A Family of 4-Point Dyadic Multistep
Subdivision Schemes

Daniel Lemire

Abstract. We present a new family of multistep iterative interpola-
tion schemes and a 4-point high resolution scheme reproducing quartic
polynomials. Interpolation requires two steps: a coarse scale interpo-

lation followed by a fine scale interpolation. The interpolants are C’l,
have good local properties, and no additional memory requirement.

§1. Introduction

Subdivision schemes interpolate a discrete set of data points in a local
manner, that is, the value of the interpolation function at a given point
depends on a small number of nearby data points. The classical dyadic
subdivision scheme [6,3] finds the midpoint values by fitting a Lagrange
polynomial through the 2N closest data points. By repeating this al-
gorithm iteratively, we have a dense set of data points and determine
uniquely a smooth interpolation function. Because subdivision schemes
relate data points from one scale to another, it is not surprising that they
are a key ingredient in the construction of compactly supported wavelets
[1,4].

Often, interpolation schemes can be made more local by using more
memory. Merrien [15,16,7] introduced Hermite subdivision schemes which
have twice the approximation order and better regularity for a given sup-
port, and vector subdivision schemes in general have received a lot of
attention ever since [11,17,13]. In spline theory, adding extra nodes can
make spline interpolation local [5]. However, in this paper, instead of using
more memory, we want to make better use of the memory we already have.
We propose to use the upcoming nodes at least one step earlier to record
coarse scale guesses (see Fig. 1). Because the new placeholders are used
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Fig. 1. Diagrams of 4-point subdivision schemes in the dyadic (left) and 4-adic
(center) cases, and our multistep scheme (right). Arrows symbolize the
interpolation process. The circles are data samples, and the squares
represent placeholders recording “guesses” .

scheme regularity support polynomials
Dubuc Ct -3,3 cubic
Dyn-Gregory-Levin | up to C* -3,3 up to cubic
Hassan et al C? [—5/2,5/2] quadratic
presented multistep Ct [—3,3] or [-3,4] | cubic or quartic

Tab. 1. Comparison between some 4-point iterative interpolation
schemes. The support of the fundamental functions is given. The
quartic multistep scheme is slightly less local because it requires ini-
tialization by a one-step 5-point scheme.

as predictors, the new schemes will be as local as the usual subdivision
schemes.

The main result of this paper is that by summing up the 4-adic inter-
polation and dyadic interpolation, we get a range of smooth (C!) multi-
step schemes reproducing at least cubic but also quartic polynomials (see
Tab. 1). While there exists 5-point quartic subdivision schemes, they are
not as local as our 4-point multistep scheme.

The paper is organized as follows. We begin with a brief review
of subdivision schemes, and discuss both the dyadic and 4-adic 4-point
Deslauriers-Dubuc schemes. Combining these subdivision schemes, we
present a family of multistep schemes reproducing cubic polynomials and
prove that some of these schemes are smooth (C*).

§2. Subdivision Schemes

Given an integer b > 1, a b-adic number is of the form xz,j, = k/b’ for
some integers k, j. For a fixed J, given some data {yjx},cz, we want a
smooth function f such that f(z;x) = ysk, for every k € 7ZZ. Starting
with {ysx},cz and using the formula

Yir1d = Y YVok—1Yjk: (1)
ke



Multistep Subdivision 3

for some array v, we get values y; 5 for any 57 > J. Since b-adic numbers
form a dense set in IR, there is at most one continuous function such that
fzjr) =yjr forallk e 7ZZ,5 > J.

