
Intelligible software delivery in smart
environments supported by a macro and micro

context awareness model

Charles Gouin-Vallerand1, Patrice Roy3, Bessam Abdulrazak3, Sylvain
Giroux3, and Anind Dey2

1 Télé-Université du Québec, Montréal, Canada
2 Carnegie Mellon University, Pittsburgh, United States

3 Université de Sherbrooke, Sherbrooke, Canada

Abstract. Smart environments help to increase the autonomy and qual-
ity of life of people with special needs (PwSN) through adapted assis-
tive services. In conjunction with context awareness and service delivery
mechanisms, it is possible to dynamically deliver services to users by
taking into account contextual information, e.g., user’s locations, de-
vices’ states, current activities. However, implementing such systems in
actual smart spaces is not trivial. The micro and macro context aware-
ness model helps in defining layers on which contextual information are
processed as close as possible from their sources (micro), without los-
ing the benefits of information processing at a systemic level (macro).
This paper describes the micro and macro context awareness model and
its uses in the implementation of a service provision system for smart
environments. Transparency and intelligibility are important factors in
context awareness system, which help developers to fully understand the
full behavior of the systems and help users to learn how the systems work.
We therefore accompanied our micro and macro model with an intelli-
gibility model which allow the generation of explanations describing the
system’s behaviors according to the processed context. Finally, results
coming from the evaluations of the micro/macro model and comparison
with related works are presented.

1 Introduction

The growing population of elders [33] with cognitive deficiencies and physical
impairments, combined with the high costs and minimal supplies of caregiv-
ing resources, provide a compelling argument for a new vision of assistance at
home [28]. Ubiquitous computing, context awareness and artificial intelligence
techniques can transform human habitats into smart spaces able to provide as-
sistance, contextual help and remediation by the environment. To assist these
users in their daily living activities, dynamic and intelligent mechanisms are re-
quired to deploy assistive services on the different devices present in the smart
environments, such as smart phones, tablets, desktop computers, laptops, em-
bedded computers, etc. Such service provision mechanisms rely mainly on the use

of contextual information from the environment and user profiles to accurately
identify on which devices each service must be deployed.

Context awareness is needed in situations where software and hardware must
collaborate in order to cope with complex data. A context aware system hosts
software components that infer additional, synthetic context from the raw con-
text provided by sensors and from other synthetic context. Context awareness
enables such a system by assisting users in performing daily life activities or
warns specialized personnel that human intervention is required. Software com-
ponents can consume context, produce context for others to consume, or use
context to decide upon an application domain-dependent course of action.

Numerous efforts have been made in the development of platforms to support
Context-awareness for pervasive computing[9][26]. Most applications and studies
today rely on smart spaces i.e. physical locations equipped with a set of sensors
and actuators where the basic physical layout is known beforehand. These spaces
include any controlled environment where Context-awareness could play a role
such as assisting people with disabilities (e.g. hospitals, hotel rooms, apartments,
houses, classrooms). Thus, Context-aware services can have several benefits for
PwSN and a number of projects proposed in the last years present solutions
that increase the quality of life of PwSN. For instance, Giroux et al. [12] propose
a framework to support people with cognitive deficiencies, by monitoring the
current states of users’ activities through context awareness and assisting users
step-by-step in their activities when errors or confusion are detected. Skubic
et al. [29] use contextual information from smart home sensors to continuously
monitor users’ activities and assessing health changes, such as cognitive decline.
Moreover, context awareness is often implemented in user mobility scenarios,
by using mobile devices such as smart phones, embedded sensors and location
acquisition system, e.g. GPS. For instance, Hoey et al [16] use contextual infor-
mation from smart phones to recognize wandering behaviors with people with
dementia. A large number of other projects and publications proposes solutions
for PwSN based on context awareness and these three last examples give an
overview of the possibility of context awareness for assisting and helping PwSN.

In this paper, we present our work around the implementation of a context
and user aware service provision system for smart environments (Section 3.2),
based on the micro and macro context awareness model (Section 3). The micro
context awareness revolves around the subjective perception and the understand-
ing an environment entity has of its environment. On the other hand, the macro
context awareness is the global, emergent picture that components help build
of entities in their environment [2]. This model helps in managing the complex-
ity related to the quantity of contextual information and context sources, as
well as providing headlines to build more versatile, dynamic and autonomous
context aware systems. The micro/macro model drove the development of our
service provision system, and helps with the organization and use of contextual
information.

On the other hand, to reach its goal, a context aware system based on a
micro and macro model should tend toward transparence, and propose to users

and software developers mechanisms to understand which contextual informa-
tion are used by the system and how these information have an impact on the
system’s behavior. Intelligibility [6] focuses on telling users what a system did
and why it did it. Thus, intelligibility aims to reduce the gap between the user’s
understanding of a system and the intrinsic reasoning mechanisms of this system.
Therefore, we also present in this paper a structure to support the intelligibility
in a micro and macro context awareness and its implementation in our service
provision system (Section 3.3).

Finally, this paper presents also an evaluation (Section 4) of the micro and
macro context awareness model, through the service provision system imple-
mentation, and a comparison with two related works, Trumler et al. [30] and
Ranganathan et al. [27].

2 Related works

Context-awareness is used in situations where software and hardware have to
cope with complex data. It often involves Semantic Web technology [10] or de-
vices that use external data to build a model (i.e. an awareness) of their sur-
roundings, relationships with other devices [4] or subject of interest [22]. Context-
awareness also applies to software that assists users and takes into account the
relationships between users and their environment.

Context can refer to the situation of a device or of a human being. In [23],
Context is defined as a setting in which an event occurs, which ties Context
to a location. For Abowd, Dey et al. [3], context is any information that can
be used to characterize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves. In [11], a distinction
is made between situation-awareness, related to the users location, and Context-
awareness, related to conditions (temperature, weather, lighting,. . .) that prevail
in that location.

Over the last two decades, several works have been performed on context
awareness, mostly about its utilization and modeling. Dey et al. [8] are among the
first to have specified and developed a solution that implements a framework and
a context model for ubiquitous computing. The Context Toolkit [9] provides the
functionalities to fill the gap between the hardware which collect the contextual
information, e.g. the sensors, and the ubiquitous applications that are using
them.

