Characterization and genus identification of the rhizobial symbiont from *Caragana arborescens* in Western Canada

Judicaël Moukoumi², Russell K. Hynes^{1, 4}, Timothy J. Dumonceaux¹, Jennifer Town¹, and Nicolas Bélanger³

¹Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK;

²Department of Soil Science, University of Saskatchewan, Saskatoon, SK;

³Centre d'étude de la forêt, UER Science et technologie, Téluq, Université du Québec à Montréal, QC

⁴Corresponding author: Russell K. Hynes, Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, S7N OX2 Tel: 306-956-7638; Fax.: 306-956-7247 E-mail address: russell.hynes@agr.gc.ca

Sequences determined in this study were deposited into GenBank with the following accession numbers: for 16S: JF819654-JF819658; for recA: JF819659-JF819661; for cpn60: JF819662-JF81966 and KC521416-KC521435.

1 Abstract

2	Naturally-occurring nitrogen-fixing symbionts from root nodules of caragana, (Caragana
3	arborescens), growing in central Saskatchewan were isolated following surface
4	sterilizing caragana root nodules, squashing and spreading the contents on yeast-extract
5	mannitol medium. The symbiotic nature of the strains was confirmed following
6	inoculation onto surface sterilized C. arborescens seed in a gnotobiotic Leonard jar
7	system. The Rhizobium isolates from C. arborescens root nodules are intermediate in
8	growth rate (g) (mean of 5 isolates $g = 6.41$) as compared to fast growers, <i>Rhizobium</i>
9	leguminosarum NRG457 (g: 4.44), R. tropici 899 (g: 3.19) and Sinorhizobium meloliti
10	BALSAC (g: 3.45) but faster than the slow grower Bradyrhizobium japonicum USDA
11	110 (g: 13.86) and similar to Mesorhizobium amorpheae (g: 7.76). Nitrogen derived from
12	fixation by measuring changes in δ^{15} N natural abundance in plant tissue confirmed the
13	effectiveness of the strains; approximately $80\% N_2$ from fixation. Strain identification
14	was carried out by determining the sequences of three genes, 16S rRNA-encoding genes,
15	cpn60, and recA. This analysis determined that the symbiotic partner of Canadian C.
16	arborescens belong to genus Mesorhizobium and seem more related to M. loti than to
17	previously described Caragana symbionts like M. caraganae. This is the first report of
18	Mesorhizobium sp nodulating C. arborescens in western Canada.
19	Keywords: Mesorhizobium, Caragana arborescens, nitrogen fixation, cpn60
• •	

21 Introduction

22 *Caragana arborescens*, commonly referred to as caragana or Siberian pea-shrub, 23 is a woody legume in the family *Fabaceae* and native to north-eastern Europe and central 24 Asia. Caragana arborescens was introduced to North America in 1752 and is the favored 25 species in western Canadian prairie for shelterbelts for seeded fields and farm homes 26 (Dietz *et al.* 2008). Its endurance to cold and drought conditions, long life span, ability to 27 fix nitrogen, and height of 4-5 m made it an acceptable choice. C. arborescens tolerance 28 to cold was reported by Hensley and Carpenter (1979). The lowest activation temperature 29 of nodules from the several legumes tested were those of C. arborescens, i.e. 3-5 °C. 30 Symbiotic interactions involving leguminous plants and rhizobia result in the 31 differentiation of root or stem tissue into nodules where these bacteria reduce nitrogen 32 gas to nitrogenous compounds which enter the plant's metabolic machinery. Early studies 33 by Beijerinck suggested that the root nodule isolates from C. arborescens were similar to 34 the slow growing rhizobia from cowpea, soybean or lupin (Allen and Allen 1939). 35 Gregory and Allen (1953) reported markedly different growth rates and other 36 physiological differences from fourteen rhizobial isolates from root nodules of C. 37 arborescens. Plant cross-inoculation groupings placed the rhizobia that nodulate C. 38 arborescens in the Lotus group (Jarvis et al. 1982). Further refinements in the 39 nomenclature of *Rhizobium* spp. resulted in the transfer of the *C. arborescens* symbiont to 40 Mesorhizobium gen nov (Jarvis et al. 1997). In a phylogenetic tree based on the 16S 41 rRNA-encoding gene, Chen et al. (2008) reported that *Mesorhizobium* sp CCBAU 11226, 42 isolated from C. arborescens roots, was closely-related to M. tianshanense USDA 3592 43 (>99.3% sequence identity at the 16S rRNA-encoding locus). To our knowledge, the

identity of the rhizobia species nodulating *C. arborescens* in Canada has not been studiedor reported.

46 In 2007, field plots were established in Saskatchewan, Canada, with pure and 47 mixed plantations of willow (*Salix miyabeana*) and *C. arborescens*, to examine the 48 potential of species association as a strategy for sustained productivity and reduced CO₂ 49 footprint (Moukoumi et al. 2012). Examination of field grown C. arborescens revealed that the roots were nodulated, whereas it was determined with the δ^{15} N natural abundance 50 51 method that as much as 30% of total nitrogen in C. arborescens leaves on poor soils 52 originated from the atmosphere (i.e. N obtained from biological N₂-fixation). These 53 results suggest that the soil had a competent population of rhizobia. The objectives of this 54 study were to: 1) isolate naturally occurring nitrogen-fixing symbionts from C. *arborescens* root nodules, 2) confirm N₂ fixation activity by the δ^{15} N natural abundance 55 56 method, and 3) apply 16S rRNA, recA, and cpn60 sequence analysis to identify the 57 rhizobial symbiont from C. arborescens. Materials and methods 58 59 Isolation of putative Rhizobium strains from C. arborescens root nodules 60 Nodules were collected from the roots of *C. arborescens* plants carefully 61 extracted from field plots in three former agricultural fields in central Saskatchewan; two 62 associated with the University of Saskatchewan, Saskatoon and a third in Harris, Sk, 90 63 km southwest of Saskatoon. Field site characteristics are reported in Moukoumi et al. 64 (2012). Thirty root nodules were surface sterilized by immersing and with shaking in 65 95% ethanol for 20 sec, 5 min in 20% sodium hypochlorite (commercial Clorox bleach

diluted 5 × in sterile dH₂O) and rinsed 7 times in sterile dH₂O. Surface sterilized nodules

