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Abstract formance measures is more important than merely
having fast queries.

Data mining and related applications often rely on Data cube[[B] is a common data model used by
extensive range sum queries and thus, it is impor- data warehouses and can be simply described as
tant for these queries to scale well. Range sum a large multidimensional array which can be im-
queries in data cubes can be achieved in #) plemented as such or as an interface to a (rela-

using prefix sum aggregates but prefix sum up- tional) database. Consider the following simple

date costs are proportional to the size of the data
cubeO(nd). Using the Relative Prefix Sum (RPS)

data cube example with three dimensiods=(3):
age, income, weight. Each cell in the data ciibe

method, the update costs can be reduced to the root (e.g. 17 years old, 10k$, 60 kg) contains a measure

of the size of the data cul®(n%/2). We present

a new family of basd wavelet algorithms further
reducing the update costs@(n%/?) for B as large

as we want while preserving constant-time queries.
We also show that this approach Iead§)tﬁogd n)
qguery and update methods twice as fast as Haar-
based methods. Moreover, since these new meth-
ods are pyramidal, they provide incrementally im-
proving estimates.

1 Introduction

Computational scalability with respect to both data
gueries and data updates is a key requirement in
On-Line Analytical Processing (OLAP). Moreover,
for OLAP applications, it is desirable to have low
query costs. However, one should distinguish be-
tween OLAP and Precomputed Analytic Process-
ing (PAP) systemd [12]: a system with very low
guery costs which is expensive to update or initial-
ize might not be practical for OLAP systems where

D j k- For example, cells may contain the number
of individuals matching the criteria of the cell (e.qg.
D1710ks,60kg = 100). A range sums query amounts
to summing up the measurgs j k| Di jk in a set

of cell indicesl. For example, one could ask the
numberm of individuals between the ages of 18
and 25, with an income above 20 k$ and a weight
over 100 kg. The simplest way to do this com-
putation is to sum over all cells. Assuming that
in the age, income and weight model, we have all
ages from 0 to 100 years, all incomes from 0 k$
to 100 k$ in increments of 1 k$ and all weights
from 40 kg to 200 kg in increment of 1 kg, a range
sum query might involve 108 100x 160 individ-

ual sums which amounts to well over 1 million op-
erations. Clearly, this approach does not scale well
with respect to queries.

In the context of this paper, we measure cost in
terms of the number of cells we need to read or
change in a data cube in the worst possible case.
We assume that the data cubes have dimengion
and that the size of the data cube (number of cells)

data updates are frequent and new databases arejg 4d for some largen and a fixed dimensionl.

created dynamically. On the other hand, a slightly
longer query time might be acceptable as long as
approximations are quickly available and as long as

the aggregates can be quickly updated. Reaching a

good compromise with respect to the various per-
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Also, for simplicity, we assume that data cubes are
indexed from O ta in all dimensions.

With OLAP applications in mind, “prefix sum”
method was developed and it can resolve such
range sum queries in tim®(1) [13]: one cre-
ates a new data culi2 of the same size contain-
ing the the sums of the measures “up tﬁ,i’”"k =



Sr<is<jt<kDrst (see Table$|l and| 2 for a two-
dimensional example). It can be seen that the com-
putational cost foD is proportional to the size of
the data cube itself. However, given a set of con-
secutive indices = [ig,ig] x [i§,ig] x [if,ig], we
can compute the range sum in tir@é1). Indeed,
let1y(x) = x(ik — %) +iK, then the range sum over
onD is given by
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and, more generally, if we note the prefix sums as

(1)
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so that, in general, a sum over upri® cells can

be computed with ‘qum§ irrespective af using

the prefix sum data cube. For static databases,

this approach may well be optimal. Unfortunately,

the prefix sum approach has a major drawback: up-

dating the value of a single cell in the data ciibe

means updating up 1 cells in the prefix sum data

cubeD.
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Table 1. A randomly chosen 99 data cubeD.
By convention indices start at (0,0) in the upper left
corner and go up t8,8) in the lower right corner.