In the CoWSAMI project, Athanasopoulos et al. [5] propose a context aware
framework based on web services as interfaces to context sources and dynami-
cally updateable relational views for storing, aggregating and interpreting con-
text. Context rules are employed to provide mappings that specify how to popu-
late context relations, with respect to the different context sources that become
dynamically available.

In the SOCAM architecture, Gu et al. [15] propose a framework to support
the rapid prototyping of context aware services. This framework is based on

web ontologies to represent contextual information and use several protocols to
discover context providers, bring information to the context interpreters and
finally to the context aware services.

Several other works exists, proposing different approaches and technologies
to support context awareness, e.g. the ESCAPE project [31] and Preuveneers
[25].

On the other hand, some works in the area of service provision have de-
veloped context aware mechanisms to support service delivery in ubiquitous
environments. Trumler et al. [30] are proposing a solution based on the social
behavior of a cooperative group in the context of job assignments. This job as-
signments is based on the context of each participating devices, reasoning on
the capacity of nodes is made locally on each device and then forwarded to a
central node responsible for the repartition of the services among the devices.
In the Gaia project, Ranganathan and Campbell[27] propose some mechanisms
related to the service provision and software self-organization. Their solution
uses an ontology and semantic matching to find the right device configuration
face to the software needs; software that must be deployed in a given mediated
space. Ranganathan’s work on the software provision is mainly focusing on the
hardware analysis and the environment spatial description, evacuating the user
needs, capabilities and preferences.

As these works are addressing the issues of defining models to represent con-
textual information and proposing mechanisms to distribute information among
context consumers, they are not addressing particular questions about today’s
smart environments. How these systems can resolve the complexity of today’s
smart spaces with hundreds or thousands of context sources ? How the user
profiles can be integrated to the context awareness and how the privacy of the
profiles can be ensured ? How the scalability of the context awareness can be
supported for open environments such as smart cities, with all the uncertainty
related to these kind of environment ?

Some of these works propose answers by using a standardized definition of the
contextual information through a Semantic Web language or addressing the com-
plexity and heterogeneity of the smart environment through web service technol-
ogy. These works provided a basis for the conception of our context awareness
model and the implementation of our service provision system.

3 Context awareness model and strategies

Different strategies exist to compute on the contextual information of a given
system or environment. Such strategies are required to manage the complexity
related to the quantity of data and information sources in complex smart spaces.
For instance, it is possible to divide the context awareness of a given system in
several sub-contexts called micro contexts [7], related to specific devices or closed
locations. At a second level, it is possible to aggregate and combine the micro
contexts with other sources of information to build a more global representation

of the context in a given environment, the macro context or macro context
awareness.

The macro context awareness is presented as something directly tied to a
systemic model of the user and the conditions around this individual; the human
is the center of attention. The system’s main goal is to try to keep an up-to-date
representation of a human and its environment. The human, given its central
role in the world, becomes not only the main mutator of context, but is also the
focus of the activity, making macro context awareness particularly well suited
to applications that assist a given user in a smart environment.

On the other hand, the micro context awareness can be defined as the con-
text awareness for devices that can be split up into three components: activity,
environment and self. The activity describes the task the user/component is
performing at the moment or more generally what his or her behavior is. The
environment describes the status of the physical and social surroundings of the
user/component. Finally, the self describes the intrinsic information about the
user/component, e.g., preferences, capabilities, etc. Micro context awareness in
smart environments relies on distributed computing to share and publish infor-
mation between micro context components. Moreover, micro context components
have to deal with ad hoc communications directly related to the ad hoc topolo-
gies of some environments. The hallmark constituents of controlled spaces, for
example key nodes, can be used in micro context but cannot be depended upon
by individual components. Micro context awareness is not only awareness of a
single component, sometimes named raw context, but rather a model of context
awareness that focuses on information available to the acting components and
that maintains no dependence on system-wide knowledge or tools.

In comparison to the works presented in the previous section, we believe
that a context aware system should use both perspectives to build software that
better adapt to different situations and are less complex to deploy and manage.
We will now present how we build the service provision system using both layers.

3.1 Architecture overview

We designed a distributed multi-level architecture (L0..Ln) that integrates the
micro and macro Context awareness models by providing structures, Context
descriptions, ontologies and services to embedded middleware and software.

Figure 1 presents this multi-level architecture from a macro perspective. From
this perspective, the architecture is instrumented with customized nodes, fixed or
mobile. Each Li node offers Li-level services. L1 nodes are hardware abstraction
gateways that enable the system to interact with L0 real world data (sensors
and actuators). Li nodes are concentrators that aggregate the services offered
by Lj ,j < i nodes in a zone (location of influence). These concentrator nodes
aggregate lower-level services in a given zone. Zones group nodes according to
some criteria (for example, physical proximity), and can overlap. The hierarchy
can be based on Agent needs: location (e.g. L1 is for devices, L2 for a room, L3

for a floor), processing requirements (e.g. a Li,i > 1 node concentrates instances
of Li−1 nodes, to perform load balancing), or to address security, confidentiality

Self-optimization can be a local or a systemic process. Local self-
optimization can be performed within both micro and macro
models; macro Context-aware components can rely on readily
available, specialized analysts to assist them and suggest potential
optimization paths; self-optimization can be as simple as reporting
local history and gathered states, then acting upon the results of
specialized analyses performed on that data by fixed nodes. Macro
Context-aware components can also optimize group behavior by
acting under the guidance of an orchestrator node, able to
supervise and orient coordinated actions by a network of
components.
Local optimizations under a micro Context-aware approach have
to be performed first and foremost under the assumption that it is
possible that no other component will collaborate. Self-analysis is
performed on locally gathered Context (the only Context that is
necessarily available), but this Context can be limited in scope
due to scarce resources (at worst, there is none and the component
reacts to the most recent Context available), and adjustments are
made when a richer (and trusted) source becomes accessible.
Coordinated group action is realized through ad hoc negotiation
between neighboring components in a choreographed fashion; no
orchestrator is assumed (unless one becomes available).