A subdivision scheme is interpolatory and satisfies f () = ysi if
Yor = 0, for every k € 7Z except for 79 = 1. We say that a subdivision
scheme is stationary if the array v is constant (does not depend on j).
Because v does not depend explicitly on [ but rather on bk—I, the scheme is
translation invariant or homogeneous. A subdivision scheme is a 2N —point
scheme if v; = 0 for |I| > Nb. The fundamental function of an interpolatory
2N —point b-adic scheme has initial data yo; = d;0; it has a compact
support of [-(Nb—1)/(b—1),(Nb—1)/(b—1)] (or [1 —2N,2N — 1] when
b = 2). For general stationary schemes, we define the k** fundamental
function as the interpolant with initial data yo; = 0; -

For N = 1,2, 3, ... there are corresponding interpolatory 2NN —point
Deslauriers-Dubuc subdivision schemes (DD) built from the midpoint eval-
uation of Lagrange polynomials of degree 2N — 1. For b = 2 (dyadic case),
the 4-point Deslauriers-Dubuc scheme can be defined with the array y?P2
given by vf'P? = 1,4PP? = —9/16,v2P% = —1/16 with 4PP? = 0 oth-
erwise; and for b = 4 (4-adic case), the scheme is defined with the array
yPP4 given by yDP4 = yPDP2vE € 77, 4PP* = 105/128,y2P* = 35/128,
PPt = —7/128,yPP% = —5/128, with vPP2 = 0 otherwise.

Because 4-point DD schemes are derived from cubic Lagrange poly-
nomials, they reproduce cubic polynomials, that is, if the initial data y; j
satisfies y;x = p (z;x), for every k € ZZ for some cubic polynomial p, then
the interpolation function f is this same cubic polynomial: f = p. The
two cases presented above (yPP? and yPP?) converge to differentiable
(C!) interpolation functions [6,3].

§3. Multistep Subdivision Schemes

We define stationary multistep schemes by the equation

M
Yj+1,0 = Z Z 'YJ(\Z))k+m—1—lyj,Mk+m—1a (2)
m=1kecZ

where (1), ..., y(M) are constant arrays (independent from j). They form
a b-adic scheme because the number of nodes increases by a factor of b
with each iteration. However, because we have M > 1 arrays v, the
scheme is said to be a multistep scheme. It is an interpolatory scheme if
Yj+1,Mbk = Yj,Mk, and it is a 2N —point scheme if 'yl(m) =0 for |l| > MNb
and m = 1,..., M. In [2], a similar idea was proposed as the poly-scale
framework, but it differs from our approach: Dekel and Dyn proved that
within the poly-scale framework, convergent processes with initial data
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Yo,k converge to Y, yo r¢(x — k) for some continuous function ¢, whereas
no such thing is possible in general with multistep schemes.
For b = M = 2, the general equation (2) becomes

Yj+1,0 = Z ’Yi]lc)_lyj,% + W’ﬁ)ﬂ_lyj,zkﬂ- (3)
kEZ
A value y;; is a stable value if y;x = yj4+1,2%; other nodes are said to
be temporary or are referred to as placeholders. A multistep scheme on
a dyadic grid is an interpolatory scheme if all y; 2x values on even nodes
(x; or) are stable so that y; or = y;41,4, for every k € ZZ.
For the rest of the paper, we will consider the schemes M S,, for some
parameter o € R, where ¥(1) and v(® are chosen to be

o = WP (L @) + ady,
Vb = Vgt Vk € Z, (4)
and 7(_2:2 = a, 722) =0 for k # —1. Since v P4 = vPP2Vk € 7, we can

rewrite equation (3) for even and odd terms. Firstly, setting | = 2s (I
even), we have

Yirtes = (1= )v02% + abak,s) Y 2k + O2kt1,:09; 2041,
kEZ

so that when s is even (I = 2s = 4r), we have the interpolatory condition

Yj+1,4r = Yj,2r, (5)
otherwise, when s is odd (I = 2s = 4r + 2)
Yitrarte = ojorpr + (1—a) > v9225, 1y 0k (6)
kEZ
Secondly, if [ is odd (I = 2s + 1), we have
Yit12s41 = D Vanlos_1Yj.2k- (7)
kEZ.

Equations (5), (6), and (7) can be used to describe M S,,: while equation
(5) is the interpolatory condition, equation (7) fills the placeholders with
4-adic (coarse scale) interpolated values, whereas equation (6) combines
the value stored in the placeholder with the newly available interpolated
value (fine scale) given by the summation term which we recognize from
the dyadic DD interpolation.

