
and algorithms are given in Section III. We present the
experiment results in Section IV. Section V reviews related
work and the conclusion is drawn in Section VI.

II. PRELIMINARY

A web service w is defined as a tuple with the following
components:

• win is a finite set of typed input parameters of w. A web
service is invoked only when all its input parameters are
satisfied.

• wout is a finite set of typed output parameters of w. We
refer to the input and output types as concepts. OWL-S
(Web Ontology Language for Web Services [9]) files
are used to define relationships between services and
concepts.

• Q is a finite set of quality-of-service (QoS) values of
w. The criteria for QoS are determined from users’
constraints and preferences.

For illustrative purposes, we consider two criteria: re-
sponse time (R) and throughput (T). Response time is the
interval between the arrival of the request and the beginning
of delivery the response, it is a negative criterion, the higher
the value, the lower the quality [10]. Throughput is the
average rate of successful message delivered per time, it
is a positive criterion, the higher the value, the higher the
quality.

By convention, irrespective of whether it is a positive
or negative criterion, we write Qk(w1) ≥ Qk(w2) (resp.
Qk(w1) > Qk(w2)) if w1 is better or equal (resp. better)
than w2 according to criterion Qk. We say w1 dominates
w2 on concept c denotes as w1 ≺ w2 if and only if w1 and
ws have same output concept c, w1 is as good or better in
all criteria in Q and better in at least one criterion in Q.

Definition 1: w1 ≺ w2 ⇔ Qk(w1) ≥ Qk(w2) ∀k ∈
{1, |Q|} and ∃k ∈ {1, |Q|} such that Qk(w1) > Qk(w2).
Suppose W is a finite set of services, w1 and w2 are two
services in W , |Q| is the number of criteria.

Given a set of web services, the skyline services are the
services that are not dominated by another other service.
For example, Table I shows a list of services and their QoS
values. Suppose they have the same output, according to
Definition 1, we find a skyline set {w1, w2}, w3 does not
belong to the skyline set because it is dominated by w2.

Table I

service response throughput
w1 60 4000
w2 280 16000
w3 340 6000

We say that we have a QoS-aware service composition
problem when we must combine several web services to
satisfy both the functional requirements and the QoS con-
straints. We must aggregate the criteria from the various
services. Services can be invoked in sequence one after the
other (w1;w2), especially when the output of the first web
service is needed for the second one. We can also invoke the
services in parallel (w1||w2) [11], when there is no depen-
dencies between them. Any actual web service combination
can be described as a collection of sequential calls and
parallel calls. The overall response time and throughput of

the service composition process can be calculated as follows:

R(w1; · · · ;wn) =

n∑
i=1

R(wi), (1)

R(w1|| · · · ||wn) = max{R(w1), . . . , R(wn)}, (2)
T (w1; · · · ;wn) = min{T (w1) . . . , T (wn)}, (3)
T (w1|| · · · ||wn) = min{T (w1) . . . , T (wn)}. (4)

A web service composition problem can be represented
by a tuple with the following components:

• S is a finite set of services.
• Cin is a finite set of typed input parameters.
• Cout is a finite set of typed output parameters.
• Q is a finite set of quality criteria.

We use plug-in matching degree to match services: two
services can be connected if the input of a service is a subset
of the output of the other service. This semantic model,
borrowed from [12], is consistent with many proposed web
service composition approaches, e.g., [13]–[15].

III. ARCHITECTURE AND ALGORITHM

In this section, we present the framework of proposed
system and algorithms.

Figure 1 illustrates an architecture overview of our system.
“Web Service Repository” is a searchable repository which
contains all services information. We find skyline services
provided by the service repository. For each concept, we find
a skyline service set among its parent services, services in
this set do not dominant by each other in terms of response
time and throughput. The initialization process takes user
request and skyline services as inputs of the system. We
use two processes to find satisfying solutions separately, a
chosen solution is sent back to the user.