3.3.5 Summary
Generally speaking, macro Context-awareness stems from a
potential global snapshot of the environment at a given time,
resulting in the possible existence of a global system state, and on
the relative stability of specialized node availability. Rich smart
space systems can be built under this assumption, which opens up
the possibility of detailed analysis of user behavior and
sophisticated assistance.
Macro Context-aware systems open up the possibility of reliable
distributed architectures that can be thought of as integrated
entities, and designed according to tried and true techniques.
Micro Context-aware systems accept weaker support from the
environment and neighboring components. The support they offer
is not as rich as what their macro counterparts can offer, but the
fact that micro approach-based systems require less support than
macro approach-based systems means that they are more suited to
general smart spaces such as open space, and lend themselves
better to the supervision and assistance of mobile users.
Micro Context-aware systems encompass more than macro
Context-aware systems since they demand less from the
environment, and since they are built to function even when no
other component is available, in particular specialized nodes.
Where macro systems are extremely useful in controlled
environments such as scientific laboratories, micro systems are
required if continuity of service is required no matter where
individuals go.

4. MICRO AND MACRO CONTEXT
AWARENESS IMPLEMENTATIONS
4.1 Core Architecture
We designed a distributed multi-level architecture (L1…Ln) that
integrates the micro and macro Context-awareness models by
providing structures, Context descriptions, ontologies and services
to the embedded middleware and software. Figure 1 presents this
multi-level architecture.

The architecture is instrumented with customized nodes. Each Li
node (mobile or fixed) offers Li-level services. L1 nodes are
hardware abstraction gateways that enable the system to interact
with L0 real world data (sensors and actuators). Lj>1 nodes are
concentrators that aggregate the services offered by Li<j nodes in
a zone (location of influence). The hierarchy can be based on
actor needs: location (e.g. L1 is for devices, L2 for a room, L3 for
a floor…), processing requirements (e.g. a Li>1 node concentrates
instances of Li-1 nodes, to perform load balancing), security,
confidentiality and ethical concerns.

Figure 1: Overview of the overall Architecture used for Open
Smart Space Development

In this architecture, the ideas of micro and macro Context-
awareness are applied to the different layers. L0 devices gather
information from sensors to build Context. This Context is
retrieved by L1 devices and is used to create the first Context-
aware functionalities related to a component and its
neighborhood, i.e. micro Context-awareness. L2 devices
aggregate micro Context information from L1 devices, building a
larger vision of Context for a given Zone; this produces macro
Context-awareness. Finally in layers L3 and up, devices aggregate
Context from lower layers and construct a global vision of the
known environment.
To support micro and macro Context-awareness, the different
layers of the architecture use a meta-ontology description[29],
both extensible and adaptable, to describe Context. This meta-
ontology description defines three high-level concepts: Being,
Environment and Dynamic, to describe the Smart Space universe.
It also includes a classification of sub-concepts based on
international classifications and standards, and introduces the
concept of location and time referentiality.
Furthermore, we have developed a basic service-oriented, OSGi-
based middleware on top of the architecture, in which all
components (nodes, sensors and actuators) are represented as
services. Moreover, this core middleware provides services to
manipulate Context concepts in ontologies; these services are
accessible to the different software applications built on top of the
architecture. The following sections present Context-awareness
implementations that use the macro (Section 5.1) and micro
(Section 5.2) Context-awareness models that are supported by the
presented architecture.

Context-Aware Systems iiWAS2010 Proceedings

431

Fig. 1. Overview of the macro and micro context awareness

and ethical concerns. Mobile nodes can, at any time, gain or lose contact with
individual nodes due to faults, distance, noise or other factors.

In hierarchical scenarios, L0 devices gather information from sensors to build
Context. This Context is retrieved by L1 devices and is used to create the first
Context-aware functionalities related to a component and its neighborhood, i.e.
raw Context. L2 devices aggregate micro Context information from L1 devices,
building a larger vision of Context for a given zone, leading to Context-awareness
from a macro perspective. In layers L3 and up, devices aggregate Context from
lower layers and construct a global vision of the known environment. Mobile mi-
cro Context-aware nodes, on the other hand, move freely from zone to zone. Both
their network neighborhood and their conceptual level change with time and
location. The application perspective of macro Context-aware systems, where
Agents have well-known roles in a well defined system, is replaced by localized,
per-node roles, resulting in a local rather than systemic perspective. The pro-
posed service provision framework, presented in the next section, focuses on the
layers L0 to L2. A last aggregation of the contextual information is made in
smart environment management tools, deployed on environment managers and
professionnal caregivers mobile devices, and represent a last(L3) macro context
layer.

3.2 The service provision system

An intelligent service provision system allows dynamic, fast and adapted ser-
vice deployment toward the users in the environments, based on the context
of the environment and takes into account different constraints such as the

users’ capabilities and their preferences. We implemented a middleware for smart
homes/apartments dedicated to the self-management of the software deployed in
these environments [13]. Rallying several technologies e.g. Web Services, OSGi,
OWL ontologies and fuzzy logic, this middleware uses the contextual information
of the environments to find the devices that are the most adapted to the ser-
vice needs, user capabilities and preferences, device resources and environment
topology. The main goal of the proposed service provision system is to support
the deployment of the assistive services into the smart environments for other
smart systems like activity recognition or error and failure recognition systems
to use. These systems use the service provision functionalities by supplying in-
formation related to the service to deliver, e.g. Which users are targeted?, Which
assistive services?, What are the service needs?, Is there a specific zone of the
environment that is targeted by the assistance request?

Service provision scenario Before explaining in details the service provision
system, a brief example illustrating a service provision would help to assimilate
the kind of contextual information used by the system and what is type of
services that are delivered to the users.

Suppose that an inhabitant from a smart apartment is standing at the en-
trance of its kitchen around lunchtime. This inhabitant suffers from cognitive
deficiencies that affect his time organization. Thus, to remind him to prepare his
meal, his electronic agenda requests to the system to deliver a meal preparation
assistant to the user in the kitchen area. The other information contained in the
profile of the inhabitant are : the user has a poor visual acuity and an average
field of vision, he moves at an average speed, he has a good hand strength and
workspace, and he prefers the tactile screens to the mouse peripherals and key-
boards. The meal preparation assistant doesn’t need great resources : a display
to present its interface and a pointing device. In the best case, this software
should be deployed in the kitchen zone.

