
ATTRIBUTE VALUE REORDERING FOR EFFICIENT HYBRID OLAP

OWEN KASER AND DANIEL LEMIRE

ABSTRACT. The normalization of a data cube is the process of choosing an ordering for
the attribute values, and the chosen ordering will affect the physical storage of the cube’s
data. For large multidimensional arrays, proper normalization can lead to more efficient
storage in hybrid OLAP contexts that store dense and sparse chunks differently. We show
that it is NP-hard to compute an optimal normalization even for 1× 3 chunks, although
we find an exact algorithm for 1× 2 chunks. When attributes are nearly statistically in-
dependent, we show that an optimal normalization is given by dimension-wise attribute
frequency sorting, which can be done in timeO(dnlog(n)) for data cubes of sizend. When
attributes are not independent, we propose and evaluate a number of heuristics.

Our optimized hybrid OLAP storage mechanism was observed to be 44% more storage
efficient than ROLAP and the gains due to normalization alone accounted for 45% of this
increase in efficiency.

Data Cubes, Normalization, Chunking, Multidimensional Binary Arrays, OLAP, MO-
LAP, HOLAP

1. INTRODUCTION

On-line Analytical Processing (OLAP) is a database acceleration technique used for
deductive analysis [Goi99]. The main objective of OLAP is to have constant-time or near
constant-time answers for many typical queries. For example, in a database containing
salesmen’s performance data, one may want to compute on-line the amount of sales done
in Ontario for the last 10 days, including only salesmen who have 2 or more years of
experience. Using a relational database containing sales information, such a computation
may be expensive. Using OLAP, however, the computation can typically be done on-line.
To achieve such acceleration one can create acubeof data, a map from all attribute values to
a given measure. In the example above, one could map tuples containing days, experience
of the salesmen, and locations to the corresponding amount of sales.

We distinguish between two types of OLAP engines: Relational OLAP (ROLAP) and
Multidimensional OLAP (MOLAP). In ROLAP, data is itself stored in a relational database
whereas with MOLAP, a large multidimensional array is built with the data. In MOLAP,
an important step in building a data cube is choosing anormalization, which is a mapping
from attribute values to the integers used to index the array. One difficulty with MOLAP
is that the array is often sparse. For example, not all tuples (day, experience, location)
would match sales. Because of this sparseness, ROLAP can be far more efficient in terms
of storage. Additionally, there are compression algorithms to further decrease ROLAP
storage requirements [DER01, NR97, SDRK02]. On the other hand, MOLAP can be much
faster, especially if subsets of the data cube are dense [ZDN97]. Many vendors such as
Speedware and Microsoft are thus using Hybrid OLAP (HOLAP), storing dense regions
of the cube using MOLAP and storing the rest using a ROLAP approach. In other words,

Date: October 23, 2003.
In DOLAP’03, New Orleans, Louisiana, November 7, 2003. NRC 46510.

1

<1 yrs 1-2 yrs >2 yrs

Ottawa $732
Toronto $643
Montreal $450
Halifax $43 $54

Vancouver $76 $12
<1 yrs 1-2 yrs >2 yrs

Halifax $43 $54
Montreal $450
Ottawa $732

Vancouver $76 $12
Toronto $643

TABLE 1. Two tables representing the volume of sales for a given day
by the experience level of the salesmen. Given that three cities only have
experienced salesmen, some orderings (top) will lend themselves better
to efficient storage (HOLAP) than others (bottom).

a convenient and efficient representation of a sparse data cube is achieved when the dense
regions are stored as multidimensional arrays and the sparse remainder is represented as a
list of values as in a relational database.

While various efficient heuristics exist to find dense sub-cubes in data cubes [CZK+99,
CZK+01, Kas02b], one problem we still face is that the dense sub-cubes are normalization-
dependent, so that the same data with attribute values ordered differently may have com-
pletely different dense sub-cubes and may be stored significantly more efficiently[DRSN98].
A related problem with MOLAP or HOLAP is that the attribute values may not have a
canonical ordering, so that the exact representation chosen for the cube is arbitrary. In
the salesmen example, imagine that “location” can have the values “Ottawa”, “Toronto”,
“Montreal”, “Halifax”, and “Vancouver”. How do we order these cities: in terms of pop-
ulation, latitude, longitude, or alphabetically? Consider the example given in Table 1: it
is obvious that HOLAP performance will depend on the normalization of the data cube.
We also believe that a storage-efficient normalization may often lead to better query per-
formance.