The searching approach plays an important role in this
system. The Graphplan and database approach search solu-
tions separately.

The Graphplan approach first constructs a planning graph
from the initial states (provided in the user request). Layers
of the planning graph form an alternative sequence of
proposition layers Pi and action layers Ai. P layers contain
concepts and A layers contain services. If the inputs of
service w are satisfied in Pi layer, w can be added in Ai

layer and its outputs are added in Pi+1 layer. The graph
construction stops when the goals are contained in the graph
or no more services can be added in action layers. If the
goals are not contained in the planning graph, the problem
can not be solved. If the goals are contained in this graph, a
backward search phase is carried out to find a solution. The
Graphplan approach is an in-memory approach and can only
work when data fits in RAM. Besides, the planning graph is
constructed based on the initial states and goal, to solve N
different user requests, N planning graphs are constructed,
this is time consuming.

Skyline
Service

Automated Path
Computing Engine

Automated
QoS

Computing
Engine

SQL Path Query DatabaseUser

A

B

A

B

C

D

w1

A

B

C

…
ciw2

Graphplan Approach

...

cj

ck

 Web Service
Repository

Database Approach

User query

Backward search result

Path

Skyline Service
Information

OR

Partial
Path Set

Finds a
solution?

No

Yes

Path

Paths

Figure 1. Architectural Overview.

The database approaches can find an optimal solution
with fewer redundant services. With FSIDB approach, we
generate all possible service combinations as paths and store
them in a relational database. Then, when the user request
comes, we compose SQL statements to query the database
for paths which meet user’s requirements. This approach
may spend longer time in searching compared with the
Graphplan approach. As different users may have same
request, we user Partial pre-composing approach to pick
popular paths and store them in a table (Partial Path Set). If
the user request can be solved by these paths, this approach
may return a solution in a very short time.

A. FSIDB approach
This approach is originally proposed in our previous

work [16], in this paper, we pre-process services with skyline
operators and alter the schema of the database, as a result,
the searching speed increases. The information of services
such as name, inputs, outputs and QoS values are stored
in “Skyline Service Information” table. “Automated Path
Computing Engine” computes all service combinations and
store them as paths in “Path” table. Similarly, “Automated
QoS Computing Engine” calculates the corresponding QoS
value of each path and store this value in the database.
Services used in each path are recorded with their layers
in “UsedService” table.

Algorithm 1 PathsBuild repeatedly generates paths with
multiple services (line 3), this process ends when no more

paths can be generated (line 5).

Algorithm 1 PathsBuild
Input: SR: skyline service repository;
Output: pathsSet: a set of paths;

1: i← 2;
2: repeat
3: pathsSet← pathsSet ∪MulPathSetBuild(i);
4: i← i+ 1;
5: until (MulPathSetBuild(i) = φ);

Algorithm 2 MulPathSetBuild creates new paths with
multiple services. The number of generated paths decides
the path id of the first created path in this set(line 12). For
each service ws in skyline service repository SR and service
srv M in path pathM , if Algorithm 3 returns false (line
16), we create a new path path by connecting them together
(line 19). The order of services in path is calculated in
Algorithm 5 (line 20).

Algorithm 3 CheckRedundant checks whether or not
service ws can connect with path pathM . If ws is a skyline
service of pathM and provides part of inputs for pathM ,
and ws is not contained in pathM , ws can connect with
pathM .