In the simplest case, @ = 0 = v(2) = 0, and equation (3) becomes
Yit1,l = Yopem Yol 1yj2k- In this last equation, y;41; depends only on
even nodes (y;2x). Hence, we have yj 1101 = Y ez Vin 5:¥j,2ks but be-
cause 'yé:,’ﬂD‘L = 7,?132, this last equation becomes y; 41,21 = D 1% ’yﬁ?%yjygk,
and if we define y; ;, = y; o, we have that M.S is equivalent to the 4-point
dyadic DD subdivision scheme.
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84. Reproduced Polynomials

Assume that for some j, y;r = p3 (z;), for every k € ZZ, where ps is a
cubic polynomial. Because 4-point DD schemes reproduce cubic polyno-
mials, we have

DD2 _ _
Z Yok—2r—1Y5,2k = Yj,2r+1 = P3 (xj,Zr-l—l) )
keZ

and thus equation (6) becomes ;i1 4r+2 = p3(2j2r+1) for any o € R.
Similarly, equation (7) implies yj4+1,2s+1 = P3 (Tj41,2541). We conclude
that yj416 = p3(zj41,k), for every k € ZZ if y; 1, = p3 (), for every
k € 7ZZ, and thus M S, schemes reproduce cubic polynomials. For practical
implementations of a multistep scheme, it is necessary to first apply a one-
step subdivision scheme. Let {yj,k}k be some initial data. As a first step,
we apply DD’s equation

it = > Vor21Yi.2ks (8)
heZ

followed by MS,. This algorithm is as local as the corresponding DD
subdivision scheme in the sense that the fundamental function has support
[—3, 3]. By induction on j, we get the following lemma.

Lemma 1. M S, schemes reproduce cubic polynomials and are interpola-
tory when using a one step interpolatory 4-point dyadic DD interpolation
as initialization.

We get a stronger result by choosing a specific a. We can write
any quartic polynomial py as ps(z) = asz* + ps3(x), where ps is some
cubic polynomial. Because of the Generalized Rolle’s theorem and because

(4)

pi—! = a4, given any 4 points £1,£2,€3, and &4, the corresponding cubic

polynomial pr3 approximates p, with error

pa(z) —pr3(z) = as(z — &1) (v — &2) (. — &) (v — &) 9)

for some &. In other words, the error depends only on a4 and the geometry
of the sample points &; with respect to z. This makes the task of canceling
out the errors convenient as we shall see.

Suppose that for some j, yjor = pa(2j21) and yj_1x = pa(xj—1,%)
for every k € 7ZZ. We can write y;11 4,42 for any r € ZZ in terms of this
initial data (y; and y;_1) by substituting equation (7) into (6) to get

Yitlartz =0 Y Vs 1Wi-tok + (1= ) Y 7325, 1yj0k  (10)
kEZL keZ
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We want to show that y;41,4r+2 = pa(2j,2-41) for some o € R, and so
we substitute y; or, = p4 (j,21) and y;j_1 5 = psa (xj—1,) into the two sums
of this last equation. We compute both sums in equation (10) explicitly
using equation (9) (Rolle’s):

1050,4
> vBPS 1y -1,26 = Pa (Tj0r41) — 1 (11)
keZ

and similarly vﬁQ%T_lyj,% = pa(Tjory1) — %. Hence, setting
a = —3/32 in equation (10), we get

1050+ 9(1 — a)
Yit1ar+2 = Pa (Tjar41) = 547 ag = Pa (Tjt1,ar42) -

Therefore, MS_3/35 reproduces quartic polynomials once the data has

been properly initialized. While there are no 4-point subdivision schemes

capable of interpolating y;_1 x = pa (k) t0 Yj 2k+1 = Pa (% 2041)— %

and y; or, = pa (x,21) for all k € ZZ, there exist 5-point subdivision schemes
such as the subdivision scheme described by the next algorithm.