The Relative Prefix Sums (RPS) methd [8] ease
the update burden. Instead of building a large pre-
fix sum over all of the data, the RPS method builds
local prefix sums. In order to still offer fast queries,
an “overlay” is used to record the cumulative pre-
fix sums. Letx| be the greatest integer smaller
or equal tox so thatn |i/n]| is i rounded off to a
multiple of n. In the unidimensional case, given
ncellsx; withi = 1,...,n, the corresponding Prefix

3 8 9 11 13 17 23 26 30
10 | 18 | 21 29 39 50 57 62 67
12 | 24 | 29 40 53 67 78 88 97
15| 29 | 35 51 67 86 99 117 | 126
19 | 35 | 42 61 80 103 | 123 | 142 | 154
21 | 40 | 50 75 95 126 | 151 | 171 | 185
25| 49 | 61 93 114 | 154 | 182 | 205 | 220
27 | 55 | 69 | 103 | 127 | 168 | 205 | 229 | 249
28 | 59 | 74 | 109 | 135 | 178 | 223 | 249 | 275

Table 2: Prefix sum for the data cube of Tahble 1.
Note that if the upper left value is changed in Table
[, all of this table must be updated (81 cells).

Sum (PS) cellg; contain the sumg = Zk n

wheren is the overlay box size. On the otlher hand,
the unidimensional overlay cube contains the sums
S i%. It can be seen that the RPS method has
query cosD(1) and an update cost that depends on
n. By choosingn = /n, it can be shown that the
update cost i (n?/2) and this is the best possi-
ble choice. An example is given in Talple 4 and the
RPS algorithm is given next (se€e [8] for more de-
tails). The current work is a generalization of this
approach into a pyramidal setting (see Table 3 for a
comparison).

[ method [ Query cost | Update cost |
Data Cube[[D] o (n7) 0O(1)

Prefix Sum[[13] 0(1) o (n%)
RPS[E] o(1) o (n%?)
Haar[18] o(n7) O(log,n)

HBC [3] 0(1) o(n" 1)
d/B
PYRPS o) Boz(l 2) g
PyRPS (log) O(login) | O((b—1)%login)

Table 3: Comparison the PyRPS method described
in section# and the PyRPS(log) from subsection
[4.7 with some other range sum aggregates for a data
cube of sizen with largen.

Algorithm 1 (Relative Prefix Sum) Given a data
cube D, _j, of size § and a set overlay box of size
n, the preflx sum array PR is given by

i1 ig

PR]_,...,id = : Dk]_,....kd'
ki=nlia/n]  ke=nlia/n]
Let a(i) = {0,...,i} if i modulo n = 0 and
{nli/n]+1,...,i} otherwise. The overlay array



Q is given by

ke € 0(in), - kg € O (ia)
(Kiv. - kg) 2 (i1, i)

for all tuples(is, . ..,ig) where at at least one com-
ponent k is a multiple ofn. The algorithm returns
both the prefix sum array PR and the overlay array
Q.

More recently, Hierarchical Band Cube (HBC)

dates be?
method?

Can we improve on the RPS

3. What is the best wavelet for range sum prob-
lems?

The answer to the first question is positive: it suf-
fices to use wavelets in bakeso that the height
of the wavelet tree is lgg. B—adic wavelets
were first introduced by Hellef_[11] as raryd
wavelets, and are related to-adic subdivision
schemel[5/ 6]. By choosing large enough, we

have been proposed [3] as an alternative to the can EffeCtiVE|y control the helght of the tree. This

RPS method: but HBC data updates require time
O(n?-1). However, to our knowledge, the HBC
method is the first to generalize the RPS method in
terms of basé trees and it does away with the over-

allows us to limit the worst-case query cost to a set
maximum which depends on the height of the tree.
This baséb approach is similar to replacing binary

trees byB—trees as a most scalable alternative. As

lay. Other authors have used base 2 (dyadic) Haar for the second question, we show that we can gen-
wavelets[[4[10] either to compress or approximate eralize the RPS method as a wavelet-like approach
prefix sums aggregates |14, 16] 17] or as a replace- and improve the scalability of the method as much
ment for the prefix sum method [18]. An important @S We want: the update costs scalesCes’/?)

limitation of these wavelet-based methods is that With B as a parameter. Finally, as for the third ques-

they have polylogarithmic query times.

