
1st International Symposium on Web AlGorithms • June 2015

Vectorized VByte Decoding
Jeff Plaisance

Indeed
jplaisance@indeed.com

Nathan Kurz
Verse Communications

nate@verse.com

Daniel Lemire
LICEF, Université du Québec

lemire@gmail.com

Abstract

We consider the ubiquitous technique of VByte compression,
which represents each integer as a variable length sequence of
bytes. The low 7 bits of each byte encode a portion of the inte-
ger, and the high bit of each byte is reserved as a continuation
flag. This flag is set to 1 for all bytes except the last, and the
decoding of each integer is complete when a byte with a high
bit of 0 is encountered. VByte decoding can be a performance
bottleneck especially when the unpredictable lengths of the en-
coded integers cause frequent branch mispredictions. Previous
attempts to accelerate VByte decoding using SIMD vector in-
structions have been disappointing, prodding search engines
such as Google to use more complicated but faster-to-decode
formats for performance-critical code. Our decoder (MASKED

VBYTE) is 2 to 4 times faster than a conventional scalar VByte
decoder, making the format once again competitive with regard
to speed.

I. INTRODUCTION

In many applications, sequences of integers are com-
pressed with VByte to reduce memory usage. For ex-
ample, it is part of the search engine Apache Lucene (un-
der the name vInt). It is used by Google in its Protocol
Buffers interchange format (under the name Varint) and
it is part of the default API in the Go programming lan-
guage. It is also used in databases such as IBM DB2
(under the name Variable Byte) [1].

We can describe the format as follows. Given a non-
negative integer in binary format, and starting from the
least significant bits, we write it out using seven bits in
each byte, with the most significant bit of each byte set
to 0 (for the last byte), or to 1 (in the preceding bytes). In
this manner, integers in [0, 27) are coded using a single
byte, integers in [27, 214) use two bytes and so on. See
Table 1 for examples.

The VByte format is applicable to arbitrary integers
including 32-bit and 64-bit integers. However, we focus
on 32-bit integers for simplicity.

Table 1: VByte form for various powers of two. Within each
word, the most significant bits are presented first. In
the VByte form, the most significant bit of each byte is
in bold.

integer binary form (16 bits) VByte form

1 0000000000000001 00000001
2 0000000000000010 00000010
4 0000000000000100 00000100

128 0000000010000000 10000000, 00000001
256 0000000100000000 10000000, 00000010
512 0000001000000000 10000000, 00000100

16384 0100000000000000 10000000, 10000000, 00000001
32768 1000000000000000 10000000, 10000000, 00000010

Differential coding A common application in infor-
mation retrieval is to compress the list of document iden-
tifiers in an inverted index [5]. In such a case, we would
not code directly the identifiers (x1, x2, . . .), but rather
their successive differences (e.g., x1 − 0, x2 − x1, . . .),
sometimes called deltas or gaps. If the document iden-
tifiers are provided in sorted order, then we might ex-
pect the gaps to be small and thus compressible using
VByte. We refer to this approach as differential coding.
There are several possible approaches to differential cod-
ing. For example, if there are no repeated values, we can
subtract one from each difference (x1 − 0, x2 − x1 −
1, x3 − x2 − 1, . . .) or we can subtract blocks of integers
for greater speed (x1, x2, x3, x4, x5 − x1, x6 − x2, x7 −
x3, x8 − x4, . . .). For simplicity, we only consider gaps
defined as successive differences (x2−x1, . . .). In this in-
stance, we need to compute a prefix sum over the gaps to
recover the original values (i.e., xi = (xi−xi−1)+xi−1).

II. EFFICIENT VBYTE DECODING

One of the benefits of the VByte format is that we can
write an efficient decoder using just a few lines of code
in almost any programming language. A typical de-
coder applies Algorithm 1. In this algorithm, the function
readByte provides byte values in [0, 28) representing
a number x in the VByte format.