On the other hand, the smart apartment is divided into several zones, e.g. the
kitchen area, the living room, etc. Several devices and their interaction peripher-
als are located in these zones. Especially, four devices are in the proximity of the
user : a laptop at his one o’clock, a tablet at his ten o’clock, a server in a closet
at his four o’clock and finally a TV with its multimedia computer behind him
in the living room. Each of these devices have their own resources and different
kinds of interaction peripherals. Figure 3 illustrates this example with a map
of the smart apartment. In this figure, some of the interaction modalities are
shown, such as the user’s visual acuity and his field of vision (the arc), the user’s
mobility corresponding to a walking time of two seconds or less (the circle). The
kitchen zone perimeter is also shown (the rectangle). Logically, the most suit-
able device in this context corresponds to the device in these three zones : the
kitchen tablet. However, several other contextual information can change this
logic, depending on the preferences of the user or the resources’ utilization of
the devices.

Kitchen's
Laptop

DCQ = 63.50

Apartment's
Server

DCQ = 0
Kitchen's

Tablet
DCQ = 71.74

Living room's
TV

DCQ = 57.25

Fig. 2. An example of a service provision with some of the processed contextual in-
formation : user’s mobility (circle), user’s visual acuity and field of vision (arc) and
targeted zone (rectangle)

Each device in the environment is collecting the contextual information re-
lated to its sensors and internal metrics. These information are delivered to the
service provision reasoning engines of each device, at the micro-level (FLORE-
D), which analyzed and, if required, abstracted and deliver the information to
the reasoning engine at the macro-level (FLORE-C). Both kind of reasoning en-
gines compute scores on how each device have the right resources and context to
support the meal preparation assistant. In this example (based on a real deploy-
ment scenario), the device with the highest score is, effectively, the kitchen tablet
with 71.74 points, followed by the kitchen laptop with 63.50 points, the living
room TV with 57.25 points and the apartment’s server with 0 points. For in-
stance, the kitchen laptop received a lower score due to the distance between the
user and the display versus the user’s visual acuity. Moreover, the user prefers to
use a touch screen (like that of the tablet) rather than the keyboard or the touch
pad of the laptop. The living room TV is situated behind the user and outside of
the kitchen area, which both reduce its score. Finally, the apartment’s server did
not have a connected display and a pointing device, which fail in providing these
peripherals to the meal preparation application, and caused a DCQ attribution
of 0 points. Therefore, the most suitable device to support the user and the meal
preparation assistant in this context is the kitchen tablet.

In this example, each device have the tools to collect and represent its micro-
context and analyze it with a reasoning engine. Depending on the kind of col-
lected information, e.g. an approximation of the user position found by an infra-
red sensor, the information is abstracted and sent to the macro-level. This micro-
level information can be used by the macro-level reasoning engine and matched
with other information provided by a smart environment ontology (e.g. user pro-
file and environment topology). By using the macro and micro context awareness
model, each layers (devices and environment nodes) are able to compute de-
ployment scores independly, with corresponding inprecision factors, and have a
certain autonomy in this computation. However, it is by exchanging information
between layers and taking in account macro and micro-level deployment scores
(see next section) that the system is increasing its precision and effectiveness.

System overview The service provision mechanisms use four main context
elements: user profiles, environment device profiles, topology of the environment
and software profiles. Each service that needs to be deployed in the environment
has hardware, software or contextual needs. On one hand, assistive applications
like a meal preparer assistant or a context aware calendar and organizer, can
target particular users in the environments and can require specific peripheral
devices. On the other hand, users have physical capabilities and preferences (pref-
erences toward specific interaction peripherals such as keyboard, touch screen,
mouse, etc.) about the environment devices; the devices also have profiles with
capabilities e.g. their resources, connected peripheral devices, etc. All these com-
ponents are present in the smart environments at different (or not) locations and
are related to contextual zones e.g. the kitchen, the bathroom, the living room,
etc. Finally, the user profiles describe a user’s physical capabilities, e.g. their vi-

sual acuity, walking speed or their hand workspace, their interaction preferences
and their location in the environment.

In our work, we used the micro and macro context model to divide into
layers the reasoning on the contextual information related to the service delivery.
We therefore divided the system into two kinds of components: Device nodes
and Coordinator nodes. To create these nodes and link them to a macro or
micro layer, we used our model definitions as decision rules. If a node primarily
require instrinsic information to fulfill its job, then it should be a micro context
provider. On the other hand, if a node uses intensively data related to the smart
environment structure, or data mined from the Web or ontologies, then it should
be related to the macro-level context.

Thus, device nodes collect the information related to their hardware, their
location in the environment and their connected interaction peripherals. This
information is processed, along with an abstracted representation of the service
to deploy (provided by the coordinator node), within a Fuzzy Logic controller.
Fuzzy logic [17], based on the fuzzy set theory, allows reasoning at a high level
using linguistic terms instead of numerical values, with conditional rules (e.g., IF
x IS a THEN y IS b). Fuzzy logic reasoning over the information involves three
main steps: (i) fuzzification of the numeric inputs’ values into linguistic terms
using membership functions; (ii) inferences of fuzzy rules with previous linguistic
terms, with three sub-tasks: aggregation (combining the results of the different
predicates), activation (assignation of the rules’ conclusions) and accumulation
(combination of the conclusions to output fuzzy sets); (iii) defuzzification: con-
version of the output fuzzy sets to a numerical output, where often a centroid
method is used to find the average value of the corresponding defuzzification
sets. Figure 3 presents a simplified example, with only one fuzzy set, of how
fuzzy logic is used, where the system uses information about devices’ resource
consumption to identify the best deployment target.