3 8 9 2 4 8 6 9 13
10 | 18 | 21 8 18 | 29 7 12 | 17
12 1 24 ] 29 11 | 24 | 38 11 | 21| 30
3 5 6 5 8 13 2 10 | 10
7 11 | 13 8 14 | 23 9 18 | 21
9 16 | 21 14 | 21 | 38 14 | 24 | 29
4 9 11 7 8 17 3 6 7
6 15 | 19 9 13 | 23 12 | 16 | 22
7 19 | 24 10 | 16 | 28 20 | 26 | 38
0 0 0 9 0 0 17 0 0
0 12 33
0 20 50
12 | 12 | 17 | 46 | 13 | 27 97 10 | 19
0 7 17
0 15 40
21 | 19 | 29 | 8 | 20 | 51 | 179 | 20 | 34
0 8 14
0 13 24

Table 4. The Relative Prefix (RP) array and its
overlay for the data cube of Tall¢ 1. The overlay
size was chosen to bhg9 = 3.

Assuming that range sums aggregates cannot use

a buffer larger than the data cube itself, we are mo-
tivated by the following questions:

1. Canwavelets allow queries in tini 1) as the
prefix sum methods does?

2. Assuming we require that queries be pro-
cessed in timé(1), how cheap can the up-

tion, the dyadic Haar wavelet is probably not the
best choice for many range sum problems. Instead,
we present a special case of Aldroubdblique
waveletdl] as an alternative. Oblique wavelets can
be described as “stripped down wavelets” that can
be computed twice as fast while still providing a
wavelet tree. Most wavelets found in commercial
software packages are orthogonal or biorthogonal
wavelets[[4] (Haar, Daubechies,) because it as-
sumed that the data is smooth or that the user is
interested in the Euclidean norm of the wavelet co-
efficients and its relation to the Euclidean norm of
the signal (e.g. Riesz property). For the applica-
tion at hand, range sum queries, the main relevant
“wavelet feature” is the “multiscale” or pyramidal
approach([i7]. Of course, for higher order range
queries such as variance and covariance queries,
other wavelets might be a better choicel[15].

Our main result is a generalization of the RPS
into a Pyramidal Relative Prefix Sum (PyRPS) ap-
proach which is shown to be arbitrarily scalable.
We also present adaptéd-adic oblique wavelets
as a preferred wavelet transform for range sum
problems.

This paper is organized as follow. We begin
with a review of unidimensional wavelets. We
present efficient, in-place algorithms to compute
the obligue wavelet transform and we conclude
with some computational complexity analysis. We
then show how these results can be generalized in



the multidimensional case using the direct product.
The wavelet-based Pyramidal Relative Prefix Sum
approach is then presented and analyzed. We con-
clude with some optimization analysis for the poly-
logarithmic case, a discussion on variable bases,
and some remarks concerning practical implemen-
tations.

2 Unidimensional Wavelets

The basic idea of a wavelet transform is to project
the data on a simpler, coarser scale while mea-
suring the error made so that the transformation
can be reversed|[4]. By projecting repeatedly the
data on coarser and coarser scales, a wavelet tree
is built and provides a “mathematical zoom”. The
Haar transform[[10] is probably the first example
of a wavelet transform. LeE = {x} be an array

of length 2 with indicesl; = {0,...,2’—1}. In

one dimension and with a convenient normaliza-
tion, the Haar transform can be described with two
operators: the coarse-scale projection

Phaar (Z) = {X2i +X2i+1}i€|371

and the error measure (or “wavelet coefficients”)

QHaar (=) = {Xoi — X2i+1}ieIJ,1 :