67	were squashed, using flame-sterilized forceps, and the nodule contents were spread over		
68	the surface of yeast extract-mannitol agar (YMA); g/1000mL dH ₂ 0: mannitol, 10;		
69	K ₂ HPO ₄ , 0.5; MgSO ₄ .7H ₂ O, 0.2; NaCl, 0.1; CaCO ₃ , 0.01; yeast extract (Difco, Detroit)		
70	0.5; agar, 15g, in Petri dishes and incubated at 23 °C (Weaver and Frederick 1982). After		
71	4 d colonies of putative Rhizobium strains were restreaked on YMA and incubated at		
72	23°C. This process was repeated 2 additional times to insure purity before inoculating		
73	YM broth (Weaver and Frederick 1982). After 4 days of incubation with shaking at 150		
74	rpm at 23 °C, the cultures were streaked onto YMA and nutrient agar (Difco, Detroit) for		
75	additional purity checks. Five putative isolates named Laura, Harris, Sovereign, Thrasher		
76	and Kernan were retained and preserved in a -80 °C freezer.		
77	Generation time (g) studies – comparison to reference Rhizobiaceae isolates		
78	One hundred mL of YM broth in 250 mL baffled flasks was inoculated with 0.2		
79	mL of stationary phase cultures of each isolate and reference isolates from other genera		
80	of rhizobia. All isolates were incubated at 23 °C with shaking at 150 rpm. Population		
81	densities of rhizobial isolates Laura, Harris, Sovereign, Thrasher and Kernan,		
82	Sinorhizobium meloliti BALSAC, Rhizobium leguminosarun NRG457 (Agriculture Agri-		
83	Food Canada), R. tropici 899, a.k.a. CIAT899 (University of Minnesota),		
84	Bradyrhizobium japonicum USDA 110 (kindly provided by Guoping Yang,		
85	BeckerUnderwood Inc.), and M. amorpheae (DSM No. 21831) were determined by serial		
86	dilution and plating on YMA. Generation time (g) was determined by first calculating the		
87	number of generations (n) that occurred during the logarithmic phase of growth (N and		
88	No: final and original population densities) from the equations:		
89	$n = (\log_{10} N - \log_{10} No) / \log_{10} 2$		

- 90 Generation time was calculated from the equation: g = t/n
- 91 where t is elapsed time from N and No. Mean generation times were calculated from
 92 triplicated growth experiments with each isolate.
- 93 Leonard jar studies

94 C. arborescens seeds, provided by the Agroforestry Development Centre (Indian 95 Head, Sk.), were surface sterilized using a 95% ethanol solution for 25 sec followed by a 96 20% sodium hypochlorite (as above) solution for 20 min. Following 7 sterile dH_2O 97 rinses, the seed was placed in a laminar flow hood to dry. The seeds were then pre-98 germinated on moistened sterile filter paper and two seedlings were later transplanted 99 into sterilized Leonard jar assemblies (Vincent 1970). The upper part of the assembly, 100 300 mL, was filled with acid washed sand and the lower part of the assembly, 500 mL, 101 contained N-free plant nutrient solution (Hoagland and Arnon 1950). Putative Rhizobium 102 isolates grown in YM broth and incubated on a reciprocal shaker (150 rpm) at 23°C for 4 103 days were applied in 1 mL aliquots to each seedling. Treatments included C. arborescens 104 seedlings inoculated individually with strains Laura, Harris, Sovereign, Thrasher and 105 Kernan and the non-inoculated control. C. arborescens was grown in a Conviron plant 106 growth room with day/night temperatures of 23 and 20°C and 10 hours of light and 14 107 hours of darkness. After 90 days, C. arborescens shoots were cut from the roots, dried at 65°C for 3 days, weighed and finely ground before ${}^{15}N/{}^{14}N$ and total C and N analysis. 108 109 Foliage sampling and analyses of nitrogen (N), carbon (C) and N isotopes 110 The oven-dried samples were coarsely ground prior to leaf N and C determination by dry combustion and infrared detection using a Leco CNS 2000 Analyzer (LECO 111

112 Corporation, St. Joseph, MI). Sub-samples were then further ground (<60 μ m) and 1.0 ±

113	0.15 mg was analyzed for ${}^{15}\text{N}/{}^{14}\text{N}$ ratios using a continuous flow isotope ratio mass
114	spectrometer interfaced with a RoboPrep Sample Converter (Europa Scientific, Crewe,
115	UK). The working standard for ${}^{15}N/{}^{14}N$ was pea grain (atom % ${}^{15}N$ content = 0.36726).
116	The deviation of the sample ${}^{15}N/{}^{14}N$ ratio from that of the atmosphere ($\delta^{15}N$) was
117	calculated as follows:
118	$\delta^{15}N = ((R_{sample}/R_{standard}) - 1) \times 1000$
119	
120	Molecular phylogenetic studies of the putative Rhizobium strains
121	DNA was extracted from 200 μ L of an overnight culture of each isolate using a
122	modified bead-beating protocol as described by Hill et al. (2005a). Final DNA pellets
123	were dissolved in 100 μL of 10 mM Tris-Cl pH 8.0 with 1mM EDTA. Two μL of each
124	extract were used as a template in a PCR with primers F1 and R2 (Dorsch and
125	Stackebrandt 1992), which amplify nucleotides 11-536 of the 16S rRNA-encoding gene
126	(numbering according to E. coli sequence). recA gene fragments were amplified using
127	primers recA63F and recA555R as described by Gaunt et al. (2001). 16S rRNA and recA
128	amplicons were sequenced directly using the amplification primers. For amplification of
129	the cpn60 universal target (cpn60 UT) (Hill et al. 2004), a cocktail of primers H279/H280

110

130 and H1612/H1613 was used as described (Hill et al. 2005b) with an annealing

131 temperature of 50°C. Amplicons were generated using combinatorial enhancer solution