One may object that normalization only applies when attribute values are not regularly
sampled numbers. One argument against normalization of numerical attribute values is that
storing an index map from these values to the actual index in the cube amounts to extra
storage. Consider a data cube withn attribute values per dimension: we say such a cube is
regularor n-regular. The most naive way to store such a map is for each possible attribute
value to store a new index as an integer from 1 ton. Assuming that indices are stored
using logn bits, this means thatnlogn bits are required. However, array-based storage of
a regular data cube usesΘ(nd) bits. In other words, unlessd = 1, normalization is not
a noticeable burden and all dimensions can be normalized. The cased = 2 is similar to
image compression, where reordering pixels is a widely used technique [NM80]. For high
dimensional data cubes, the possible gains are substantial.

1.1. Contributions and Organization. The contributions of this paper include a detailed
look at the mathematical foundations of normalization, including notation for the remain-
der of the paper and future work on normalization of block-coded data cubes (Sections 2 and 3).

2

Section 4 then considers the computational complexity of normalization. If data cubes
are stored in tiny (size-2) blocks, an exact algorithm can compute the best normalization,
whereas for larger blocks, it is conjectured that the problem is NP-hard. As evidence, the
case of size-3 blocks is shown NP-hard. An important class of “slice-sorting” normal-
izations is investigated in Section 5. These normalizations can be efficiently calculated,
but the quality of their solutions is sometimes poor. Using a notion of statistical indepen-
dence, a major contribution (Theorem 5.1) is an easily computed approximation bound for
a heuristic called “Frequency Sort”, which we show works well when the cube possesses
enough independence. Section 6 discusses additional heuristics that could be used when
the cube is not sufficiently independent. In Section 7, experimental results compare the
performance of heuristics on a variety of synthetic and “real-world” data sets. The paper
concludes with Section 8.

Due to space constraints, many proofs and details have been deferred to the full pa-
per [KL03].

2. BLOCK-CODED DATA CUBES

In the rest of this paper,d is the number of dimensions (or attributes) of the data cube
C andni , for 1≤ i ≤ d, is the number of attribute values for dimensioni. Thus,C has
sizen1× . . .× nd. To be precise, we distinguish between thecells and theindicesof a
data cube. “Cell” is a logical concept and each cell corresponds uniquely to a combination
of values(v1,v2, . . . ,vd), with one valuevi for each attributei. In Table 1, one of the 15
cells corresponds to (Montreal, 1-2 yrs).Allocatedcells, such as (Vancouver, 1-2 yrs),
store measure values, in contrast to unallocated cells such as (Montreal, 1-2 yrs). From
now on, we shall assume that some initial normalization has been applied to the cube and
that attributei’s values are{1,2, . . .ni}. “Index” is a physical concept and eachd-tuple of
indices specifies a storage location within a cube. At this location there is a cell, allocated
or otherwise.(Re-) normalization changes neither the cells nor the indices of the cube;
(Re-)normalization changes the assignment of cells to indices.

We use #C to denote the number of allocated cells in cubeC. Furthermore, we say that
C hasdensityρ = #C

n1×...×nd
. To support exact answers for queries, we seek an efficient

storage mechanism to store all #C allocated cells.
There are many ways to store data cubes using different coding for dense regions than

for sparse ones. For example, in [Kas02b] a single dense sub-cube (chunk) withd dimen-
sions is found and the remainder is considered sparse. It is also possible to use a broader
class of regions.

To determine the best storage strategy for data cubes, we have considered image com-
pression, where simple blocks are used in many image compression formats including
JPEG [DVDD98]. While some attempt to improve the current formats by dividing im-
ages into arbitrarily shaped regions through adaptive algorithms [PM00], others provide
evidence that non-adaptive algorithms suffice [CD99]. It is not cleara priori that more
complex shapes lead to more efficient storage. Another argument for block-coded data
cubes is that many efficient buffering schemes for OLAP range queries rely themselves on
block coding [GAAS99, Lem02].