Both Pyaar and Quaar downsample the data by a
factor of 2 so we say that the transformation is
dyadic (base 2) and given the result of b&yar
andQuaar, We can recover the original data The
tree structure comes in when you repeatedly apply
the operator®yaar andQuaar to the results of the
coarse scale operatBaar. FOr example, given the
data{a,b,c,d}, we getPyaar({a,b,c,d}) = {a+
b,C+ d} and QHaar({a» ba Cvd}) = {ai va - d}
and thenPyaar(Phaar({@,b,c,d})) = {a+b+c+

d} and Quaar(Phaar({a,b,c,d})) = {a+b—c—

d}. The final wavelet tree with height 2 is given
by the coarse scale projectiga+ b+ c+d}, its
corresponding wavelet coefficiefa+b—c—d}
and finer scale wavelet coefficienfa+ b,c+d}
and {a—b,c—d}. Wavelet coefficients at step
j are given byQHaa,(maar)J_l( ). The lowest
wavelet coefficients in the tree a@yaar(=), then
QHaar(PHaar(2)), QHaar(Hiaar(Hﬂaar(E)))y and so
on. Because of the downsampling, an array of
length n will have n/2 wavelet coefficients at the
bottom, them/4 at the second step and2! at step

1(4=12..).

As an alternative, we propose to use oblique
wavelets[[1] defined by the following operators: the
coarse-scale projection (as in Haar)

P2 (E) = {X2i +X2i+1}i6|\],1

and the error measure (or “wavelet coefficients”)

Q2 (=) = {Xai}iey,_, -

One major drawback of such simpler transform is
that it doesn't preserve the Euclidedp)(horm or
the energy of the data unlike a properly normalized
Haar transform and so, some authadrs [7], prefer
to refer to such a transform as a “pyramidal trans-
form” rather than a “wavelet transform”.

Forb> 2, let= = {x} be an array of lengtb’
with indicesly = {0,...,b’—1}. We propose to
generalize the operatofs andQ; to the equivalent
baseb > 2 case:

Pb(2) = {Xoi +Xoir1+ - +Xoisb-1}icl,
and

Qb,l (E) = {Xbi}ielj,l ’

Qb2 (Z) = {Xoi +Xoit1}icly

Qbb-1(2) = {Xoi +Xpit1+ -+ Xoib-2}ie, ;-

These new operators downsample the original data
by a factor ofb and so are said to be—adic but
since we haveb linearly independent operators,
they still allow perfect reconstruction (see proof
of propositio{ 1). Notice that subtraction is never
used as the operators are effectively local prefix
sums. The following algorithm can be used to effi-
ciently compute the transform; for the sake of sim-
plicity, we assume thatis a power of b.

Algorithm 2 (In-Place Base b Oblique Wavelet
Transform) Given an array of values;,Xxi
0,...,n—1, the first step is given by

Xok < Xok,

Xok+1 <= Xok + Xok+15 -+
Xbktb—1 < Xpk+b—1 + Xpk+b—2
for k =0,..,n/b—1 so that we have jx—
z:(:bL(iJrl)/bJ x¢ fori =0,...,n— 1. Similarly, suc-
cessive steps at depth=1, ...,log,n— 1 are given
by
Xpiki+bi—1 < Xpik+bi—1,



Xoik+2bi—1 <= Xpik+2bi —1 T Xpiktbi—15+- -
Xpi+1k—1 < Xpi+1k—1 + Xpi+1k bi—1
fork=0,...,n/bl — 1 so that we have
i
Xi — Xk
k=y(i, )

for i =bl —1,20) —1,...,n and y(i, ) = bl x
(i+1)/b]] —1.