(CES) according to Ralser et al. (2006) in order to improve the representation of all 132

133 copies of cpn60 from each isolate. cpn60 UT PCR products were ligated into pGEM-T

134 Easy PCR product cloning vector (Promega, Madison, WI) according to the

manufacturer's directions prior to sequencing, and a total of 48 cpn60 UT clones was 135

136	sequenced for each isolate. Sequences were analyzed using pregap v1.5/gap v4.10			
137	(Staden package) to generate contigs that were manually checked for quality and trimmed			
138	of primer sequences.			
139	Taxonomic analysis. 16S rRNA, recA, and cpn60 UT sequences were aligned using the			
140	default parameters of clustalw (Thompson et al. 1994) to determine sequence identities.			
141	Phylogenetic analysis was performed using the neighbor joining method (Saitou at al.			
142	1987) with bootstrapping using 500 replicates. Phylogenetic trees were generated using			
143	MEGA4 (Tamura et al. 2007).			
144	Whole-genome alignments and determination of average nucleotide identity (ANI) by			
145	MumMer (ANIm), ANI by BLAST (ANIb), and tetranucleotide frequency correlations			
146	(Tetra) were determined using JSpecies as described by Richter and Rossello-Mora			
147	(2009). Mesorhizobium genomic sequences were obtained from NCBI (M. ciceri biovar			
148	biserrulae WSM1271, M. australicum WSM2073, M. opportunistum WSM2075, and M.			
149	loti MAFF303099) or from the Joint Genome Initiative Genome Portal			
150	(http://genome.jgi-psf.org/) for M. loti WSM1293, M. loti R7A, M. loti R88b, M. loti			
151	NZP2037, M. loti R7A, and Mesorhizobium sp. BNC1. Sequences of all cpn60 UT copies			
152	that were not available in GenBank or in cpnDB were retrieved from the draft genomes			
153	using BLASTp with the M. loti cpn60 UT peptide sequence (cpnDB ID b4797) as the			
154	query.			
155	Data analysis			
156	Means of triplicate samples of each treatment plus/minus standard errors are			
157	reported.			

Results

159	Isolation of putative Rhizobium strains from C. arborescens root nodules		
160	Rhizobium-like colonies were randomly selected from YMA plates previously		
161	streaked with the contents from squashed root nodules of C. arborescens. Visual		
162	characterization of the five putative isolates of Rhizobium was as follows: colonies were		
163	opaque white, raised and round and 0.5 to 1 mm in diameter after 6 days growth at 23°C.		
164	Generation time (g) studies – comparison to reference Rhizobiaceae isolates		
165	Generation times (g) of the five rhizobia isolates were compared to fast,		
166	intermediate and slow growing Rhizobiaceae isolates (Table 1). The isolates from C.		
167	arborescens root nodules were intermediate in growth rate as compared to the fast		
168	growing R. leguminosarum NRG457, g: 4.44; R. tropici 899, g: 3.19 and S. meloti		
169	BALSAC, g: 3.45 and slow growing <i>B. japonicum</i> USDA110, g: 13.86 (Table 1). The		
170	mean g for the C. arborescens root nodules isolates was 6.41, similar to that of an		
171	intermediate growing M. amorpheae, g: 7.76. Acid production by the C. arborescens root		
172	nodules isolates, S. meloliti BALSAC, R. tropici 899, R. leguminosarum NRG457 and		
173	alkali production by B. japonicum USDA 110 in YM broth were noted (data not		
174	presented).		

Leonard jar studies 175

Nodules with red interiors developed on C. arborescens roots, indicative of the 176 presence of leghemoglobin and effective nitrogen-fixing activity. C. arborescens root 177 178 nodules were elongate, approximately 3 by 1.5 mm and typically there were 20 - 30 179 nodules per plant. All inoculated plants growing in a N-free medium (Hoagland and 180 Arnon 1950) had dark green leaves, suggesting that these plants were supplied N by symbiotic nitrogen fixation. Non-inoculated C. arborescens plants displayed stunted 181

182 growth, the roots did not have nodules and the leaves were yellow, indicative of N183 deprivation.

184	Nitrogen and C concentrations and N isotopes data generated from the leaves			
185	collected from the nodulated and non-nodulated <i>C. arborescens</i> are presented in Table 2.			
186	Nodulated plants had on average 4.9 and 3.2 times higher percent N and C than the non-			
187	nodulated (non-inoculated) plants (Table 2). $\delta^{15}N$ varied from -1.84 to -1.44 for the			
188	nodulated plants. $\delta^{15}N$ of the non-inoculated plants was 0.8 indicative that all of the N			
189	was derived from the seed.			
190	Molecular taxonomic studies of the putative Rhizobium strains			
191	Comparison of the 16S rRNA-encoding genes of the five isolates to the			
192	corresponding reference strains suggested that the isolates formed two groups within the			
193	genus Mesorhizobium (Figure 1). The 16S rRNA-encoding sequences of isolates Laura			
194	and Kernan were closely related to M. amorphae, M. australicum and Mesorhizobium			
195	isolates CCBAU 11231, CCBAU 11214, and CCBAU 11208 identified by Chen et al.			
196	(2008). Isolates Harris, Sovereign and Thrasher had identical 16S rRNA-encoding			
197	sequences that were closely related to a group of <i>Mesorhizobium</i> spp. including <i>M</i> .			
198	caraganae, M. loti, and CCBAU 11226 (Chen et al. 2008). Although the 16S rRNA-			
199	encoding sequences of all the isolates and reference strains formed distinct clustering			
200	patterns that were consistent with those described by Chen et al. (2008), the sequences			
201	were highly similar to one another, sharing sequence identities > 97% (data not shown).			
202	We also examined two protein-encoding genes, cpn60 and recA, for determining			
203	the taxonomic affiliations of the isolates. Since cpn60 is present in multiple copies in the			
204	root-nodulating Alphaproteobacteria (Lund 2009), we examined all of the currently			