Algorithm 4 CreatePath creates a new path path by
connecting service ws and path pathM together. The inputs
of services in this new path can be provided by either

Algorithm 2 MulPathSetBuild(i)
Input: SR,mulPathSets(i− 1);
Output: mulPathSets(i): a set of paths with i services;

1: if i = 2 then
2: counter ← 1
3: for each service srv in SR do
4: for each service ws in srv.skyline do
5: path← createPath(ws, srv, counter, 1)
6: writeService(ws, pathM, path, 1)
7: mulPathSets(i)← mulPathSets(i) ∪ path
8: counter ← counter + 1
9: end for

10: end for
11: else
12: counter ← pathsSet.size
13: for each service ws in SR do
14: for each path pathM in mulPathSets(i− 1) do
15: for each service srv M in PathM.ws do
16: if !checkRedundant(ws, pathM) then
17: layer ← layer of srv M
18: counter ← counter + 1
19: path←

createPath(ws, pathM, counter, layer)
20: writeService(ws, pathM, path, layer)
21: mulPathSets(i) ← mulPathSets(i) ∪

path
22: end if
23: end for
24: end for
25: end for
26: end if
27: return mulPathSets(i)

Algorithm 3 CheckRedundant(ws, pathM)
Input: ws, pathM ;
Output: flag;

1: flag ← false
2: if ws 6⊆ srv M.skyline then
3: flag ← true
4: end if
5: if ws ⊂ pathM.ws then
6: flag ← true
7: end if
8: if ws.out 6⊂ pathM.in then
9: flag ← true

10: end if
11: return flag

inputs of path or outputs of services in preceding layers.
The response time resp and throughput thp of path are
calculated according to Equation (1)- Equation (3).The
order of service layers of path is decided by Algorithm 5.

Algorithm 4 CreatePath
Input: ws, pathM, counter, layer;
Output: path: a new created path;

1: create a new path path
2: path.pathID ← counter
3: path.in← ws.in ∪ pathM.in
4: path.in← path.in \ ws.out
5: path.out← ws.out ∪ pathM.out
6: if layer = 1 then
7: resp = pathM.resp+ ws.resp
8: else
9:

10: if ws.resp > srv M.resp then
11: diffResp = ws.resp− srv M.resp
12: else
13: diffResp = 0
14: end if
15: resp = pathM.resp+ diffResp
16: end if
17: if ws.thp > srv M.thp then
18: thp = srv M.thp
19: else
20: thp = ws.thp
21: end if
22: return path

Algorithm 5 WriteService decides the order of services in
the newly created path path. If service ws is added in front
of pathM (line 1), ws is added as the first layer of path
(line 2), service layers (from 1 to k) of pathM are added
as layers (from 2 to k + 1) of path (line 3-4). If ws is not
added in front of pathM , layers from 1 to k of pathM are
added into path as layers from 1 to k (line 7-8), then we
check in which layer service ws should be added and add
it into path (line 9-10).

B. Partial Pre-composing Approach

In reality, different users may have same requests, in
this approach, firstly, we pick N popular user requests,
then, for each request, we find the path (generated and
stored by FSIDB approach) which solves the request and
has best QoS value. We store these paths in table “Partial
Path Set”. Services which are not used by any of these
paths are seen as non-candidate services and been pruned
(RemovedServiceSet). To further decrease the number
of used services, we find and remove services which are
less used in “Partial Path Set”. Also, we need to delete
paths in “Partial Path Set” which use removed services
(RemovedPathSet). For each path in RemovedPathSet,

Algorithm 5 WriteService
Input: ws, pathM, path, layer;
Output: path.ws;

1: if layer = 1 then
2: path.layer(1).ws← ws
3: for each service layer i of pathM do
4: path.layer(i+ 1).ws← pathM.layer(i).ws
5: end for
6: else
7: for each service layer i of pathM do
8: path.layer(i).ws← pathM.layer(i).ws
9: if i = layer − 1 then

10: path.layer(i).ws← path.layer(i).ws ∪ ws
11: end if
12: end for
13: end if

we search the database for alternative solutions, if no such
solution exists, this query is removed from “Partial Path
Set”. If alternative solutions exist, we pick the one with
best QoS value and add it into “Partial Path Set”. This
process is described in details in Algorithm 6. inConcepts
(resp. outConcepts) represents a set of input (resp. output)
concept id, PathSet represents a set of remaining paths.