The computational cost of this algorithm is
O(n). Indeed, the number of sums can be seen
to be %5tn+ 5%An+ ... +b—1=n-1 assum-
ing thatn is a power ofb. Consider that the Haar
transform involves+ 54 ... +2 =2n—2 sums
and subtractions and is therefore more expensive
by a factor of 2. As an example of this algo-
rithm, suppose we apply the in-place transform to
the arrayD = {1,0,2,1,2,4,3,1,3} with b = 3.
The first step givedD; = {1,1,3,1,3,7,3,4,7}
whereas the second and last step gi&s=
{1,1,3,1,3,10, 3,4,17} where only the sixth and

they involve many more cells in the original data
cube and are likely to provide an incrementally im-
proving estimate. This is particularly convenient if
the topmost cells in the tree are buffered for fast
access. Similarly, if one cell is updated, then no
more than H (b—1)log,n cells need to be up-
dated in the transformed array as the proof of the
next proposition shows. This is true for all base
b wavelet transform even though we are only con-
cerned with the transform described by Algorithm
[2. We define the height (or depth) of an index in the
tree byheightk) = 14+ max{j € IN: y(k, j) =k}
wherey(k, j) = bl x [(k+1)/bl| — 1. This defi-
nition might seem inefficient if we try to test ajl
values (up to logn). Similarly, the sum of equation
must be evaluated while checking for redundant
terms which might appear difficult. However, the
following proposition shows that both problems are
easily taken care of essentially becayse mono-
tone decreasing.

Proposition 2 If y(k, j) =k, theny(k,v) = k for all
v < jandy(k,a) is monotone decreasing i

the last data samples changed. Since the tree has

height 2 (2-step transform), the sum of the fikst
cells inD can always be computed using at most 2
sums inD,. For example, to compute the sum of
the first 8 terms i, it suffices to sum the'&and

the 8" term inDy: 10+ 4 = 14. The proof of the
next proposition gives the general formula to com-
pute such range sums. We note the transformation
described by Algorithrp]2 &S, so that

r3(1,0,2,1,2,4,3,1,3) = {1,1,3,1,3,10,3,4,17}.

Proposition 1 Given the base b oblique transform
Yi=0,..n-1=Ip(Xi=0,...n—1), then one can compute

any range sum of the formyS- TK (% in time
O(logyn).

_Proof. The proof is constructive. Latk,j) =
bl x |(k+1)/bl| —1 and assume = 2, then it
suffices to observe that

3)

where we used the convention that the same cells
are never summed twice and negative indices are
ignored e.9.Sp_1 = Y2b-1. We see that at most
J =log, n sums are required to compuie [

In practical applications, the sum in equatjdn 3
could be approximated by the few last terms since

Sc= Yt Yy o Yyka-1)

Proof. Notice thatb! x |(k+1)/bl| < k+1,
hencey(k,j) < k for j > 0. By Euler’s theo-
rem, givenb and j, there exist integers > 0 and
0 < s< bl such thak+1 = bir +s. Assume that
y(k, j) = k for somej > 0, thenbir —1 =k and
y(k,j—1) =blr —1+[s/b}| =k+ |s/bl |, but be-
causey(k, j — 1) <k, we havey(k,j — 1) = k. The
first result follows by finite induction.

To show the second result, we observe that
bl |x/bl| < |x] and thus, setting = (k+ 1)/b"

for somet > 0, we havebl {%J < |k or

bitt [gjﬂ < bt |%2] hencey(k, j +1) < y(kt)
which shows thay is monotoneld
Finally, thisO(n) transform can be updated with

only a logarithmic cost as the following proposition
states.

Proposition 3 The base > 2 oblique transform
Yi=0,..n-1="p(Xi=0....n—1), can be updated in time

O((b—1)log,n) given a change in one cell value
Xk-

Proof. A change in cellx requires at most
b— 1 update at each depth in the wavelet tree
except for the topmost cells whebkecells might
need to be updated. A maximum df +



(b — 1)(logyn — 1) cells may need to be up-

dated: Vi, -, Yykab1)—15 Yy(keb,1)s Yy(k+2b,1)s-
Yik+b2,2)—br -1 Yy(k+b3-1,3-1)> Yy(k+207-13-1)5 -
Vn—1. If the value stored in ceby was mcreased