To determine which device to deploy a service to, contextual information is
processed using two implementations of a JFuzzyLogic controller4. The contex-
tual information associated with the device’s intrinsic data and service compo-
nent profile are processed in a fuzzy controller in each environment device, pro-
ducing Device Scores. Another fuzzy logic controller, located in a coordinating
device, processes the data related to the user profile and the environment topol-
ogy, producing User Scores. Contextual information are fuzzified using member-
ship functions and fuzzy rules (15 rules for Device Scores and 41 rules for User
Scores). The inference uses the min-max method for the aggregation, minimum
function for the activation and the maximum method for the accumulation. De-
vice scores and User scores are merged together to produce a final Deployment
score, by computing a weighted mean, with a weight related to the importance
of the User profile.

Score =
(User.Score ∗W) + (Device.Score ∗ (1 −Weight))

2
(1)

4 http://jfuzzylogic.sourceforge.net

Fig. 3. Fuzzy logic example with device’s resources consumption

Therefore, this controller determines (based on fuzzy sets, fuzzy rules and
defuzzification set) if each device has the resources to support the services to
deliver and at which performance/quality the device can support the service in
question (with a performance score between 0 and 100). Such information is
shared with the other components of the environment along with an abstracted
representation of the device. The Device nodes have subjective views of their
surrounding and a partial view of the environment through the data forwarded
by the coordinator nodes or the other device nodes.

The coordinator nodes have the responsibility to receive service provision
requests and manage the reasoning process about which devices in the envi-
ronment are the most appropriate to support the services. Depending on the
service needs, the coordinator nodes take into consideration the profile of the
users to determine which device is best adapted to user capabilities and interac-
tion preferences, and the topology of the environment, i.e. in which environment
zones users and components (devices and peripherals) are in. This information
is computed with the abstracted representation of the micro context and the
performance score computed by the device node. To do so, the coordinator node
uses an OWL ontology and a second Fuzzy Logic controller to make the final
decision about where each service must be deployed. The contextual informa-
tion processed by the Coordinator node is directly related to the macro context

awareness level. The users are the central focus point of the reasoning process
in the Coordinator node and these nodes have a systemic and consistent view of
the environment context, partially provided by the abstracted micro contexts.
Figure 4 presents the use and exchange of the contextual information between
the Coordinator node and a Device node, respectively related to the macro and
micro context levels.

Fig. 4. Utilisation of the contextual information in the service provision system

One direct benefit of dividing the service provision system in two context
awareness layers is the reduction, on each layer, of the quantity of data managed.
Moreover, dividing the contextual information in different layers reduces the
strong coupling that can exist between information, reducing the complexity of
updating information across layers. For instance, in the service provision system,
the Device nodes know their location in the environment, but don’t know directly
in which logical zone they are, as this depends on a more global view of the
environment.

Another benefit of the micro and macro context awareness layers is to prevent
the divulgence of sensitive information between software components. In the case
of the service provision system, user profiles are kept in the Coordinator node,
avoiding publication of private information such as user interaction capabilities
and preferences. Another benefit is the non-divulgence of the service profile, with
each Device node receiving an abstracted representation of the services to deploy
until they are finally selected for the deliveries, keeping private the real nature
of the services and the provided assistance. Finally, distributing the processing

of the contextual information among layers and nodes has an important impact
on the performance of the system. Using macro and micro context layers allows
leveraging of the processing capacities of the different devices in the environment
and reduces the computing time of the macro context layer (less information to
process). Some results on the distribution of the reasoning processes for the
service provision system are presented in Section 4.

3.3 Context intelligibility

Some context aware application support some level of intelligibility. Vermeulen
et al. [32] and Kuleza et al. [18] expose to the users the contextual information
(e.g. sensors values) that is used in the reasoning process of their system, along
with some explanations. They organized there explanation around an interroga-
tive form: Why? (i.e., why the system took a particular action), Why not? (i.e.,
why the system did not take another action instead), What if? (i.e., what are the
results if the context is that), How to? (i.e., how can the system be made to pro-
duce these results). Lim and Dey [20] propose more intelligibility functionnalies
with the Intelligibility Toolkit [19] by introducing new explanation models, also
based on an interrogative form, e.g. How to ?, What if ?, Certainty, etc. They
applied there intelligibility toolkit to different reasoning models such as bayesian
network and rules base model.

In [14], we proposed and evaluated an intelligibility mechanisms for fuzzy
logic, loosely based on the Intelligibility Toolkit of Lim and Dey. These mecha-
nisms used the Why, Why not and What if explanations as structure to explain
system’s behaviors to the users. Moreover, we used the software provision frame-
work, described above, as the testbed to implement the intelligibility in a micro
and macro context awareness model.

One of the biggest challenge in implementing this intelligibility was to cre-
ate the right mechanisms to encapsulate the meta-data about each micro and
macro contexts, which are used to generate the explanations. For instance, in
the original Intelligibility toolkit, as the framework is based on a macro model,
there is no real problem with acceding to any contextual information and rea-
soning engine processes, as must of these data are locales. In the case of a macro
and micro model, explanation generators need an access to meta-data about the
contextual information and the system behavior across several macro and micro
layers.

Strategy and Command design patterns gave the right structures to im-
plement such encapsulation. We designed a strategy object to encapsulate the
creation of explanations around the Fuzzy Logic which can generate Why, Why
not and What if explanations from the reasoning engine embedded in the coor-
dinator node and the device nodes. As the way to get meta-data can differ for
each kind of micro and macro context, we encapsulated the way to retrieve the
meta-data for each explanation generation methods, in Command design pattern
objects. For instance, in the software provision system, to get real time access to
meta-data in micro context, the Command objects must send Web services calls
to the device nodes, and must send SparQL queries to the OWL ontology for

the macro contextual information. Figure 5 presents an overview of the struc-
ture used to create the intelligibility mechanism. During explanation generation,
as information are provided by several sources, it is required to merge and ag-
gregate information. We create strategies [14] to reduce, aggregate and simplify
the quantity of information presented to the users through the explanations, for
instance by using the Weight of Evidence method [24]. This intelligibility model
is dynamically scalable, as the number of micro-context providers are automati-
cally integrated into the model through the discovery mechanisms of the service
provision system.