Processing each input byte requires only a few inex-
pensive operations (e.g., two additions, one shift, one
mask). However, each byte also involves a branch. On
a recent Intel processor (e.g., one using the Haswell mi-
croarchitecture), a single mispredicted branch can incur
a cost of 15 cycles or more. When all integers are com-
pressed down to one byte, mispredictions are rare and
the performance is high. However, when both one and
two byte values occur in close proximity the branch may
become less predictable and performance may suffer.

For differential coding, we modify this algorithm so
that it decodes the gaps and computes the prefix sum. It
suffices to keep track of the last value decoded and add it
to the decoded gap.

III. SIMD INSTRUCTIONS

Intel processors provide SIMD instructions operating on
128-bit registers (called XMM registers). These regis-
ters can be considered as vectors of two 64-bit integers,
vector2 of four 32-bit integers, vectors of eight 16-bit in-
tegers or vectors of sixteen 8-bit integers.

We review the main SIMD instructions we require in
Table 2. We can roughly judge the computational cost of
an instruction by its latency and reciprocal throughput.
The latency is the minimum number of cycles required

1st International Symposium on Web AlGorithms • June 2015

Algorithm 1 Conventional VByte decoder. The con-
tinue instruction returns the execution to the main loop.
The readByte function returns the next available input
byte.

1: y ← empty array of 32-bit integers
2: while input bytes are available do
3: b← readByte()
4: if b ≤ 128 then append b to y and continue
5: c← b
6: b← readByte()
7: if b ≤ 128 then append c + b × 27 to y and con-

tinue
8: c← (b mod 27)× 27

9: b← readByte()
10: if b ≤ 128 then append c+ b× 214 to y and con-

tinue
11: c← (b mod 27)× 214

12: b← readByte()
13: if b ≤ 128 then append c← (b mod 27)× 221 to

y and continue
14: b← readByte()
15: append c+ (b mod 27)× 228 to y
16: return y

to execute the instruction. The latency is most important
when subsequent operations have to wait for the instruc-
tion to complete. The reciprocal throughput is the inverse
of the maximum number of instructions that can be exe-
cuted per cycle. For example, a reciprocal throughput of
0.5 means that up to two instructions can be executed per
cycle.

We use the movdqu instruction to load or store a reg-
ister. Loading and storing registers has a relatively high
latency (3 cycles). While we can load two registers per
cycle, we can only store one of them to memory. A typ-
ical SIMD instruction is paddd: it adds two vectors of
four 32-bit integers at once.

Sometimes it is necessary to selectively copy the con-
tent from one XMM register to another while possibly
copying and duplicating components to other locations.
We can do so with the pshufd instruction when consid-
ering the registers as vectors of 32-bit integers, or with
the pshufb instruction when registers is considered
vectors of bytes. These instructions take an input reg-
ister v as well as a control mask m and they output a new
vector (vm0

, vm1
, vm2

, vm3
, . . .) with the added conven-

tion that v−1 ≡ 0. Thus, for example, the pshufd in-
struction can copy one particular value to all positions
(using a mask made of 4 identical values). If we wish
to shift by a number of bytes, it can be more efficient to
use a dedicated instruction (psrldq or pslldq) even
though the pshufb instruction could achieve the same
result. Similarly, we can use the pmovsxbd instruction
to more efficiently unpack the first four bytes as four 32-
bit integers.

We can simultaneously shift right by a given number
of bits all of the components of a vector using the instruc-
tions psrlw (16-bit integers), psrld (32-bit integers)
and psrlq (64-bit integers). There are also correspond-

ing left-shift instructions such as psllq. We can also
compute the bitwise OR and bitwise AND between two
128-bit registers using the por and pand instructions.

There is no instruction to shift a vector of 16-bit in-
tegers by different number of bits (e.g., (v1, v2, . . .) →
(v1 � 1, v2 � 2, . . .)) but we can get the equivalent
result by mutiplying integers (e.g., with the pmullw in-
struction). The AVX2 instruction set introduced such
flexible shift instructions (e.g., vpsrlvd), and they are
much faster than a multiplication, but they not applicable
to vectors of 16-bit integers. Intel proposed a new in-
struction set (AVX-512) which contains such an instruc-
tion (vpsrlvw) but it is not yet publicly available.