We follow [Goi99, SS94] and store the data cube inblocks1, which are disjointd-
dimensional sub-cubes covering the entire data cube. We consider blocks of constant size
m1× . . .×md; thus, there ared n1

m1
e× . . .×d nd

md
e blocks. For simplicity, we usually assume

1 Many authors use the term “chunks”, but it seems that term does not mean exactly the same thing to each
author.

3

1

2

dimension 1

di
m

en
si

on
 2

1 2 3 1

2

31

5

6

2

3 3 1 4

2 7

1

9

dim
en

sio
n 3

FIGURE 1. A 3×3×3 cubeC with the sliceC1
3 shaded.

thatmk dividesnk for all k∈ {1, . . . ,d}. Each block can then be stored in an optimized way
depending, for example, on its density. Rather than considering various classes of com-
pression schemes [LS02], we will consider only the two most widely used coding schemes
for data cubes, corresponding respectively to simple ROLAP and simple MOLAP. That is,
either we represent the block as a list of tuples, one for each allocated cell in the block, or
else we code the block as an array. For both extreme cases, a very dense or a very sparse
block, MOLAP and ROLAP are respectivelyefficient.

Assuming that a data cube is stored using block encoding, we need to estimate the
storage cost. A simplistic model is given as follows. The cost of storing a single cell
sparsely, as a tuple containing the position of the value in the block asd attribute values
and the measure value itself, is assumed to bed/2+1. For example, while we might store
32-bit measure values, the number of values per attribute will likely be less than 216. Even
if there are more, we need only distinguish between the (fewer than 216) values used in a
given block. Thus, densely storing a block withD allocated cells costsM = m1× . . .×md,
but storing it sparsely costs(d/2+1)D.

It is more economical to store a block densely if(d/2+1)D > M, that is, if D
m1×...×md

>
1

d/2+1. We could show that this block coding is least efficient when a data cube has uniform
densityρ over all blocks. In such cases, it has a sparse storage cost ofd/2+1 per allocated
cell if ρ ≤ 1

d/2+1 or a dense storage cost ofρ per allocated cell ifρ > 1
d/2+1. Given a

data cubeC, H(C) denotes its storage cost. We have #C ≤ H(C) ≤ n1× . . .×nd. Thus,

we measure the cost per allocated cellE(C) as H(C)
#C with the convention that if #C = 0,

then E(C) = 1. Notice that 1≤ E(C) ≤ d/2+ 1. A weakness of the model is that it
ignores obvious storage overheads proportional to the number of blocks,n1

m1
× . . .× nd

md
.

However, as long as the number of blocks remains constant, it is reasonable to assume that
the overhead is constant. Such is the case when we consider the same data cube under
different normalizations using fixed block dimensions.

3. MATHEMATICAL PRELIMINARIES

Now that we have defined a simple HOLAP model, we review two of the most important
concepts in this paper: slices and normalizations. Whereas a slice amounts to fixing one of
the attributes, a normalization can be viewed as a tuple of permutations.

4

3.1. Slices. Consider ann-regulard-dimensional cubeC and letCi1,...,id denote the cell

stored at indices (i1, . . . , id) ∈ {1, . . . ,n}d. Thus,C has sizend. The slice Cj
v of C, for

index v of dimension j (1≤ j ≤ d and 1≤ v≤ n) is a d−1 - dimensional cube formed
asC j

vi1,...,i j−1,i j+1,...,id = Ci1,...,i j−1,v,i j+1,...,id . See Figure 1 for an example, and observe that
normalization does not affect the collection of cells in a slice— only the name of the slice
and the cells’ indices within the slice.