(resp. decreased) kyy, it suffices to add (resp.
subtract)Ay to each cell

3 Multidimensional Wavelets

In the multidimensional case, we take the wavelet
transform using the direct product of the unidimen-
sional wavelet transforniy, ® --- ® 'y on a data
cube of sizeb’®. In practical terms, this suggests
that we apply the transform on each dimension sep-
arately. For example, given a data cubg,
0 < ik < n of dimensiond, the wavelet transform
can be computed using steps. Firstly, we ap-
ply the operator, on the first dimensiomd—1
times: we havend—1 arraysa, (iz, ..., ) indexed
by i1 and defined by, (i2, ...,ig) = i Let
&, = I'p(&,) for all possible values ofy,...,ig

and setD( )...,id = & (i2,...,ia). We repeat this
process Wfth each dimension and note the result
MN®---®My(D). It can be seen that this algorithm
has a cost oD (n). A two-dimensional exam-
ple is given in Tablé 5. We define the height of
acell(iy,...,iq) in the tree byheight(is,...,iq)
min{height(i1),...height(iq)}.

The computational cost to range sum queries is
the same as the computational cost for computing

propositior 1, preflx sums can be computed |n time
log, n assuming we have applied the wavelet trans-
form . A similar result applies in the multidi-
mensional case.

Proposition 4 Given the base b oblique transform
of a data cube of sizedn Db, then one can
compute range sums, S i, (prefix sums) in time

O (logdn).
Proof. Lety(k,j) =bl x |(k+1)/b/| —1 and

consider the operatas(a) = a +ayk1) +--- +
ayJ-1)- By the proof of propositim[]l, the pre-

fix sums can be computed by the wavelet transform ..

Yk<jak = Okolp(a) for any arraya. Thus if we
noteD'® =T, ®---®p(D), then

Si..id

Drl,...,rd

r1<ij,....,rq<ig

(0i,0lNp) @+ ® (Gid o rb) (D)

0i1®"'®0id(rb®"'
0, ®- "®0id (D)
-1 J-

Z Dy i)y

M= rg=0

®@lp(D))

which can be done in tim@® (logdn) since each
sum involves at most lgg terms.[J

The proof of the previous proposition gives us
the formula to compute prefix sums. As an exam-
ple, consider Tablg/5 where=9,d =2,b=3and
J=2. Sincey(7,1) = 5, the prefix sum at position
(7,7) is given by

zD

r1=7,51,=7,5

M3
r1,r2

D77+D75+Ds7+Dss

16+45+42+4126= 229

and the result can be checked in TdBle 2. As another
example, we can compute the prefix sum at position
(7,1) with the convention that the first index refers
to the row number. We have thgtl,1) = —1 and

y(7,1) = 5, thus the prefix sum is given by
Di3, = Di7+Digs
r= 1r22 2
= 154+40=55.

At most 2x 2 = 4 sums are required to compute
the prefix sum at any cell as predicted by proposi-
tion[4. Similarly, if one were to change the value

of cell (0,0), then only 25 cells need to be up-
dated (see Tablg] 6). The following proposition
makes this result general. As in the unidimen-
sional case, these sums can be seen as incremen-
tally accurate estimates: assuming we stop short
of the firstdL terms in the sum, the approximation

-1 ...53-1 pho
YroL " Sra=L Pyiy i), y(re.) @Nd the actual value

S,...iy differ at most by the sum adn®~1(b- — 1)
cells. If the values in the data cube are bounded in
absolute value b, the error in skipping the last
dL sums is at mosmdn®-1(b- — 1) (exponential

decay as — 0).

Proposition 5 The base b oblique transforfi, ®
-®Tp(D) of a data cube of sizé'rcan be updated
in time Q((b—1)%log?n) given a change in one
cell value.