Algorithm 6 FindAlternativePaths
Input: PartialPathSet,RemovedServiceSet
Output: PathSet;

1: RemovedPathSet← Index scan on “Partial Path Set”,
“usedservice” and “service”
SELECT * FROM PartialPathSet WHERE pathid
IN(SELECT pathid FROM usedservice WHERE ws id
IN(SELECT ws id FROM service WHERE ws name
IN (‘RemovedServiceSet’))AND pathid IN (
SELECT pathid FROM ‘PartialPathSet’))

2: PathSet← PartialPathSet \RemovedPathSet
3: for each path in RemovedPathSet do
4: AlternativePath ← index scan on table “path”,

“concept” and “usedservice”
SELECT * FROM path WHERE c in IN
(‘inConcepts’) AND c out like ‘%outConcepts%’
AND pathid NOT IN(
SELECT pathid FROM usedservice WHERE
ws id IN(SELECT ws id FROM service WHERE
ws name IN (‘RemovedServiceSet’)))
ORDER BY QoS ASC LIMIT 1;

5: if AlternativePath 6= φ then
6: PathSet← PathSet ∪AlternativePath
7: end if
8: end for
9: return PathSet

When a user request comes, if we can find a path from

“Partial Path Set” to solve the problem, there is no need to
search the whole database.

C. Graphplan Approach

The Graphplan approach contains two stages: a forward
expand stage constructs a planning graph and a backward
search stage retrieves a solution. A planning graph contains
two kinds of layers: the proposition (P) layers contain
concepts and action (A) layers contain services. Layers
of the planning graph form an alternative sequence of
proposition layers and action layers. To construct this graph,
first, we add user’s initial states to P0 layer, then, search the
service repository for services whose input concepts are all
contained in P0 layer. These services are seen as available
services and added into A0 layer. Add all concepts in P0

layer and outputs of services in A0 into P1 layer, so P1 is
a superset of P0 layer. We loop the service repository and
extend the planning graph layer by layer, this process ends
when no more services can be added in action layer. If the
goal can not be found in the planning graph, this means
no solution exists in this composition problem, otherwise,
a backward search phase is carried out to find a solution.
The Backward search stage loops from the goal layer to the
initial layer to extract a solution. To find a solution with
the optimal QoS value, the Backward search stage needs to
check all possible services’ combinations, the complexity of
this process is NP-complete.

IV. EXPERIMENTAL RESULTS

In this section, we give the experimental results performed
to evaluate the performance of the proposed mechanism. We
implement our algorithms using Java platform.

We run experiments on a computer with the following
configuration: 1) CPU: Intel Core i5-2400 at 3.10 GHz,
2) Mainboard: Intel C206, 3) Memory: 8 GB DDR3 SDRAM
PC3-10600, 4) Hard drive: WD2500AAKX 250GB 7200
RPM 16 MB cache SATA, and 5) Operating system: Win-
dows 7 professional 64-bit. We use MySQL 5.6 as the
database. We run each experiment ten times to get the
average wall-clock execution time. The relative standard
error of the running time average is less than 5%.

A. Dataset

We use the test generator program from the WSC-2009
web-service challenge [17] to generate five datasets and
evaluate our work. Each dataset contains a WSDL file which
is the repository of web services. An OWL file defines
the matching parameters by their semantics. WSLA file
describes QoS values of services. The number of services
varies from 1000 to 9000, and the number of concepts
varies from 3000 to 28000 accordingly. Each web service
has around 10 input and 30-40 output concepts.

0.4
0.7

1.8

3.2

3.9

2.9

4.2

6.8

8.4

13.1

0

2

4

6

8

10

12

14

dataset1 dataset2 dataset3 dataset4 dataset5

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Graphplan

FSIDB

Figure 2. Time for web service composition search.