205 available complete genomes for *Mesorhizobium* spp. Representative results are shown in 206 Table 3. Determination of the genomic identity parameters described by Richter and 207 Rossello-Mora (2009) revealed that most of these sequenced strains can be identified as 208 separate species, consistent with their current taxonomic designations, although their 209 close phylogenetic relationship is reflected in the generally high Tetra scores that were 210 observed (Table 3). Among the 5 *M. loti* genomes that were compared, however, only 211 one pair, M. loti MAFF303099 and M. loti R7A, had sufficiently similar genomic 212 sequences to be considered the same species according to the metrics suggested by 213 Richter and Rossello-Mora (2009) (Table 3). Turner et al. (2002) suggested that strain 214 MAFF303099 has been mis-assigned to *M. loti* and should instead be classified as *M*. 215 huakuii biovar loti. Unfortunately the lack of a complete genome sequence for the latter 216 strain precludes its inclusion in this whole-genome sequence analysis. All of the other 217 pairs of *M. loti* genomes fell below the sequence similarity cutoffs defined by Richter and 218 Rossello-Mora (2009) for grouping into the same species (Table 3 and data not shown). 219 Among all of the strains, the number of copies of *cpn60* varied, from as few as 2 copies 220 in *Mesorhizobium* spp. BNC1 to as many as 5 in *M. loti* MAFF303099. Some of these 221 copies shared a very high sequence identity (up to 1.0), despite being from distinct 222 species as shown by JSpecies (Table 3). Other *cpn60* copies were highly distinct from 223 one another, with pairwise cpn60 UT sequence identities of 0.74-0.76. 224 Clones corresponding to the *cpn60* UT were retrieved for all isolates. The number 225 of distinct *cpn60* copies that were retrieved for each isolate varied from 3 (isolate 226 Sovereign) to 7 (isolate Thrasher) (Table 4). In all cases, the *cpn60* copies from a single 227 isolate were most closely related to 2 or 3 different *Mesorhizobium* spp., with sequence

228	identities ranging from 87.2% to 98.7% (Table 4). Phylogenetic analysis of all of the		
229	cpn60 copies observed from all isolates revealed that several of the cpn60 sequences from		
230	the isolates were identical or nearly identical to one another (supplemental Figure 1^{1}).		
231	Only one cpn60 sequence was observed in all of the strains (Sovereign cpn60-2, Laura		
232	cpn60-4, Harris cpn60-3, Thrasher cpn60-2, Kernan cpn60-2) This cpn60 sequence		
233	shared ~94% sequence identity with 3 of the cpn60 copies from M. loti MAFF303099. A		
234	few other $cpn60$ sequences were shared by 2 or 3 isolates (supplemental Figure 1 ¹).		
235	Generally the cpn60 sequences of the C. arborescens-nodulating isolates described here		
236	tended to cluster together (Supplemental Figure 1 ¹).		
237	Finally, to place these isolates in the context of reference strains of		
238	Mesorhizobium as well as the isolates reported by Chen et al. (2008) and Yan et al.		
239	(2007) the sequences of <i>recA</i> fragments for isolates Sovereign, Thrasher and Kernan were		
240	determined. These sequences were all identical to one another and phylogenetic analysis		
241	placed these isolates in a clade with <i>M. loti</i> LMG 6125 as well as <i>M. ciceri</i> (Figure 2).		
242	The isolates reported here appeared to be distinct from the strains isolated by Chen et al.		
243	that form a symbiotic relationship with C. arborescens (Chen et al. 2008, Yan et al.		
244	2007).		
245	Discussion		
246	Mesorhizobium isolates were collected from C. arborescens root nodules grown		

247 in soil containing naturally occurring and effective rhizobia. This study is part of a larger

- study examining species association and nitrogen contribution from N-fixing *C*.
- 249 arborescens to Salix miyabeana (Moukoumi et al. 2012). Wind carrying soil laden with

¹ Supplemental data are available with this article through the journal web site at

250 effective rhizobia for caragana from near-by (2 km or more) rows of caragana is the 251 likely source of inoculum since these agricultural sites had never been planted with 252 caragana. The origin of this rhizobial population is unknown, but presumably was 253 introduced to Saskatchewan soils from northern Asia with C. arborescens over 1 century 254 ago (Cram 1969). The importance of an effective rhizobial symbiont for survival and 255 establishment of C. arborescens was highlighted when C. arborescens was introduced in 256 New Zealand for revegetation of semiarid areas (Wills 1982). Nodulated by ineffective 257 rhizobia, C. arborescens was chlorotic, slow to establish and displayed low survival rates 258 (Wills 1982). The long history of cultivating C. arborescens in Saskatchewan to mitigate 259 wind erosion of soils has resulted in the soil becoming enriched with effective rhizobial 260 symbionts. Indeed, Vlassak et al. (1973) reported in a Saskatchewan field study using the 261 acetylene reduction technique that C. arborescens fixed 335 μ g N/g soil /h. In the present 262 study, the contribution of fixed nitrogen and identity of the rhizobial symbiont of C. *arborescens* growing in western Canada was determined by δ^{15} N natural abundance 263 264 method and sequence analysis of selected genes.

265 *Mesorhizobium* spp. from this study exhibited an intermediate growth rate (g) 266 similar to that described of other rhizobia isolated from C. arborescens root nodules from 267 diverse locations and similar to Mesorhizobium amorpheae; slower than, for example, 268 Rhizobium leguminosarum NRG457, R. tropici 899 and Sinorhizobium meloliti 269 BALSAC, but faster than Bradyrhizobium japonicum USDA 110 (Gregory and Allen 270 1953, Jarvis et al. 1982, Willems, 2006). *Mesorhizobium* spp. from this study formed 271 effective nodules on *C. arborescens* roots and augmented the allocation of N into the leaves in a gnotobiotic system (Vincent 1970). 272