Fig. 5. Overview of the intelligibility feature in the service provision system

To make the software provision system more intelligible to users, we pro-
posed to organize the explanations around a layout based on the three Fuzzy
Logic reasoning steps (fuzzification, inference, defuzzification), as Fuzzy Logic
is the principal reasoning method used by the provision system. Such a strat-
egy introduces users to the general concepts of fuzzy logic and builds a logical
organization modeled on the real implementation of the system. Secondly, each
reasoning step must be made more intelligible by reducing the amount of pre-
sented information and specific knowledge implications. For instance, it is not
required to show a complete definition of the fuzzification functions to users
(which requires advanced math skills to understand); instead, a summary in-
troducing the membership values and linguistic terms for each input is more
appropriate. Thus, to make fuzzy logic systems more intelligible, we need to
support : (i) fuzzification: presents the system’s inputs and a summary of the
related linguistic terms/membership value; (ii) inference: shows the users a lim-
ited list of fuzzy rules and their conclusions/results. Introducing the users to the
sub-steps of inference (aggregation, accumulation, activation) should be done
with caution as it increases the complexity for users; (iii) defuzzification: sum-
marizes the inference’s conclusions, and introduces the system’s outputs and the
way they are computed (i.e., centroid, center of area, right or left max value).

Adding the intelligibility structure to the service provision system didn’t add
a significant workload and processing time to the system itself (Section 4). Must
of the workload related to the intelligibility is made by the GUI representation
of the explanations (Figure 6). Moreover, we evaluated the intelligibility sup-
port in our system through a user study. We selected ten participants with two
kinds of backgrounds: with computer science and I.T. professionals and experts
(5 participants) and with people from the general population (5 participants).
Each participants had to use the intelligibility features of the GUI and proc-
ceed to the deployment of software in a virtual smart apartment. The results of
the study demonstrate that intelligibility and explanations help both I.T./C.S.
professionals and less technical people to understand fuzzy logic. Intelligibility
even helped the less technical participants to gain an understanding that was
close to the technical experts. Moreover, the study highlighted the importance
for users to compare data (why not?) and experiment with system modification
(what if?). However, the quantity of information in the explanations can rapidly
overwhelm users, particularly users without a background in I.T., situation that
we have experimented during the study. More work will be required to increase
the effectiveness of the design of explanations and the GUI, but the preliminar
results shows that our intelligibility strategies provide useful information to users
on the behavior of context-aware system.

Fig. 6. Screenshot of the management tool providing intelligibility functionalities

3.4 Implementation

The service provision system is build over the OSGi framework. OSGi is a Service
Oriented Architecture (SOA) framework that gives the support for the modu-
larization of the ubiquitous applications and the management of their life cycles.
Thus, the service provision system uses these functionalities to deploy and man-
age the service modules in the environment’s devices. As the proposed system is
a distributed framework, the Apache CXF dOSGi and WS-Discovery are used as
communication support between the device and the coordinating device, which
host the service provision reasoning engine (FLORE).

On the top of the OSGi framework, we have implemented several modules
that are cooperating to provide the service to the users in the smart environment
(Figure 7). The Environment Management Coordinator node have the job to
manage the device discovery, maintain the environment ontology, receive the
service provision requests and manage them with the help of the FLORE. The
Device nodes are deployed on the environment devices and host the service
module to provide to the users. They also perform some reasoning on the context
such as on the hardware resources and the interaction peripheral availabilities.

Environment
Management

Ontology Manager

Ontology

Device
Management

FLORE Device

Coordinator Node
Device Node #X

Descr.
Device

Sensors &
Services

FLORE
Coordinator

Discovery Module

Communication layer
SOA-OSGi

Bundle 1

Bundle 2

Bundle N

...

Logging System

Contextual
Information
Gatherer

Legend

Web service

File

OSGi service call

Web service call

Management Tools

Fig. 7. The service provision system architecture with its two main components: the
Environment Management Coordinator and the Device Node

As the provision functionalities use contextual information and the user pro-
files to find the optimal way to provide the services to the environment users, a
way to describe and contain these description is needed. A powerful way to repre-
sent this information is by using semantic language, describing the environment
information and connections residing between the concepts. The service provi-
sion framework describe the ubiquitous environment through a meta-ontology[1]
described in the Web Ontology Language (OWL), which presents the context

information through Resource Description Framework (RDF) concepts and se-
mantic connection in OWL format. To hold and maintain this information, the
system use the JENA framework.

The fuzzy logic controller used by the service provision system was imple-
mented over the JFuzzy Logic API, which uses the Fuzzy Control Language
(FCL IEC 61131) to define the membership and defuzzification functions and
the fuzzy rules. Among other benefits, the FCL allows a clean and easy imple-
mentation of the fuzzy logic controller, and allows the proposed system to be
rapidly scalable and adaptable to new context, by introducing new rules and
functions.

4 Evaluation and results

Throughout the technical evaluation of the service provision system, we evalu-
ated the macro and micro context awareness approach applied to service delivery
in a smart apartment. The evaluation was conducted in a real smart apartment
(apartment in the infrastructure of the DOMUS Laboratory at the University
of Sherbrooke), composed of 8 device nodes, 1 coordinator node, 25 and more
interaction peripherals and over 50 context sources e.g., sensors, localisation sys-
tem. We use different kinds of user archetypes in five assistance scenarios based
on the validation used by Gouin-Vallerand et al. [13].

Firstly, we compared our approach with the similar work of Trumler et al.
[30], which can be categorized as a micro context aware system. As Trumler et al.
did, we evaluate our system by counting the number of messages exchanged for
a given service delivery job. The number of messages exchanged in a distributed
system for a specific job, can be a good way to compare the intrinsic complexity
of systems [21], when the types of data and the amount of information are fixed.
In the case of the macro and micro context aware service provision system, the
number of messages exchanged between the nodes correspond to Messages =
(a×d)+d+1 where d is the number of Device node and a is the number of services
to deliver. Therefore, for five services to deploy in an environment with ten
devices, the number of messages is 61 messages. For the same configuration, the
solution of Trumler et al. in a similar configuration used 35 messages. However,
if the nature of the information is the same (XML stream) in both works, the
amount of information used by each system is different. Compared to Trumler et
al.’s work, our service provision solution uses a more complete description of the
services to deliver and involve the topology and the user profile in the reasoning
process. Moreover, the Trumler et al.’s work groups several informations together
in the same message, which reduce the amount of messages but not necessarily
the complexity behind their reasoning process.