B. Performance analysis

We measure the average execution time spent to solve
the composition problem, varying the number of services
from 1000 to 9000. The experiment results are presented
in Figure 2. Comparing the performance of Graphplan
approach and FSIDB approach, we observe that Graphplan
approach returns a solution in a shorter time than the
FSIDB approach: on the largest dataset, it is three times
as fast. Table II (resp. Table III) shows the results over
solutions with optimal response time (resp. throughput).
The row “#services” shows the number of services in the
returned solution. Table II and table III show that, the FSIDB
approach may return a solution with a better QoS value or
fewer web services. In real system, redundant services in a
solution cost more and spend time. In the path query stage
of database approach, paths with redundant services always
have smaller competitive as they may lead to a worse QoS
value. The Partial pre-composing approach returns a solution
in less than 1s.

In the partial pre-composing approach, we firstly pick
1000 queries from dataset 1 and find paths with either
minimum response time or maximum throughput. We count
how many times each service are used by these paths. Then,
in each round, we delete services from “service repository”
which are least used by these queries. If the solution of
a query is deleted due to services removed from “ser-
vice repository”, we search the “path” table for alternative
solutions. If no such solution exists, this query is removed.
Figures 3 (resp. Figure 4) show the relationship between
services and queries while fetching for paths with minimum
response time (resp. throughput).

V. RELATED WORK

There has been considerable volume of research on sky-
line analysis problem. Paper [6] firstly proposes to extend
the database by a “skyline” operation. Two algorithms are
proposed in this paper. The block-nested-loops algorithm
compares each tuple with chose tuples and uses a window
to store incomparable tuples. However, this method is time
consuming since each tuple is compared with all the tuples in

704

543

407

332

262

200

300

400

500

600

700

800

1000 850 597 382 97

N
u

m
b

e
r

o
f

se
rv

ic
e

s

Number of queries

Figure 3. Remaining queries with optimal response time.

704

542

406

333

262

200

300

400

500

600

700

800

1000 850 597 382 97

N
u

m
b

e
r

o
f

se
rv

ic
e

s

Number of queries

Figure 4. Remaining queries with optimal throughput.

the window. The goal of the divided and conquer algorithm
is to divide the dataset into partitions so each of the partition
fits into the main memory. First, the dataset is divided into
m partitions by a M-way partitioning method, then, this
algorithm computes the skyline of each partition using a
main-memory algorithm. The final skylines are obtained by
a merging algorithm. Wang et al. propose a Skyline Space
Partitioning (SSP) method to provide efficient processing of
unconstrained skyline queries [18]. This method also be-
longs to grid partitioning method, in which, they map multi-
dimensional data space to a tree structured P2P network. The
number of visited nodes is reduced with this technology.

Vlachou [19] et al. propose an angle-based space par-
titioning scheme that can be used in parallel skyline. The
angle space partitioning technique first maps the cartesian
coordinate space to hyperspherical space, then the space
is partitioned into N parts with an angular coordinate.
The authors claim the number of returned local skylines is
declined by applying this technology, so the amount of work
in the merging stage is decreased.

In the Bitmap-based algorithm proposed in [7], each point
is represented as a m bits vector, m is the number of points.
This method may handle problems with multiple dimensions
and is suitable to solve a problem with a small number
of points. However, it is not suitable for dynamic datasets
because a new bitmap is needed when a new point adds or

Table II
EXPERIMENT RESULTS FOR SOLUTIONS WITH OPTIMAL RESPONSE TIME.

Testset1 Testset2 Testset3 Testset4 Testset5
service 1020 3026 5045 7028 9052
concept 3100 9400 16000 22000 28000

FSIDB approach #services 4 8 10 6 12
response time1 760 1250 1080 600 1670

Graphplan approach #services 4 9 12 10 15
response time1 760 1270 1330 1010 1980

1 response time (ms) as a QoS metric

Table III
EXPERIMENT RESULTS FOR SOLUTIONS WITH OPTIMAL THROUGHPUT.