273	Plant tissue from C. arborescens inoculated with isolates Laura, Harris,
274	Sovereign, Thrasher and Kernan had much higher total N content and a negative $\delta^{15}N$
275	signal indicative of effective symbiotic N_2 fixation. The ¹⁵ N natural abundance method is
276	based on the premise that plants that do not fix atmospheric N_2 have a positive ${}^{15}N$
277	content while N ₂ -fixing plants have a lower or negative ¹⁵ N content. Non-fixing plants
278	extract soil N in the form of NH_4^+ and NO_3^- (high ¹⁵ N content) while N ₂ -fixing plants rely
279	on atmospheric N_2 (low ^{15}N content). Consequently, non-fixing plants have positive $\delta^{15}N$
280	content and N ₂ -fixing plants dilute the $\delta^{15}N$, yielding negative $\delta^{15}N$ content (Galiana et
281	al. 2002).
282	Jensen (1967) reported rhizobia that nodulated Lotus spp. formed a cross-
283	inoculation group that included several other legumes including C. arborescens. The new
284	species, Rhizobium loti that formed nodules on C. arborescens, first appeared in Bergey's
285	Manual of Systematic Bacteriology Volume 1 in 1984 but was later transferred to the
286	new genus, Mesorhizobium (Jarvis et al. 1997). Mesorhizobium spp. have been identified
287	by 16S rRNA gene sequence analysis as being responsible for forming nodules on C.
288	arborescens in China and Russia (Chen et al. 2008, Baymiev et al. 2010).
289	Determination of the 16S rRNA-encoding sequences of the isolates revealed
290	clustering patterns that were consistent with those reported by Chen et al. (2008), with
291	isolates Laura and Kernan apparently more similar to M. amorphae and M. australicum,
292	and the other isolates clustering with a number of different Mesorhizobium spp. that have
293	been reported to nodulate C. arborescens, including M. caraganae (Guan et al. 2008) and
294	Mesorhizbium spp. CCBAU 11226 (Chen et al 2008). These results suggested that the

295 isolates represented two groups of strains, but the high level of sequence conservation at 296 the 16S locus among these strains made it difficult to discern their taxonomic relatedness. 297 Since the high similarity of the 16S rRNA-encoding sequences of the isolates 298 and reference strains made it difficult to determine the taxonomic assignment of the 299 isolates, two protein-encoding genes were examined. The 555 nucleotide (185 amino 300 acid) cpn60 UT can predict taxonomic assignments using a genomic sequence identity 301 prediction model (Verbeke et al. 2011) and has been proposed as a DNA barcode marker 302 for Bacteria due to its high sequence diversity and barcode gap compared to 16S rRNA-303 encoding genes (Links et al. 2012). Furthermore, *cpn60* UT sequences can be compared 304 to cpnDB, a publicly available database of *cpn60* UT sequences (www.cpndb.ca; Hill et 305 al. 2004). Despite these advantages, *Mesorhizobium* spp. and other root-nodulating 306 Alphaproteobacteria harbor multiple, distinct copies of the cpn60 gene, some of which 307 are thought to play a role in the root-nodulating phenotype (Lund 2009, Shimoda et al. 308 2008, Okubo et al. 2012, Wallington and Lund 1994). This has the potential to 309 complicate the assignment of taxonomic identities using *cpn60* gene sequences since 310 gene transfer events among otherwise distinct species that have similar functional roles 311 may occur. We therefore compared the cpn60 UT sequences for each of the reference 312 strains for which all copies of cpn60 are known. This analysis revealed that certain cpn60 313 copies shared very high sequence identities among demonstrably distinct species of 314 Mesorhizobium (Table 3), which may indeed reflect relatively recent horizontal gene 315 transfer events. However, we could find no evidence in cpnDB that any of these 316 sequences were found in any genus besides *Mesorhizobium* spp., which suggests that 317 such gene transfer events may be restricted to taxonomically closely related

Mesorhizobium spp. The *cpn60* UT may therefore be useful as a taxonomic marker for *Mesorhizobium* spp., but it seems unable to resolve below the genus level in this case,
unlike for most other taxonomic groups (Links et al. 2012). This is likely true of other
root-nodulating *Alphaproteobacteria* as well.
Comparing the *cpn60* UT sequences of the isolates to one another and to

323 reference sequences revealed that the various *cpn60* copies of the isolates tended to 324 cluster together, with several cases of identical cpn60 UT sequences coming from 325 different isolates. Notably, one sequence was shared in all 5 of the isolates (supplemental 326 Figure 1) which was most closely related (94% sequence identity) to one of the cpn60327 genes of *M. loti* MAFF303099 (cpnDB ID b1085). It is possible that this copy of *cpn60* 328 plays a role in the nodulation host range of these isolates, since they were found in 329 distinct geographic regions of Saskatchewan but nodulate the same plant species. 330 *recA* has been examined as a sequence that could be used to predict genomic 331 sequence identity (Zeigler 2003), and has been shown to display similar phylogenies to 332 the 16S rRNA-encoding gene for root-nodulating Alphaproteobacteria with somewhat 333 higher sequence divergence (Gaunt et al. 2001). recA analysis indicated that isolates 334 Sovereign, Thrasher and Kernan form a group with *M. loti* and *M. ciceri* and are 335 apparently distinct from the Chinese isolates reported by Chen et al. (2008) and Yan et al. 336 (2007). Consistent with this, isolates Sovereign and Thrasher also had identical 16S 337 rRNA-encoding gene fragments. However, while recA is typically a better predictor of 338 species assignment than 16S rRNA-encoding genes (Ziegler 2003), the 16S rRNA-339 encoding gene fragment of isolate Kernan was only 98% identical to the recA gene 340 fragment of isolates Sovereign and Thrasher (Figure 1 and 2). This discrepancy could be

341 due to the fact that full-length *recA* genes were not determined in this study. Altogether, 342 molecular taxonomic analysis using the 3 genes investigated consistently placed all of the 343 isolates within the genus *Mesorhizobium*, although none of the three markers was able to 344 conclusively assign these isolates to a known species. These results underscore the 345 difficulties in assigning taxonomic identities to Mesorhizobium spp., even with whole 346 genome sequences available (Sahgal and Johri 2006). It is likely that the determination 347 of the whole or partial genomic sequences of the isolates as suggested by Richter and 348 Rossello-Mora (2009) would help to resolve this.