Our contribution depends crucially on the pmovmskb
instruction. Given a vector of sixteen bytes, it out-
puts a 16-bit value made of the most significant bit of
each of the sixteen input bytes: e.g., given the vector
(128, 128, . . . , 128), pmovmskb would output 0xFFFF.

IV. MASKED VBYTE DECODING

The conventional VByte decoders algorithmically pro-
cess one input byte at a time (see Algorithm 1). To multi-
ply the decoding speed, we want to process larger chunks
of input data at once. Thankfully, commodity Intel and
AMD processors have supported Single instruction, mul-
tiple data (SIMD) instructions since the introduction of
the Pentium 4 in 2001. These instructions can process
several words at once, enabling vectorized algorithms.

Stepanov et al. [4] used SIMD instructions to acceler-
ate the decoding of VByte data (which they call varint-
SU). According to their experimental results, SIMD in-
structions lead to a disappointing speed improvement of
less than 25%, with no gain at all in some instances. To
get higher speeds (e.g., an increase of 3×), they proposed
instead new formats akin to Google’s Group Varint [2].
For simplicity, we do not consider such “Group” alter-
natives further: once we consider different data format, a
wide range of fast SIMD-based compression schemes be-
come available [3]—some of them faster than Stepanov
et al.’s fastest proposal.

Though they did not provide a detailed description,
Stepanov et al.’s approach resembles ours in spirit. Con-
sider the simplified example from Fig. 1. It illustrates the
main steps:

• From the input bytes, we gather the control bits
(1,0,1,0,0,0 in this case) using the pmovmskb in-
struction.

• From the resulting mask, we look up a control mask
in a table and apply the pshufb instruction to move
the bytes. In our example, the first 5 bytes are left
in place (at positions 1, 2, 3, 4, 5) whereas the 5th

byte is moved to position 7. Other output bytes are
set to zero.

• We can then extract on the first 7 bits of the low
bytes (at positions 1, 3, 5, 7) into a new 8-byte reg-
ister. We can also extract the high bytes (positions

1st International Symposium on Web AlGorithms • June 2015

Table 2: Relevant SIMD instructions on Haswell Intel processors with latencies and reciprocal throughput in CPU cycles .

instruction description latency rec. through-
put

movdqu store or retrieve a 128-bit register 3 1/0.5
paddd add four pairs of 32-bit integers 1 0.5
pshufd shuffle four 32-bit integers 1 1
pshufb shuffle sixteen bytes 1 1
psrldq shift right by a number of bytes 1 0.5
pslldq shift left by a number of bytes 1 0.5
pmovsxbd unpack the first four bytes into four 32-bit ints. 1 0.5
pmovsxwd unpack the first four 16-bit integers into four 32-bit ints. 1 0.5
psrlw shift right eight 16-bit integers 1 1
psrld shift right four 32-bit integers 1 1
psrlq shift right two 64-bit integers 1 1
psllq shift left two 64-bit integers 1 1
por bitwise OR between two 128-bit registers 1 0.33
pand bitwise AND between two 128-bit registers 1 0.33

pmullw multiply eight 16-bit integers 5 1
pmovmskb create a 16-bit mask from the most significant bits 3 1

2, 4, 6, 8) into another 8-byte register. On this sec-
ond register, we apply a right shift by 1 bit on the
four 16-bit values (using psrlw). Finally, we com-
pute the bitwise OR of these two registers, combin-
ing the results from the low and high bits.

A naı̈ve implementation of this idea could be slow. In-
deed, we face several performance challenges:

• The pmovmskb instruction has a relatively high la-
tency (e.g., 3 cycles on the Haswell microarchitec-
ture).

• The pmovmskb instruction processes 16 bytes at
once, generating a 16-bit result. Yet looking up a
16-bit value in a table would require a 65536-value
table. Such a large table is likely to stress the CPU
cache.

Moreover, we do not know ahead of time where
coded integers begin and end: a typical segment of
16 bytes might contain the end of one compressed
integer, a few compressed integer at the beginning
of another compressed integer.