On the other hand, Ranganathan et al. [27] proposes a centralized solution
involving the processing of the information based on a macro context awareness
perspective. They measured the performance of their work based on computing,
where their system took an average processing time of 0.93 second on a Pentium
M 1.7 GHz system, for a scenario with two services deployed among five devices.

In comparison, our micro and macro solution takes 0.55 second for a similar
scenario with eight devices, plus the computing related to the user profiles and
where the system was composed of devices ranging from Intel Core 2 Duo 2.4
GHz to Tablets processors. This computing time included the Web service calls
related to the 23 messages/requests exchanged during the service provision.

Of course, comparing computing times from systems with different hardware
and setups is difficult. To push the comparison further, we measured the average
computing times related for the system’s software components and the commu-
nications (Table 1). By using the Passmark benchmark scores of the processors,
434 for the Pentium M and 1508 for the Core 2 Duo 5, which give a ratio of 3.47
in favor of the Core 2 Duo. Using this ratio with the average computing times of
the Coordinator and Device node (0.12+0.06 seconds), the approximation (with
an unknown error margin) of the computing time of the proposed solution on
a Pentium M would be of 0.62 seconds (0.18 × 3.47). One conclusion from this
exercise is that the web service calls represent a bottleneck for the performance
of our system. In the case of the service provision, the distributed nature of the
system cannot be avoided and is an intrinsic part of the solution. However, by
adding to approximated computing time the web service calls (assuming that
there is only small variations between the two hardware), the performance of
the proposed solution is around the Ranganathan et al.’s result, with more data
processed and the benefit of the micro context awareness in the favor of our
work.

Finally, these results show that the proposed service provision system im-
plemented using a micro/macro context awareness approach gave results that
are at least equivalent to the other related works. As the complexity and the
amount of data processed by our solution are higher, we had to use state of
the art technologies (e.g. web services, OSGi framework, OWL ontologies, Fuzzy
Logic controllers) to help us in implementing our approach, which would have
been more difficult five years ago without them.

Table 1. Processing times of the service provision system’s components

Component Average computing time (sec)

Coordinator Node 0.12

All Device Nodes 0.06

One Device Node 0.01

All Web service calls 0.28

One Web service call 0.011

5 Passmark benchmark : www.cpubenchmark.net

5 Conclusion

Today’s smart environments are synonymous to context awareness, component
dynamism and adapted services to assist the users in their daily living activities.
If context awareness brings tools to increase the system adaptation to the sur-
rounding environment, its implementation is not trivial. The micro and macro
context awareness approaches help categorize to which kind of context each sys-
tem component should be related, depending on the role of the components and
the type of processed information. In this paper, we present our work around
the implementation of a service provision system for smart spaces, based on a
model where the processing of the contextual information is divided between a
macro and a micro context awareness layer. This approach allows us to man-
age the complexity related to the contextual information, by processing data as
close as possible to their context sources, with the Device Nodes, without losing
the benefits of information processing at a systemic level, with the Coordinator
nodes. Moreover, we demonstrate that our macro and micro layers approach gave
more autonomy, scalability and adaptability than single layer approaches (e.g.
Ranganathan’s and Trumler’s models) without a cost in the system performance.

We are currently working on the formalization of a model of the macro and
micro context awareness approach and we are planning to implement it in large-
scale systems for controlled smart spaces (e.g. smart homes) and open smart
spaces (e.g. smart cities). The formalization of the model will help in implement-
ing the functionalities to support both context layers, in environments where the
quality of service can vary greatly.

With smart environments and smart cities being more popular to support
dependant people or for mediated environments, our micro and macro context-
awareness model will bring tips and clues for developers wishing to build poly-
valent, autonomous and scalable context-aware system. Moreover, with the pop-
ularity of the cloud computing, where macro-level context-aware bundles can be
deployed, and micro-level counterpart in mobile devices, the model proposed in
this paper all make sense. This is also the direction that our future work will
take.

References

1. Abdulrazak, B., Chikhaoui, B., Gouin-Vallerand, C., Fraikin, B.: A standard ontol-
ogy for smart spaces. International Journal of Web and Grid Services 6(3), 244–268
(2010)

2. Abdulrazak, B., Roy, P., Gouin-Vallerand, C., Giroux, S., Belala, Y.: Macro and
micro context-awareness for autonomic pervasive computing. International Journal
of Business Data Communications and Networking (IJBDCN) 7(2) (2011)

3. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: To-
wards a better understanding of context and context-awareness. In: Proceed-
ings of the 1st international symposium on Handheld and Ubiquitous Com-
puting. pp. 304–307. HUC ’99, Springer-Verlag, London, UK, UK (1999),
http://dl.acm.org/citation.cfm?id=647985.743843

4. Alonso, E., Kristofferson, P., McCann, J.: Building Ambient Intelligence into
a Ubiquitous Computing Management System. In: International Symposium of
Santa Caterina on Challenges in the Internet and Interdisciplinary Research.
SSCCII-2004, Amalfi, Italy (January 2004), http://dev.pubs.doc.ic.ac.uk/ambient-
intelligence/

5. Athanasopoulos, D., Zarras, A., Issarny, V., Pitoura, E., Vassiliadis, P.:
Cowsami: Interface-aware context gathering in ambient intelligence en-
vironments. Pervasive and Mobile Computing 4(3), 360–389 (2008),
http://linkinghub.elsevier.com/retrieve/pii/S1574119207000740

6. Bellotti, V., Edwards, K.: Intelligibility and accountability: human considerations
in context-aware systems. Hum.-Comput. Interact. 16(2), 193–212 (Dec 2001)

7. Biswas, J., et al.: Health and wellness monitoring through wearable and ambient
sensors: exemplars from home-based care of elderly with mild dementia. Annals of
Telecommunications 65, 505–521 (2010)