349

Acknowledgements

This project is supported by the Saskatchewan Ministry of Agriculture Strategic Research Program: Soils and Environment-Soil Biological Processes and in part by a NSERC Strategic Project Grant. We thank Dr.'s Richard Farrell, Department of Soil Science, University of Saskatchewan for his contributions to N dynamics, including ¹⁵N natural abundance work in this study and S. Hemmingsen, NRC-Plant Biotechnology Institute for assistance with DNA sequencing. This manuscript is dedicated to the late Dr. Peter Graham who provided the inspiration to complete this work.

357

358 **References**

359

- Allen, O.N. and Allen, E.K. 1939. Root nodule bacteria of some tropical leguminous
 plants. Soil Sci. 47: 63-76.
- 361 plants. Soil Sci. **47:** 63-76.
- Baymiev, A.K., Ptitsyn, K.G., and Baimiev, A.K. 2010. Influence of the introduction of
- 363 *Caragana arborescens* on the composition of its root-nodule bacteria.
- 364 Microbiology **79**: 115-120.
- 365 Chen, W.F., Guan, S.H., Zhao, C.T., Yan, X.R., Man, C.X., Wang, E.T., and Chen, W.X.

366 2008. Different *Mesorhizobium* species associated with *Caragana* symbiotic genes
 367 and have common host ranges. FEMS Microbiol Lett **283**: 203-209.

- 368 Cram, W.H. 1969. Breeding and genetics of caragana. The Forestry Chronicle 45: 400369 401.
- 370 Dietz, D.R., Slabaugh, P.E. and Bonner, F.T. 2008. Caragana arborescens Lam. In The
- 371 Woody Plant Seed Manual, Agriculture Handbook No. 727, *Edited by* F. T. Bonner
- and R. P. Karrfalt. U.S. Department of Agriculture, Forest Service, Washington,
- 373 DC. pp. 321-323.
- 374 Dorsch, M., and Stackebrandt, E. 1992. Some modifications in the procedure of direct
 375 sequencing of PCR amplified 16S rDNA. J. Microbiol. Meth. 16: 271-279.
- 376 Galiana A., Balle P., Kang, A.N., Domenach, A,M. 2002. Nitrogen fixation estimated by
- the 15N natural abundance method in *Acacia mangium* Willd. inoculated with
- 378 *Bradyrhizobium* sp. and grown in silvicultural conditions. Soil Biol. Biochem. 34:
- 379 251–262.

380	Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., Lloyd-Macgilp, S. A. and Young, J. P.		
381	2001. Phylogenies of atpD and recA support the small subunit rRNA-based		
382	classification of rhizobia. Int. J. Syst. Evol. Microbiol. 51: 2037-2048.		
383	Gregory, K.F. and Allen, O.N. 1953. Physiological variations and host plant specificities		
384	of rhizobia isolated from Caragana arborescens L. Can. J. Bot. 31: 730-738.		
385	Guan, S.H., Chen, W.F., Wang, E.T., Lu, Y.L., Yan, X.R., Zhang, X.X., and Chen, W.X.		
386	2008. Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with		
387	Caragana spp. in China. Int. J. Syst. Evol. Microbiol. 58: 2646 - 2653.		
388	Hensley D.L., and Carpenter P.L. 1979. The effect of temperature on N_2 fixation (C_2H_2		
389	reduction) by nodules of legume and actinomycete-nodulated woody species. Bot.		
390	Gaz. 140 : 558-564.		
391	Hill, J. E., Penny, S. L., Crowell, K. G., Goh, S. H and Hemmingsen, S. M. 2004.		
392	cpnDB: A Chaperonin Sequence Database. Genome Res. 14:1669-1675.		
393	Hill, J. E., Hemmingsen, S. M., Goldade, B. G., Dumonceaux, T. J., Klassen, J., Zijlstra,		
394	R. T., Goh, S. H., and Van Kessel, A. G. 2005 (a). Comparison of ileum microflora		
395	of pigs fed corn-, wheat-, or barley-based diets by chaperonin-60 sequencing and		
396	quantitative PCR. Appl. Environ.Microbiol. 71: 867-875.		
397	Hill, J.E., Town, J.R., and Hemmingsen, S.M. 2005 (b). Improved template		
398	representation in cpn60 polymerase chain reaction (PCR) product libraries		
399	generated from complex templates by application of a specific mixture of PCR		
400	primers. Environ. Microbiol. 8: 741-746.		
401	Hoagland, D.R. and Arnon, D.I. 1950. The water culture method for growing plants		
402	without soil. California Agricultural Experimental Station Circular. No. 347.		

403	Jarvis, B.D.W., Pankhurst, C.E., and Patel, J.J. 1982. Rhizobium loti, a new species of	
404	legume root nodule bacteria. Int. J. Syst. Bact. 32: 378-380.	
405	Jarvis, B.D.W., Van Berkum, P., Chen, W.X., Nour, S.M., Fernandez, M.P., Cleyet-	
406	Marel, J.C., and Gillis, M. 1997. Transfer of Rhizobium loti, Rhizobium huakuii,	
407	Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to	
408	Mesorhizobium gen. nov. Int. J. Syst. Bact. 47: 895-898.	
409	Jensen, H.L. 1967. Mutual host plant relationships in two groups of legume root nodule	
410	bacteria (Rhizobium spp). Arch. Mikrobiol. 59: 174-179.	
411	Links, M.G., Dumonceaux T.J., Hemmingsen S.M., and Hill J.E. 2012. The chaperonin-	
412	60 universal target is a barcode for bacteria that enables de novo assembly of	
413	metagenomic sequence data. PLoS One.;7(11):e49755.	
414	Lund, P. A. 2009. Multiple chaperonins in bacteriawhy so many? FEMS Microbiol.	
415	Rev. 33: 785-800.	
416	Moukoumi, J., Farrell, R.E., Van Rees, K.J.C., Hynes, R.K., Bélanger, N. 2012. Growth	
417	and Nitrogen dynamics of juvenile short rotation intensive cultures of pure and	
418	mixed Salix miyabeana and Caragana arborescens. Bioenergy Research 5: 719-	
419	732.	
420	Okubo, T., Tsukui, T., plus 46 others. 2012. Complete genome sequence of	
421	Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs.	
422	Microbes and environments. JSME 27: 306-315.	
423	Ralser, M., Querfurth, R., Warnatz, H.J., Lehrach, H., Yaspo, M.L., and Krobitsch, S.	
424	2006. An efficient and economic enhancer mix for PCR. Biochem Biophys Res	
425	Commun. 347 : 747-51.	