Testset1 Testset2 Testset3 Testset4 Testset5
service 1020 3026 5045 7028 9052
concept 3100 9400 16000 22000 28000

FSIDB approach #services 4 8 10 6 12
throughput1 3000 5000 2000 6000 4000

Graphplan approach #services 4 9 10 10 15
throughput1 3000 4000 2000 5000 2000

1 throughput (invocations per minute) as a QoS metric

disappears in the datasets. The index approach maps high
dimensional points into single dimensional space by using
a B+-tree structure, this approach may find skyline points
in batches [7].

Recently, researchers have applied skyline methods in
solving web service composition problem to prune less
competitive services and reduce space requirement. Alrifai
et al. leverage skyline as a pre-process step before service
composition to remove non-interesting candidates [20]. They
use a hierarchical clustering method to find skyline services,
the basic idea is to cluster services into k (k = 2,4,8,16...)
clusters and select one service from each cluster. A tree
was built to represent the dominant relationships. When
a composition request comes, they first consider only top
service of each class, if the problem can not be solved,
they proceed to the next level, repeat the process until
a solution is found or the whole tree is searched. After
that, they discuss how to increase services’ potential so
they can be included in composition applications. The one
pass algorithm proposed in [21] enumerates and stores
skyline service execution plans. However, non-candidates
may be stored as the enumeration order is not restricted
in this method. To avoid this problem, the authors further
propose a dual progressive algorithm in which execution
plans are enumerated according to their scores. Wu et al. use
skyline technology in service selection area. First, an angle
partitioning method is applied to partition the dataset and
compute local skylines, then a merge method is applied to
obtain global skylines [22]. Du et al. computes the composite
service skyline in presence of QoS correlations [23]. In this
paper, the authors combine pruning criteria with a min-heap
to select skyline services. The efficiency of their approach
is proved by experimental results.

VI. CONCLUSION

Taking advantage of the skyline operator, we design a
system to solve QoS-aware service composition problem.
Skyline analysis prunes less competitive services and re-
duces computational space requirement. When a user request
comes, our system uses Graphplan and database approach
to find solutions with two separate processes. We use two
processes because we want to give user backup solutions. In
the Graphplan approach, a forward expand stage constructs
a search graph and a backward search stage retrieves a solu-
tion. In the database method, we pre-compute service com-
binations as paths and store them in a relational database.
FSIDB approach and Partial pre-composing approach belong
to database approaches. Partial pre-composing approach
chooses popular paths generated by FSIDB approach and
store them in a separate table. Suppose the problem can be
solved by these chosen paths, there is no need to search
the table with whole paths. Compared with the Graphplan
approach, the solution returned by FSIDB approach may
contain fewer services with a better QoS value, but longer
time needed. In future work, we will explore the extension
of our work for multiple QoS criteria.

REFERENCES

[1] L. Cui, S. Kumara, and D. Lee, “Scenario analysis of web
service composition based on multi-criteria mathematical goal
programming,” Service Science, vol. 3, no. 4, pp. 280–303,
December 2011.

[2] H. Kil and W. Nam, “Efficient anytime algorithm for large-
scale qos-aware web service composition,” Int. J. Web Grid
Serv., vol. 9, no. 1, pp. 82–106, Mar. 2013.

[3] G. Zou, Y. Chen, Y. Xiang, R. Huang, and Y. Xu, “AI
planning and combinatorial optimization for web service
composition in cloud computing,” in Proceedings of the Inter-
national Conference on Cloud Computing and Virtualization,
ser. CCV Conference 2010, 2010, pp. 28–35.

[4] Y. Yan, M. Chen, and Y. Yang, “Anytime qos optimization
over the plangraph for web service composition,” in Pro-
ceedings of the 27th Annual ACM Symposium on Applied
Computing, ser. SAC ’12. ACM, 2012, pp. 1968–1975.

[5] M. Kuzu and N. Cicekli, “Dynamic planning approach to
automated web service composition,” Applied Intelligence,
vol. 36, no. 1, pp. 1–28, 2012.