Our proposed algorithm works on 12 bytes inputs and
12-bit masks. In practice, we load the input bytes in a
128-bit register containing 16 bytes (using movdqu), but
only the first 12 bytes are considered. For the time being,
let us assume that the segment begins with a complete
encoded integer. Moreover, assume that the 12-bit mask
has been precomputed.

In what follows, we use the convention that (· · ·)k is
a vector of k-bit integers. Because numbers are stored in
binary notation, we have that

(1, 0, 0, 0)8 = (1, 0)16 = (1)32,

that is, all three vectors represent the same binary data.

• If the mask is 00 · · · 00, then the 12 input bytes rep-
resent 12 integers as is. We can unpack the first

4 bytes to 4 32-bit integers (in a 128-bit register)
with the pmovsxbd instruction. This new regis-
ter can then be stored in the output buffer. We can
then shift the input register by 4 bytes using the
psrldq instruction, and apply to pmovsxbd in-
struction again. Repeating a third time, we have de-
coded all 12 integers. We have consumed 12 input
bytes and written 12 integers.

• Otherwise we use the 12-bit mask to look two 8-bit
values in a table 212-entries-wide. The first 8-bit
value is an integer between 2 and 12 indicating how
many input bytes we consume. Though it is not im-
mediately useful to know how many bytes are con-
sumed, we use this number of consumed bytes when
loading the next input bytes. The second 8-bit value
is an index i taking integer values in [0, 170). From
this index, we load up one of 170 control masks. We
then proceed according to the value of the index i:

– If i < 64, then the next 6 integers each fit
in at most two bytes (they are less than 214).
There are exactly 26 = 64 cases correspond-
ing to this scenario. That is, the first integer
can fit in one or two bytes, the second inte-
ger in one or two bytes, and so on, generating
64 distinct cases. For each of the 6 integers
xi, we have the low byte containing the least
significant 7 bits of the integer ai, and option-
ally a high byte containing the next 7 bits bi
(xi = ai + bi2

7). The call to pshufb will
permute the bytes such that the low bytes oc-
cupy the positions 1, 3, 5, 7, 9, 11 whereas the
high bytes, when available, occupy the posi-
tions 2, 4, 6, 8, 10, 12. When a high byte is
not available, the byte value zero is used in-
stead.

For example, when all 6 values are in [27, 214),

1st International Symposium on Web AlGorithms • June 2015

10000000

00000001

10000010

00000011

00010000

00100000

Compressed data (6 bytes)

1 0 1 0 0 0

Mask (6 bits)

Extract mask
(pmovmskb)

10000000 00000001

10000010 00000011

00010000 0

00100000 0

Permute
(pshufb)
using mask
and look-up
table

Permuted bytes

low bytes high bytes

10000000 0

10000010 00000001

00010000 0

00100000 0

Decoded values from the permuted bytes by
extracting the 4 low and 4 high bytes with
masks, shifting down by 1 bit the high bytes
and ORing.

Integers 128, 386, 16, 32

Figure 1: Simplified illustration of vectorized VByte decoding from 6 bytes to four 16-bit integers (128, 386, 16, 32).

the permuted bytes are

(a11, b1, a21, b2, a31, b3, . . . , a61, b6)8

when presented as a vector of bytes with the
short-hand notation ai1 ≡ ai + 27.
From these permuted bytes, we generate two
vectors using bitwise ANDs with fixed masks
(using pand). The first one retains only the
least significant 7 bits of the low bytes: as a
vector of 16-bit integers we have

(a11, b1, a21, b2, a31, b3, . . . , a61, b6)8

AND
(127, 0, 127, 0, 127, 0, . . . , 127, 0)8

= (a1, a2, a3, . . . , a6)16.

The second one retains only the high bytes:

(0, b1, 0, b2, 0, b3, . . . , 0, b6)8.

Considering the latter as a vector of 16-bit in-
tegers, we right shift it by 1 bit (using psrlw)
to get the following vector

(b12
7, b22

7, b32
7, . . . , b62

7)16.