Proof. Since the operatdry, can be applied di-
mension per dimension, we can simply count the
number of cells affected by the change. By the



proof of propositioi B, only+ (b— 1)(log,n— 1)
cells are affected after the transform on the first di-
mension is done. Each on these cells, in turn, im-
pact on at mosb+ (b— 1)(log,n— 1) cells across
the second dimension. Thus af@itransform, at
most(b+ (b — 1)(log,n— 1))¢ cells are impacted
across all dimension§gl

3 [ 8] 924176930
10 (18 | 21| 8 | 18| 50 | 7 | 12 | 67
12 [ 24 [[29 | 11 [ 24 | 67 | 11 | 21 | o7
3| 5|6 [ 5[ 8| 19 [ 2 10| 29
7 11|18 8 [ 14| 36 | 9 | 18 | 57
21 | 40 |50 [ 25 [ 45 [ 126 | 25 | 45 [ 185
4 9|11 7| 8| 28 [ 36| 35
6 | 15 [ 19| 9 [ 13| 42 | 12 | 16 | 64
28 | 59 [ 74| 35 | 74 | 178 | 45 | 71 |m27sN

Table 5: Oblique Transform'; ® '3(D)(PyRPS)
for the data cubé of Table[1. All cells are at
height 1 in the wavelet tree except the 9 cells with
a darker gray background which are at height 2.

31 [ 81 [ 91 [ 2 [ 4 | 171 ] 6 [ 9 | 301
101 | 181 | 21.1 | 8 | 18 | 500 | 7 | 12 | 67.1
121 | 241 [ 294 | 11 | 24 | 674 | 11 | 21 | O7.L

3 5 6 | 5| 8| 19 | 2 | 10| 29

7 [ 11 | 13 | 8 | 14| 36 | 9 | 18 | 57
211 | 40.1 | 650.1 | 25 | 45 | 126.4 | 25 | 45 | 185.0

Z 9 | 11 | 7 | 8| 28 | 3 | 6 | 35

6 | 15 | 19 | 9 | 13| 42 |12 | 16 | 64
281 | 50.1 | 741 | 35 | 74 | L7841 45 | 71 |p2isd

Table 6: Oblique Transformz ® '3(D) (PyRPS)
for the data cub® of Table[1 modified wittDg o =
3.1.

4 Pyramidal Relative Prefix
Sum Method (PyRPS)

We are now ready to prove the next theorem which
describes the main result of the proposed PyRPS
method. In effect, the PyRPS method can be made
as scalable as needed (assunmitgrge).

Theorem 1 (Pyramidal Relative Prefix Sum)
Given a data cube of sizednfor any integer
1 < B < log,n there exist a base b oblique trans-
form My ® --- ® M'y(D) which allows range sum
queries in time @1) and can be updated in time
O(nd/B) given a change in one cell.

Proof. We can set the height of the wavelet tree
to a fix positive integef=log,n and solve forb,

b = n¥/P so that by propositioE]4, the query cost
is O(BY) and by propositionEIS, the update cost is
O(nd/Ppd). O

One drawback to more scalable updates is that
more (fixed) steps are required to compute the
range sum queries. Since increasfhglows down
queries but improves the update cost, one might ask
what the best compromise f@rcould be. Geffner
et al. [8] measured theverall complexitypy mul-
tiplying the range sum query cost with the update
cost. For the PyRPS method, the overall complex-
ity is nd/BB2 by the proof of theorerh|1. How-
ever, by choosing any fixed integer> 2 and let-
ting B = log, n, we have an overall complexity of
(b—1)%log2? n which is clearly better fon large
than any fixedB since it is logarithmic whereas
nd/Bp2 is polynomial inn. In short, the overall
complexity is minimized whef is large and this is
discussed in the next subsection.

4.1 Optimization of the polylogarith-
mic case: PyRPS(log)

The PyRPS method wit = log, n might still be
interesting even though it no longer offe@{1)
queries since it minimizes the overall complexity.
By propositiond i an{l]5, we have that the over-
all complexity is(b—1)%log2n and so the best
choice forb arises wherfb—1)4/In®b is a mini-
mum. Sinceb must be an integer, this minimum is
reached ab =5 (see Fig[]1).