Algorithm 2. For a given integer j, begin with some initial y values
yjk k € ZZ over dyadic numbers =, = k/27,
1) recopy data at Tji1,25 = Tjk: Yj+1,2k = Yjk Vk € ZL;

2) extrapolate y; 14 USING Yjk—2,Yjk—1,Yjk Yjk+1, Yjk+2 by the for-
mula vj g = 5Yj k—2 — 24y k-1 +45Y; k — 40y g1+ 15Y;j k41, VK € Z;

3) interpolate midpoint value using the 4-adic DD formula y;j41 2541 =

—7Yj,k—2+105y; £ +35Y; k4+2—57;,k
o8 , Vk € ZZ.

To see that algorithm 2 properly initializes the placeholders, observe

that if we assume y;r = ps(2s%), then we only need to check that

165 . .
Yr+1,26+1 = Pa(Tr4126+1) — Tgagicrrny- However, if Yy = pa(zsp) is

satisfied, then ;5 = pa(2sk44a) since it can be derived by finding the
quartic polynomial p;y satisfying py (1) = ygi for il =k —2,..,k+2
and setting vyr = psr (€sk+a). Hence, by equation (11), we have the
following lemma.

Lemma 3. Algorithm 2 describes a 5-point dyadic subdivision scheme
such that with yj_1x = pa(zj_1) and ps(z) = asz* + asr® + asr? +
a1x+ag is a quartic polynomial, y; op+1 = Pa (Tj26+1) — % and yj o =
D4 (2j,21) for all k € 7Z.

Because we have a proper initialization scheme, we can reproduce
quartic polynomials as shown in the next proposition and we say that
MS_3,35 is a high resolution subdivision scheme.



Multistep Subdivision 7

Proposition 4. With Algorithm 2 as an initialization step, MS_3/35
reproduces quartic polynomials.

Only subdivision schemes using at least 5 points can interpolate quar-
tic polynomials, and the support of the fundamental function is at least
of size 8, whereas the algorithm described by Proposition 4 (MS_3/3)
leads to fundamental functions having compact support of size 7 taking
into account the 5-point initialization scheme.

§5. Sufficient Conditions for Regularity

Given that M S, is equivalent to the DD subdivision which is C?, it is
reasonable to expect M S, to be C* for some range of a values. Motivated
by Proposition 4, we need to show that this range of values includes o =
—3/32. At this point, it is convenient to rewrite equation (3) in terms of
Laurent polynomials. Given some data y; 5, define Pi(z) = 3, y;62"
If Po(2) = Y hez yPD2,k | then the equation of the 4-point dyadic DD
scheme (equation (8)) can be rewritten Pi+l(2) = Py(2)P?(2?%). Similarly,
if Py(z) = ez 7P P42, then the 4-adic subdivision scheme is given by
Pitl(z) = P4(z)Pj (zz). We can rewrite the general equation for b— adic
multistep schemes as

M

Pitl(z) = Zf‘k(Z)Pj (ezmk/bzb) :

k=1

where the I'y, must be Laurent polynomials. For dyadic (b = 2) and two-
step schemes (M = 2), this equation becomes

PItY(z2) =T1(2)P? (%) + Ta(2) P (—27). (12)

Observe that E7(2?) = (PI(2?) + P7(—2%))/2 selects only the stable val-
ues (even indices), whereas 07 (22) = (P7(22?) — P7(—2%))/2 depends only
on the guesses (odd indices) of y;. Hence, we can rewrite equation (4) as
Pitl(z) = (1(2) + a) B/ (2%)+a0? (2?), where 7(2) = Py(2)—aPs(2?). Af-
ter rearranging the terms, we get P/*1(2) = (&5 ™) 4 o) Pi(22) + T(Z)Pj( ).

Because 7(z) = (Py(z) — Ps(—2))/2+ (1 — a)(P4( )+ Ps(—2))/2, the M S,

symbols are

'1(z) =Ta(2) + «,
P4 (z) — P4 (—Z)

Py (2) + Py (—2)
] :

FZ(Z) = 4

+(1—a)

Following Dyn [8], we want to find corresponding schemes for the (forward)

finite differences. Let dz; = 1/27 and write D, ) = dg;;“ = 29(y; k41 —
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Y;.k), and define higher order finite differences recursively D7y = d(”)yj’k2j ",