We can then combine (with a bitwise OR using
por) this last vector with the vector contain-
ing the least significant 7 bits of the low bytes.
We have effectively decoded the 6 integers as
16-bit integers: we get

(a1 + b12
7, a2 + b22

7,

a3 + b32
7, a4 + b42

7,

a5 + b52
7, a6 + b62

7)16.

We can unpack the first four to 32-bit inte-
gers using an instruction such as pmovsxwd,
we can then shift by 8 bytes (using psrldq)
and apply pmovsxwd once more to decode
the last two integers.

– If 64 ≤ i < 145, the next 4 encoded integers
fit in at most 3 bytes. We can check that there
are 81 = 34 such cases. The processing is then
similar to the previous case except that we

have up to three bytes per integer (low, mid-
dle and high). The permuted version will re-
arrange the input bytes so that the first 3 bytes
contain the low, middle and high bytes of the
first integer, with the convention that a zero
byte is written when there is no correspond-
ing input byte. The next byte always contain
a zero. Then we store the data corresponding
to the next integer in the next 3 bytes. A zero
byte is added. And so on.

This time, we create 3 new vectors using bit-
wise ANDs with appropriate masks: one re-
taining only the least significant 7 bits from
the low bytes, another retaining only the least
significant 7 bits from the middle bytes and an-
other retaining only the high bytes. As vectors
of 32-bit integers, the second vector is right
shifted by 1 bit whereas the third vector is right
shifted by 2 bits (using psrld). The 3 regis-
ters are then combined with a bitwise OR and
written to the output buffer.

– Finally, when 145 ≤ i < 170), we decode
the next 2 integers. Each of these integers can
consume from 1 to 5 input bytes. There are
52 = 25 such cases.

For simplicity of exposition, we only explain
how we decode the first of the two integers us-
ing 8-byte buffers. The integer can be written
as x1 = a1 + b12

7 + c12
14 + d12

21 + e12
28

where a1, b1, c1, d1 ∈ [0, 27) and e1 ∈ [0, 24).
Assuming that x1 ≥ 228, then the first 5 input
bytes will be (a11, b11, c11, d11, e1)8.

Irrespective of the value of the index i, the first
step is to set the most significant bit of each
input byte to 0 with a bitwise AND. Thus, if
x1 ≥ 228, we get (a1, b1, c1, d1, e1)8.

We then permute the bytes so that we get the
following 8 bytes:

Y = (b1, c1, d1, e1 + a12
8)16.

The last byte is occupied by the value a1
which we can isolate for later use by shifting
right the whole vector by seven bytes (using

1st International Symposium on Web AlGorithms • June 2015

psrldq):

Y ′ = (a1, 0, 0, 0, 0, 0, 0, 0)8.

Using the pmullw instruction, we multiply
the permuted bytes (Y) by the vector

(27, 26, 25, 24)16

to get

(b12
7, c12

6, d12
5, e12

4 + (a12
12 mod 216))16.

As a byte vector, this last vector is equivalent
to

X = (b12
7 mod 28, b1 ÷ 2,

c12
6 mod 28, c1 ÷ 22,

d12
5 mod 28, d1 ÷ 23,

e12
6 mod 28, ?)8

where we used ? to indicate an irrelevant byte
value. We can left shift this last result by one
byte (using psllq):

X ′ = (0, b12
7 mod 28,

b1 ÷ 2, c12
6 mod 28,

c1 ÷ 22, d12
5 mod 28,

d1 ÷ 23, e12
6 mod 28)8

We can combine these two results with the
value a1 isolated earlier (Y ′):

Y ′ OR X OR X = (a1 + b12
7 mod 28, ?,

b1 ÷ 2 + c12
6 mod 28, ?,

c1 ÷ 22 + d12
5 mod 28, ?,

d1 ÷ 23 + e12
6 mod 28, ?)8

where again we use ? to indicate irrelevant
byte values. We can permute this last vector
to get

(a1 + b12
7 mod 28, b1 ÷ 2 + c12

6 mod 28,

c1 ÷ 22 + d12
5 mod 28,

d1 ÷ 23 + e12
6 mod 28, . . .)8

= (a1 + b12
7 + c12

14 + d12
21 + e12

28, . . .)32

Thus, we have effectively decoded the integer
x1.
The actual routine works with two integers
(x1, x2). The content of the first one is ini-
tially stored in the first 8 bytes of a 16-byte
vector whereas the remaining 8 bytes are used
for the second integer. Both integers are de-
coded simultaneously.