426	Richter, M. & Rossello-Mora, R. 2009. Shifting the genomic gold standard for the		
427	prokaryotic species definition. Proc. Nat. Acad. Sci. USA. 106: 19126-19131.		
428	Sahgal, M., and Johri, B.N. 2006. Taxonomy of rhizobia: Current status. Current Science		
429	90: 486-487.		
430	Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for		
431	reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.		
432	Shimoda, Y., Shinpo, S., Kohara, M., Nakamura, Y., Tabata, S., Sato, S. 2008. A large		
433	scale analysis of protein-protein interactions in the nitrogen-fixing bacterium		
434	Mesorhizobium loti. DNA research: an international journal for rapid publication of		
435	reports on genes and genomes 15: 13-23.		
436	Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary		
437	Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.		
438	Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the		
439	sensitivity of progressive multiple sequence alignment through sequence weighting,		
440	position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:		
441	4673-4680.		
442	Turner S. L., Zhang X.X., Li, F.D., Young, J.P. 2002. What does a bacterial genome		
443	sequence represent? Mis-assignment of MAFF 303099 to the genospecies		
444	Mesorhizobium loti. Microbiology. 148: 3330-3331.		
445	Verbeke, T.J., Sparling, R., Hill, J.E., Links, M.G., Levin, D., and Dumonceaux, T.J.		
446	2011. Predicting relatedness of bacterial genomes using the chaperonin-60		
447	universal target (cpn60 UT): Application to Thermoanaerobacter species. Syst.		
448	Appl. Microbiol. 34 : 171-179.		

- 449 Vincent, J.M. 1970. A practical manual for the study of root-nodule bacteria,
- 450 International Biological Program Handbook No. 15, Blackwell Scientific
- 451 Publications Ltd., Oxford, UK.
- 452 Vlassak, K., Paul, E., and Harris, R. 1973. Assessment of biological nitrogen fixation in

453 grassland and associated sites. Plant Soil **38**: 637-649.

- 454 Wallington, E. J. and Lund, P. A. 1994. *Rhizobium leguminosarum* contains multiple
- 455 chaperonin (cpn60) genes. Microbiology **140**: 113-122.
- 456 Weaver, R.W. and Frederick, L.R. 1982. *Rhizobium. In* Methods of Soil Analysis, Part 2.
- 457 Chemical and Microbiological properties Agronomy Monograph No. 9, Madison,
 458 WI, USA. pp 1043-1070.
- 459 Willems, A., Hoste, B., Tang, J., Janssens, D., and Gillis, M. 2001. Differences between
- 460 subcultures of the *Mesorhizobium loti* type strain from different culture collections.
- 461 Syst. Appl. Microbiol. **24**: 549-553.
- 462 Wills, B.J. 1982. Rhizobial inoculation of Siberian pea-shrub (Caragana arborescens
- 463 Lamb.) for semi-arid revegetation. New Zeal. J. Exp. Agr. 10: 353-354.
- 464 Yan, X.R., Chen, W.F., Fu, J.F., Lu, Y.L., Xue, C.Y., Sui, X.H., Li, Y., Wang, E.T., and
- 465 Chen, W.X. 2007. *Mesorhizobium* spp. are the main microsymbionts of Caragana
- 466 spp. grown in Liaoning Province of China. FEMS Microbiol. Lett. **271**: 265-273.
- 467 Zeigler, D. R. 2003. Gene sequences useful for predicting relatedness of whole genomes
- 468 in bacteria. Int. J. Syst. Evol. Microbiol. **53**, 1893-1900.

469 **Figure legends**

470

471 **Figure 1.** Phylogenetic tree of *Mesorhizobium* and related species based on a gene fragment

- 472 corresponding to nucleotides 11-536 of the E. coli 16S rRNA-encoding gene. Strains are identified
- 473 by their GenBank accession numbers (in parentheses). The percentage of 500 replicate trees in
- 474 which the taxa clustered together is shown next to the corresponding nodes.
- 475 **Figure 2.** Phylogenetic analysis of the *recA* sequences of *Mesorhizobium* isolates from this report,
- 476 placed in the context of the isolates reported by Chen et al (2008) and of selected reference strains.
- 477 Sequences were all trimmed to the same length (426 bp) prior to alignment. The percentage of 500
- 478 replicate trees in which the taxa clustered together is shown next to the branches.

H 0.002

479

480 **Figure 1.**

Strain	g (hours)	SE
Mesorhizobium loti Laura	5.68	0.16
Mesorhizobium loti Harris	6.84	0.51
Mesorhizobium loti Sovereign	7.16	0.36
Mesorhizobium loti Thrasher	6.62	0.25
Mesorhizobium loti Kernan	5.76	0.19
Sinorhizobium melioti BALSAC	3.45	0.72
Bradyrhizobium japonicium USDA 110	13.86	2.08
Rhizobium leguminosarum NRG457	4.44	0.08
Rhizobium tropici 899 ¹	3.19	0.70
Mesorhizobium amorpheae	7.76	0.86

491 **Table 1**. Generation times (g) of Rhizobaceae isolates used in this study.

492 Generation times determined in Yeast extract-mannitol broth, 23 °C, shaking at 150rpm; see

493 materials and methods for additional details. ¹CIAT899.

Table 2. Percent N, C and N₂ derived from the atmosphere from caragana leaves grown from seeds

496 in Hoaglands nitrogen-free media with and without *Mesorhizobium* isolates.