Lemma 1 In a polylogarithmic PyRPS approach,
the overall computational cost defined as the prod-
uct of the query cost with the update cost is mini-
mized when the base-b5.

4.2 \Variable Bases

One of the assumptions made so far was that the
chosen baskwas constant. Other authors have ex-
perimented with variable bases [3] thus generating
a large family of algorithms with various proper-
ties. This is especially applicable in the case of an
algorithm such as PyRPS where we fix the height
of the tree a priori. We begin by stating the variable
base equivalent to Algorithfr 2.

Algorithm 3 (In-Place Oblique Wavelet Trans-
form with Variable Base) Suppose we are gifEen



(b-1)%10g?(b)

Figure 1: The estimated overall computational cost

5 Practical Implementation
and Future Work

In implementing the PyRPS method for high per-
formance purposes, several issues arise. For ex-
ample, it might be desirable to buffer some of the
topmost cells of the tree since a given cell is used
much more often in queries and updates. In prac-
tice, it will often be convenient because a large frac-
tion, 1— 1/b?, of the wavelet coefficients are at the
lowest level. It could also justify the use of a vari-
able base approach to tailor the tree to the amount
of memory available for caching the upper part of
the tree. For example, =5 andd = 3, 99% of

all coefficients are at the lowest level of the tree.
Second of all, the lowest level coefficients are set
in blocks of sizeb? — 1 often updated at the same

of a wavelet-based range sum system depends on time which suggests that an efficient implementa-

the basd as(b—1)¢/In?db. Ford = 1, the mini-
mum is reached di= 5.

integers > 1 such thaiﬂ?zlbi =n and an array
of values x i =0,...,n— 1. Let B =k ;b for
k=0,...,B with By = 1, the transforms at depth
j=0,...,B are given by

XBjk+Bj—1 <~ XBjk+Bj—1;
XBjk+2Bj—1 ¢ XBjk+2Bj—1 T XBjk+Bj—1;- - -

XBj,1k—1 <= XBj, 1k—1 1 XBj, 1k-Bj—1

fork=0,1,...,n/Bj — 1.

Using AlgorithmB, queries still take tim@?

since the depth of the tree i However, updates
d

now require time(ziB:1 bi) instead ofn/Ppd as
in the proof of Theorer|1. Since the query time
remains the same, the question is whether hav-
ing a variable base can improve the update cost.
To answer this question, we find the minimum of

ZiB:l bi overby,...,bg given |‘|?:1bi =n. The La-
grangian of this problem is given hy= Ziﬁzl b —
M(MEabi—n) and thusge = 1-AMF, b
Settingg—l';k =0, we have\ |‘|?:1bi = b k. It fol-
lows thatb; = ... = bg and thush; = ... = bg =

n'/B. In other words, for large, the best choice is
not to use a variable base.

tion would allow for fast “block updates”. Again,
the need to control the size of these blocks should
be considered in the choice of the base

The RPS method suggests we keep the overlay
in memory which implies a memory cost @f/b)¢
cells wheréb is the size of the overlay /2 when
we chooseb = /n to optimize the update com-
plexity [13] and as pointed out by the authors, a
smallerb might be chosen to optimize to overlay
given the memory available. The next proposition
makes precise how much of a buffer size we need to
reduce queries processing by up to a frac§owe
make the assumption here that buffered cells can be
accessed without noticeable cost when compared to
permanent storage retrieval.

Proposition 6 Whether we consider PyRPS or
PyRPS(log), assuming the tree has hei@htto
buffer the firs€ 3 levels of the tree requires storage
space of ff cells.

Proof. We haven = b? and the firs€p levels of

d .
the tree havd b®) = n% cells. The result is the

same no matter whatis and applies to all bade
trees.

For example, if the tree has height 10 and we
want to buffer 25% { = 0.25), then we need to
buffer n9/4 cells. This tells us that to keep the
memory requirements constant, we need td set
m wherek is some constant and therefore, un-

surprisingly, for very large data cubes with respect
to the memory available, buffering won't provide
significant help.
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