An important motivation is to amortize the latency of
the pmovmskb instruction as much as possible. First,
we repeatedly call the pmovmskb instruction until we

have processed up to 48 bytes to compute a correspond-
ing 48-bit mask. Then we repeatedly call the decoding
procedure as long as 12 input bits remain out of the pro-
cessed 48 bytes. After reach call to the 12-byte decoding
procedure, we left shift the mask by the number of con-
sumed bits. Recall that we look up the number of con-
sumed bytes at the beginning of the decoding procedure
so this number is readily available and its determination
does not cause any delay. When fewer than 12 valid bits
remain in the mask, we process another block of 48 input
bytes with pmovmskb. To accelerate further this pro-
cess, and if there are enough input bytes, we maintain
two 48-bit masks (representing 96 input bytes): in this
manner, a 48-bit mask is already available while a new
one is being computed. When fewer than 48 input bytes
but more than 16 input bytes remain, we call pmovmskb
as needed to ensure that we have at least a 12-bit mask.
When it is no longer possible, we fall back on conven-
tional VByte decoding.

Differential Coding We described the decoding pro-
cedure without accounting for differential coding. It can
be added without any major algorithmic change. We
just keep track of last 32-bit integer decoded. We might
store it in the last entry of a vector of four 32-bit integers
(henceforth p = (p1, p2, p3, p4)).

We compute the prefix sum before to writing the de-
coded integers. There are two cases to consider. We ei-
ther write four 32-bit integers or 2 32-bit integers (e.g.,
when writing 6 decoded integers, we first write 4, then 2
integers). In both cases, we permute first the entries of p
so that p ← (p4, p4, p4, p4) using the pshufd instruc-
tion.

• If we decoded 4-integers stored in the vector c.
We left shift the content of c by one integer (using
pslldq) so that c′ ← (0, c1, c2, c3). We add c to c′

using paddd so that c← (c1, c1+ c2, c2+ c3, c3+
c4). We shift the rest by two integers (using again
pslldq) c′ ← (0, 0, c1, c1 + c2) and add c+ c′ =
(c1, c1+c2, c1+c2+c3, c1+c2+c3+c4). Finally,
we add p to this last result p← p+ c+ c′ = (p4 +
c1, pp+c1+c2, p+c1+c2+c3, p+c1+c2+c3+c4).
We can write p as the decoded output.

• The process is similar though less efficient if we
only have two decoded gaps. We start from a vec-
tor containing two gaps c← (c1, c2, ?, ?) where we
indicate irrelevant entries with ?. We can left shift
by one integer c′ ← (0, c1, c2, ?) and add the result
c + c′ = (c1, c1 + c2, ?, ?). Using the pshufd in-
struction, we can copy the value of the second com-
ponent to the third and fourth components, generat-
ing (c1, c1 + c2, c1 + c2, c1 + c2). We can then add
p to this result and store the result back into p. The
first two integers can be written out as output.

V. EXPERIMENTS

We implemented our software in C and C++. The bench-
mark program ran on a Linux server with an Intel i7-

1st International Symposium on Web AlGorithms • June 2015

 0

 500

 1000

 1500

 2000

 2500

 3000

 8 9 10 11 12 13 14 15

d
e
co

d
in

g
 s

p
e
e
d
 (

m
is

)

bits per integer

Masked VByte
 VByte

(a) Absolute speed

 2

 2.5

 3

 3.5

 4

 8 9 10 11 12 13 14 15

re
la

ti
v
e
 s

p
e
e
d

bits per integer

Masked VByte vs. VByte

(b) Ratio of speeds

Figure 2: Performance comparison for various sets of posting
lists (ClueWeb)

4770 processor running at 3.4GHz. This Haswell pro-
cessor has 32 kB of L1 cache and 256 kB of L2 cache per
core with 8MB of L3 cache. The machine has 32GB
of RAM (DDR3-1600 with double-channel). We dis-
abled Turbo Boost and set the processor to run at its
highest clock speed. We report wall-clock timings. Our
software is freely available under an open-source license
(http://maskedvbyte.org) and was compiled us-
ing the GNU GCC 4.8 compiler with the -O3 flag.