Because Yy e 27 (Yj k41 — Yik) 27 = Y pem 2yik (2F71 — 2F), we have
. 2(1—2) 21— 2)\" .
Hi(z) = Mﬂi_l(z) _ (M) Pi(2),
P z

where Hy(z) = P(z). They can be computed by

2z

HTJ;H(Z) B <1 +z
—2z(1 - z)

+ (7>HI‘2(2)H£ (—22). (13)

14 22

) v ()

H,, is the symbol of a multistep scheme if n = 1,2, 3,4 because I'1(2) /(1 +
z)™ and T's(2)/(1 + 22)™ are Laurent polynomials

We define dH;”L(z) = H},,(2)/27 as symbols of dD;.f;l = ddg#"j’“ and
since dHJ (z) = H2 ,,(2)/27, dH,_1 is the symbol of a multistep scheme for
n =1,2,3,4. Using results from Dyn [8], we have the following theorem.

Theorem 5. Given Laurent polynomials I'1(z) and T's(z), the multi-
step scheme defined by PiT1(z) = I'y(2)P? (2?) 4 I'a(2)P? (=2%) is C™
if the symbol corresponding to finite differences of order n+ 1, dH}(z) =

21"(21;75)”1]3]- (z) is the symbol of a multistep scheme converging uniformly

to zero for all bounded initial data.

Proof: See the proof of Theorem 3.4 in [8] or Section 4.2 in [10] as
it applies to multistep schemes. The key point is that for an iterative
interpolation scheme (even a nonstationary one) to be C™, it is sufficient
for the finite differences d"*'y; 1/ (dz;)" to converge uniformly to zero.
O

In general, given y; 111 = > .cz Vok—1Yj.k, a sufficient condition for
¥;k — 0 uniformly as j — oo is that A = max;—o 1 {Zke% \'ygk_l\} < 1.
. . 1 2
For a multistep scheme given by y; 411 =Y 1cz ’Yik_lyj,2k+7£k)_+_1_lyj,zk;—i—l7
1 2 .
AHR = maxj—o {Zkez "yék)_l‘ + ‘7§k)-+—1—l‘} implies M;1 < AgrM;

where M; = sup {|y;x|: k € ZZ}. To write this statement in symbols,

define [|Q(2)]lsu, = supy {lax[} and [[Q(2)ll5 = >4 lax| where Q(z) =
3 qe2®. Now, if PI+1(z) =Ty (z) P’ (22) + Ty(z)P? (—z%) and

)\HR = max{)\l,)\g}, (14)

where 2); /5 = Hf‘l(z) +T1(—2) +Ta(2) F f‘z(—z)Hz, then

17 ) < Aure [P (2|

sup — sup '
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Fig. 2. Derivatives of M S, fundamental functions (left). M Sy is differentiable
if Agr(a) = max {1 (@), A2(a)} < 1 (right).

Lemma 6. A multistep scheme given by the symbol equation Pitl(z) =
I'1(2)P? (22) +Ta(2)P? (—2%) converges uniformly to zero for all bounded
initial values if Aggp < 1, where Ay g is as in equation (14).

We are now ready to prove the following theorem which shows that
MS,, are smooth for o near 0.

Theorem 7. For —25/56 < o < 15/32, M S,, interpolants are C*.

Proof: By Theorem 5, it is enough to show that dDjl-k converges uni-
formly to zero for all bounded initial data. The symbol of the multistep
scheme dDle x> AH1 is given by

dH] ™ (2) = T1dH] (%) + TodHi (-2%),

where 'y (2) = 22%T1(2)/ (1 + 2)? and Tz (2) = 222(1—2)T2(2)/ (1 + 22)2
(see equation (13)). By Lemma 6, it is sufficient to prove that Agp < 1.
Note fop = |ac + b|, then we have A\; = é(?) +2fs1+2f_g7+2f125+
fa25+f-85+foa—7and Ao = 5 (5+2f41+2fs3+2f a1+ fa2,5+f-32,21+
fs.1 + faa11, and so we have that A; < 1 for —25/56 < a < 15/32 and
Ao < 1for —=7/12 < a < 5/8, Ay < 1 hence the result (see Fig. 2). O
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