Treatment	% N	% C	% N ₂ derived from atmosphere
Non-inoculated	0.6±0.1	13.8±2.9	0
Mesorhhizobium sp Laura	3.9±0.3	44.5±0.7	83.0±2.1
Mesorhizobium sp Harris	2.8±0.4	44.8±0.4	78.5±4.5
Mesorhizobium sp Sovereign	2.6±0.4	44.1±0.8	76.6±5.5
Mesorhizobium sp Thrasher	2.9±0.1	44.5±0.2	80.1±1.0
Mesorhizobium sp Kernan	3.2	45.2	80.0

499 Data represent the mean of 3 reps, 2 for the non-inoculated \pm the standard error and 1 for

500 Mesorhizobium sp. Kernan.

Table 3. Determination of ANIm, ANIb, and Tetra scores using JSpecies along with corresponding genomic sequence identity predictions based on
 the *cpn60* UT and a one-gene *recA*-based model. Only representative results are shown for the 5 complete *M. loti* genomes (MAFF303099,
 WSM1293, R88b, NAP2037, and R7A) that were examined.

505

			analysis by JSpecies ¹		cpn60 UT sequence identity		
genome	target genome	ANIm	ANIb	Tetra	conclusion	highest	lowest
<i>M. loti</i> MAFF303099 (5)	M.australicum WSM 2073 (3)	88.26	86.77	0.99708	different spp	0.95	0.75
<i>M. loti</i> MAFF303099 (5)	M. ciceri bv. biserrulae (4)	87.82	85.82	0.99828	different spp	0.96	0.76
<i>M. loti</i> MAFF303099 (5)	M. opportunistum (4)	89.12	87.84	0.99813	different spp	0.96	0.74
<i>M. loti</i> MAFF303099 (5)	Mesorhizobium sp. BNC1 (2)	82.78	71.83	0.89382	different spp	0.83	0.74
<i>M. loti</i> MAFF303099 (5)	<i>M. loti</i> R7A (4)	98.53	98.46	0.99936	same spp.	0.99	0.76
<i>M. loti</i> MAFF303099 (5)	<i>M. loti</i> WSM1293 (3)	87.89	85.83	0.99845	different spp	0.94	0.76
<i>M. loti</i> WSM1293 (3)	<i>M. loti</i> R88b (3)	87.77	85.86	0.99781	different spp	0.95	0.76
M.australicum WSM 2073 (3)	M. ciceri bv. biserrulae (4)	88.57	86.92	0.9966	different spp	1.00	0.77
M.australicum WSM 2073 (3)	M. opportunistum (4)	89.35	88.2	0.99853	different spp	1.00	0.76
M.australicum WSM 2073 (3)	Mesorhizobium sp. BNC1 (2)	83.12	71.64	0.89391	different spp	0.85	0.75
M. ciceri bv. biserrulae (4)	M. opportunistum (4)	89.34	89.89	0.99834	different spp	1.00	0.76
M. ciceri bv. biserrulae (4)	Mesorhizobium sp. BNC1 (2)	82.9	71.5	0.89034	different spp	0.86	0.76
Mesorhizobium sp. BNC1 (2)	M. opportunistum (4)	82.96	71.83	0.89066	different spp	0.86	0.76
¹ JSpecies was used to determine ANIm, ANIb, and Tetra values as described by Richter and Rossello-Mora (2009). An ANIm/ANIb of 95% with Tetra >0.99							

is used to designate two strains as the same species.

Table 4. cpnDB nearest neighbor for each copy of *cpn60* analyzed for all isolates. *cpn60* copies are numbered arbitrarily. Matches are507identified by their cpnDB ID numbers and, if applicable, by their GenBank accession numbers.

Isolate	cpnDB nearest neighbor	fasta %ID
Mesorhizobium spp. Laura		
cpn60-1	b4797 NC_002678 Mesorhizobium loti MAFF303099	92.4
cpn60-2	b19969 AGSN01000124 Mesorhizobium amorphae CCNWGS0123	87.4
cpn60-3	b1085 NC_002679 Mesorhizobium loti MAFF303099	87.2
cpn60-4	b1085 NC_002679 Mesorhizobium loti MAFF303099	94.1
cpn60-5	b19969 AGSN01000124 Mesorhizobium amorphae CCNWGS0123	96.4
Mesorhizobium spp. Harris		
cpn60-1	b19971 AGSN01000157 Mesorhizobium amorphae CCNWGS0123	92.6
cpn60-2	v12449 Mesorhizobium amorphae DSM 21831	89.9
cpn60-3	b1085 NC_002679 Mesorhizobium loti MAFF303099	94.1
cpn60-4	b18426 CP002447 Mesorhizobium ciceri biovar biserrulae	98.7
cpn60-5	b19967 AGSN01000015 Mesorhizobium amorphae CCNWGS0123	86.3
Mesorhizobium spp. Sovereign		
cpn60-1	b19971 AGSN01000157 Mesorhizobium amorphae CCNWGS0123	92.6
cpn60-2	b1085 NC_002679 Mesorhizobium loti MAFF303099	94
cpn60-3	b18426 CP002447 Mesorhizobium ciceri biovar biserrulae	98.7
Mesorhizobium spp. Thrasher		
cpn60-1	b19971 AGSN01000157 Mesorhizobium amorphae CCNWGS0123	87.5
cpn60-2	b1085 NC_002679 Mesorhizobium loti MAFF303099	94.1
cpn60-3	19971 AGSN01000157 Mesorhizobium amorphae CCNWGS0123	92.6
cpn60-4	v12449 Mesorhizobium amorphae DSM 21831	89.9
cpn60-5	b18426 CP002447 Mesorhizobium ciceri biovar biserrulae	98.7
cpn60-6	b18427 CP002447 Mesorhizobium ciceri biovar biserrulae	95.3
cpn60-7	v12449 Mesorhizobium amorphae DSM 21831	96
<i>Mesorhizobium</i> spp. Kernan		

cpn60-1	b19969 AGSN01000124 Mesorhizobium amorphae CCNWGS0123	91
cpn60-2	b1085 NC_002679 Mesorhizobium loti MAFF303099	94.1
cpn60-3	b19969 AGSN01000124 Mesorhizobium amorphae CCNWGS0123	98.2
cpn60-4	b4797 NC_002678 Mesorhizobium loti MAFF303099	92.3