[6] S. Borzsony and K. Kossmann, D. andStocker, “The skyline
operator,” in Data Engineering, 2001. Proceedings. 17th
International Conference on, 2001, pp. 421–430.

[7] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive
skyline computation,” in Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases, ser. VLDB ’01.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2001, pp. 301–310.

[8] M. Chen and Y. Yan, “Redundant service removal in qos-
aware service composition,” in Web Services (ICWS), 2012
IEEE 19th International Conference on, June 2012, pp. 431–
439.

[9] Web ontology language for web services. [Online]. Available:
http://www.w3.org/submission/owl-s/

[10] M. Papazoglou, Web Services: Principles and Technology.
Prentice Hall, 2011.

[11] (2009) Web service challenge
rules. [Online]. Available: http://ws-
challenge.georgetown.edu/wsc09/downloads/WSC2009Rules-
1.1.pdf

[12] S. Bleul, T. Weise, and K. Geihs, “The web service challenge
- a review on semantic web service composition,” Electronic
Communications of the EASST, vol. 17, 2008.

[13] W. Jiang, C. Zhang, Z. Huang, M. Chen, S. Hu, and Z. Liu,
“Qsynth: A tool for qos-aware automatic service compo-
sition,” in Web Services (ICWS), 2010 IEEE International
Conference on, July 2010, pp. 42–49.

[14] J. Li, Y. Yan, and D. Lemire, “A web service composition
method based on compact k2-trees,” in Services Computing
(SCC), 2015 IEEE International Conference on, 2015, pp.
403–410.

[15] P. Rodriguez-Mier, M. Mucientes, and M. Lama, “A dynamic
qos-aware semantic web service composition algorithm,” in
Service-Oriented Computing, ser. Lecture Notes in Computer
Science, C. Liu, H. Ludwig, F. Toumani, and Q. Yu, Eds.
Springer Berlin Heidelberg, 2012, vol. 7636, pp. 623–630.

[16] J. Li, Y. Yan, and D. Lemire, “Full solution indexing using
database for qos-aware web service composition,” in Services
Computing (SCC), 2014 IEEE 11th International Conference
on, June 2014, pp. 99–106.

[17] S. Kona, A. Bansal, M. Blake, S. Bleul, and T. Weise, “Wsc-
2009: A quality of service-oriented web services challenge,”
in Commerce and Enterprise Computing, 2009. CEC ’09.
IEEE Conference on, July 2009, pp. 487–490.

[18] S. Wang, B. C. Ooi, A. Tung, and L. Xu, “Efficient sky-
line query processing on peer-to-peer networks,” in Data
Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference on, April 2007, pp. 1126–1135.

[19] A. Vlachou, C. Doulkeridis, and Y. Kotidis, “Angle-based
space partitioning for efficient parallel skyline computation,”
in Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’08. New
York, NY, USA: ACM, 2008, pp. 227–238.

[20] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline ser-
vices for qos-based web service composition,” in Proceedings
of the 19th International Conference on World Wide Web, ser.
WWW ’10. New York, NY, USA: ACM, 2010, pp. 11–20.

[21] Q. Yu and A. Bouguettaya, “Computing service skylines
over sets of services,” in Web Services (ICWS), 2010 IEEE
International Conference on, July 2010, pp. 481–488.

[22] J. Wu, L. Chen, Q. Yu, L. Kuang, Y. Wang, and Z. Wu,
“Selecting skyline services for qos-aware composition by
upgrading mapreduce paradigm,” Cluster Computing, vol. 16,
no. 4, pp. 693–706, 2013.

[23] Y. Du, H. Hu, W. Song, J. Ding, and J. Lu, “Efficient
computing composite service skyline with qos correlations,”
in Services Computing (SCC), 2015 IEEE International Con-

ference on, 2015, pp. 41–48.