For our experiments, we used a collection of posting
lists extracted from the ClueWeb09 (Category B) data
set. ClueWeb09 includes 50 million web pages. We have
one posting list for each of the 1 million most frequent
words—after excluding stop words and applying lemma-
tization. Documents were sorted lexicographically based
on their URL prior to attributing document identifiers.
The posting lists are grouped based on length: we store
and process lists of lengths 2K to 2K+1 − 1 together for
all values of K. Coding and decoding times include dif-
ferential coding. Shorter lists are less compressible than
longer lists since their gaps tend to be larger. Our results
are summarized in Fig. 2. For each group of posting lists
we compute the average bits used per integer after com-
pression: this value ranges from 8 to slightly less than
16. All decoders work on the same compressed data.

When decoding long posting lists to RAM, our speed
is limited by RAM throughput. For this reason, we
decode the compressed data sequentially to buffers fit-

ting in L1 cache (4096 integers). For each group and
each decoder, we compute the average decoding speed
in millions of 32-bit integers per second (mis). For
our MASKED VBYTE decoder, the speeds ranges from
2700mis for the most compressible lists to 650mis for
the less compressible ones. The speed of the conven-
tionalVByte decoder ranges from 1100mis to 300mis.
For all groups of posting lists in our experiments, the
MASKED VBYTE decoder was at least twice as fast as
the conventional VByte decoder. However, for some
groups, the speedup is between 3× and 4×.

If we fully decode all lists instead of decoding to
a buffer that fits in CPU cache, the performance of
MASKED VBYTE can be reduced by about 15%. For
example, instead of a maximal speed of 2700mis,
MASKED VBYTE is limited to 2300mis.

VI. CONCLUSION

To our knowledge, no existing VByte decoder comes
close to the speed of MASKED VBYTE. Given how
the VByte format is a de facto standard, it suggests that
MASKED VBYTE could help optimize a wide range of
existing software without affecting the data formats.

MASKED VBYTE is in production code at Indeed
as part of the open-source analytics platform Imhotep
(http://indeedeng.github.io/imhotep/).

ACKNOWLEDGMENTS

We thank L. Boystov from CMU for preparing and mak-
ing available the posting list collection.

REFERENCES

[1] Bishwaranjan Bhattacharjee, Lipyeow Lim, Timo-
thy Malkemus, George Mihaila, Kenneth Ross, Sher-
man Lau, Cathy McArthur, Zoltan Toth, and Reza
Sherkat. Efficient index compression in DB2 LUW.
Proc. VLDB Endow., 2(2):1462–1473, August 2009.

[2] Jeffrey Dean. Challenges in building large-scale in-
formation retrieval systems: invited talk. WSDM
’09, pages 1–1, New York, NY, USA, 2009. ACM.

[3] Daniel Lemire and Leonid Boytsov. Decoding bil-
lions of integers per second through vectorization.
Softw. Pract. Exper., 44(12), 2014.

[4] Alexander A. Stepanov, Anil R. Gangolli, Daniel E.
Rose, Ryan J. Ernst, and Paramjit S. Oberoi. SIMD-
based decoding of posting lists. CIKM ’11, pages
317–326, New York, NY, USA, 2011. ACM.

[5] Hugh E. Williams and Justin Zobel. Compressing
integers for fast file access. Comput. J., 42(3):193–
201, 1999.

http://maskedvbyte.org
http://indeedeng.github.io/imhotep/

	Introduction
	Efficient VByte Decoding
	SIMD Instructions
	Masked VByte decoding
	Experiments
	Conclusion