8. Dey, A.K.: Providing Architectural Support for Building Context-Aware Applica-
tions. Ph.D. thesis, Georgia Institute of Technology (2000)

9. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Hum.-Comput.
Interact. 16, 97–166 (December 2001)

10. Feki, M.A.: A logic based approach for context reasoning in assistive environment.
In: Proceedings of the 2nd International Convention on Rehabilitation Engineering
& Assistive Technology. pp. 277–280. iCREATe ’08, Singapore Therapeutic, As-
sistive & Rehabilitative Technologies (START) Centre, Kaki Bukit TechPark II,,
Singapore (2008), http://dl.acm.org/citation.cfm?id=1983222.1983296

11. Gessler, S., Martin, M., Weiss, S.: Context awareness in future life scenarios: Im-
pact on service provisioning platforms. IEEE/IPSJ International Symposium on
Applications and the Internet Workshops pp. 144–147 (2005)

12. Giroux, S., Bauchet, J., Pigot, H., Lussier-Desrochers, D., Lachappelle, Y.: Perva-
sive behavior tracking for cognitive assistance. International Conference on Perva-
sive Technologies Related to Assistive Environments, PETRA 2008 pp. 86:1–86:7
(July 2008)

13. Gouin-Vallerand, C., Giroux, S., Abdulrazak, B.: Tyche project: A context aware
self-organization middleware for ubiquitous environment. In: 13th International
Conference on High Performance Computing and Communications (HPCC) (sept
2011)

14. Gouin-Vallerand, C., Lim, B.Y., Dey, A.K.: Software provision in smart environ-
ment based on fuzzy logic intelligibility. In: Proceedings of the 2012 ACM Confer-
ence on Ubiquitous Computing. pp. 774–777. UbiComp ’12, ACM, New York, NY,
USA (2012), http://doi.acm.org/10.1145/2370216.2370389

15. Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for build-
ing context-aware services. J. Netw. Comput. Appl. 28, 1–18 (January 2005),
http://dl.acm.org/citation.cfm?id=1053030.1053031

16. Hoey, J., Yang, X., Quintana, E., Favela, J.: Lacasa: Location and context-aware
safety assistant. In: Proceeding of International Conference on Pervasive Comput-
ing Technologies for Healthcare. San Diego (May 2012)

17. Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (1995)

18. Kulesza, T., Wong, W.K., Stumpf, S., Perona, S., White, R., Burnett, M.M.,
Oberst, I., Ko, A.J.: Fixing the program my computer learned: barriers for end
users, challenges for the machine. In: Proceedings of the 14th international confer-
ence on Intelligent user interfaces. pp. 187–196. IUI ’09 (2009)

19. Lim, B.Y., Dey, A.K.: Toolkit to support intelligibility in context-aware appli-
cations. In: Proceedings of the 12th ACM international conference on Ubiqui-
tous computing. pp. 13–22. Ubicomp ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1864349.1864353

20. Lim, B.Y., Dey, A.K.: Investigating intelligibility for uncertain context-aware
applications. In: Proceedings of the 13th international conference on Ubiqui-
tous computing. pp. 415–424. UbiComp ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2030112.2030168

21. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1996)

22. Miaou, S.G., Shih, F.C., Huang, C.Y.: A smart vision-based human fall detection
system for telehealth applications. In: The Third IASTED International Conference
on Telehealth. pp. 7–12. Telehealth ’07, ACTA Press, Anaheim, CA, USA (2007),
http://dl.acm.org/citation.cfm?id=1672136.1672139

23. Neovius, M., Sere, K., Yan, L., Satpathy, M.: A formal model of context-awareness
and context-dependency. IEEE International Conference on Software Engineering
and Formal Methods pp. 177–185 (2006)

24. Poulin, B., et al.: Visual explanation of evidence in additive classifiers. In: Pro-
ceedings of the 18th conference on Innovative applications of artificial intelligence
- Volume 2. pp. 1822–1829. IAAI’06 (2006)

25. Preuveneers, D.: Context-aware adaptation for Ambient Intelligence. LAP Lambert
Academic Publishing (2010), https://lirias.kuleuven.be/handle/123456789/267553

26. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx,
T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible
context ontology for ambient intelligence. In: Markopoulos, P., Eggen, B., Aarts,
E., Crowley, J.L. (eds.) Ambient Intelligence, Lecture Notes in Computer Science,
vol. 3295, pp. 148–159. Springer Berlin / Heidelberg (2004)

27. Ranganathan, A., Shankar, C., Campbell, R.: Application polymorphism for au-
tonomic ubiquitous computing. Multiagent Grid Syst. 1(2), 109–129 (2005)

28. Rialle, V., Ollivet, C., Guigui, C., Herv, C.: What do family caregivers of
alzheimer’s disease patients desire in smart home technologies? Methods of In-
formation in Medicine 47, 63–69 (2009)

29. Skubic, M., Guevara, R.D., Rantz, M.: Testing classifiers for embedded health
assessment. In: Donnelly, M.P., Paggetti, C., Nugent, C.D., Mokhtari, M. (eds.)
ICOST. Lecture Notes in Computer Science, vol. 77251, pp. 198–205. Springer
(2012)

30. Trumler, W., Klaus, R., Ungerer, T.: Self-configuration via cooperative social be-
havior. In: Third International Conference on Autonomic and Trusted Computing
2006, ATC. Lecture Notes in Computer Science, vol. 4158, pp. 90–99. Springer
(2006), http://dblp.uni-trier.de/db/conf/atc/atc2006.htmlTrumlerKU06

31. Truong, H., et al.: Escape - an adaptive framework for managing and providing
context information in emergency situations. In: in EuroSSC,ser. Lecture Notes in
Computer Science. pp. 207–222. Springer (2007)

32. Vermeulen, J., Vanderhulst, G., Luyten, K., Coninx, K.: Pervasivecrystal: Asking
and answering why and why not questions about pervasive computing applications.
In: Intelligent Environments (IE), 2010 Sixth International Conference on. pp. 271
–276 (july 2010)

33. White, C.: Health Care Spending Growth: How Different Is The United States
From The Rest Of The OECD? Health Affair 26(1), 154–161 (jan 2007)