For the normalization task, the actual data values are unimportant and we simply need
know which indices contain allocated cells. Hence we often view a slice as ad− 1 -
dimensional Boolean array and we denote the corresponding slice byĈ j

v. We can also view
a slice as a vector of lengthnd−1, containing either measure values or Booleans, depending
on our requirements. For instance, the sliceC1

3 identified in Figure 1 might be viewed as
either[4,0,0,5,9,2,0,1,0] or [1,0,0,1,1,1,0,1,0], if we represent non-allocated cells by
zeros. Let #̂C j

v denote the number of allocated cells in sliceC j
v.

3.2. Normalizations and Permutations. Given a list ofn items, there aren! distinct pos-
sible permutations and we denote the set of all such permutations asΓn. The identity
permutation is denotedι. In contrast to previous work on database compression (e.g.,
[NR97]), with our HOLAP model there is no performance advantage from permuting the
order of the attributes themselves. (Blocking treats all dimensions symmetrically.) In-
stead, we focus on normalizations, which affect the order of each attribute’s values. A
normalizationπ of a data cubeC is ad−tuple (γ1, . . . ,γd) of permutations whereγi ∈ Γn

for i = 1, . . . ,d, and the normalized data cube is given byπ(C)i1,...,id = Cγ1(i1),...,γd(id) for

all (i1, . . . , id) ∈ {1, . . . ,n}d. Recall that permutations, and thus normalizations, are not
commutative. However, normalizations are always invertible, and there are(n!)d normal-
izations for ann-regular data cube. LetΞn denote the set of all normalizations, and we
simply write Ξ when the cube dimensions are known. The identity normalization is de-
notedI = (ι, . . . , ι). We say that two data cubesC andC′ are equivalent (C∼C′) if there
exists a permutationπ such thatπ(C) = C′. The cardinality of an equivalence class is the
number of distinct data cubesC in this class. The maximum cardinality is given by(n!)d

and there are such equivalence classes: consider the equivalence class generated by a “di-
agonal” data cubeCi1,...,id = 1 if i1 = i2 = . . . = id and 0 otherwise. However, there are also
singleton equivalence classes since some cubes are invariant under normalization: consider
a null data cube given byCi1,...,id = 0 for all (i1, . . . , id) ∈ {1, . . . ,n}d.

To count the cardinality of a class of data cubes, it suffices to know how many slices
C j

v of data cubeC are identical, so that we can take into account the invariance under per-
mutations. Considering alln slices in dimensionr, we can count the number of distinct
slicesdr and number of copiesnr,1, . . . ,nr,dr of each. Then, the number of distinct per-
mutations in dimensionr is n!

nr,1!×...,×nr,dr ! and the given equivalence class’s cardinality is

∏d
r=1

(
n!

nr,1!×...,×nr,dr !

)
. For example, the equivalence class generated byC=

[
0 1
0 1

]
has

a cardinality of 2, despite having 4 possible normalizations.
Recalling thatE(C) measures the cost per allocated cell, we define thekernelκm1,...,md

as the set of all data cubesC of given dimensions such thatE(C) is minimal (E(C) = 1)
for some fixed block dimensionsm1, . . . ,md. In other words, it is the set of all data cubes
C where all blocks have density 1 or 0. We define thekernel radius

ρ = max
π∈Ξ,C∈κm1,...,md

E(π(C)).

5

Because permutations are invertible, we have that there exists a data cubeC such that
E(C) = ρ and such that it can be renormalized using someπ such thatE(π(C)) = 1. In
other words, the kernel radius gives us a measure of how much impact normalization can
have. Because 1≤E(C)≤ d/2+1, we say that the kernel radius is maximal ifρ = d/2+1.
Having the kernel radius maximal means that the storage requirement can be reduced up
to a factor ofd/2+1.

We can construct an example to show the following result:

Lemma 1. For data cubes of dimensions n1, . . . ,nd with blocks of dimensions m1, . . . ,md,
if (d/2+ 1) divides nk and nk

d divides nk and mk for some k∈ {1, . . . ,d}, then the kernel
radius is maximal.

4. COMPLEXITY OF OPTIMAL NORMALIZATION

It appears that it is computationally intractable to find a “best” normalizationπ ∈ Ξ
(i.e., π minimizesE(π(C))) given a cubeC and given the blocks’ dimensions. Yet, when
suitable restrictions are imposed, a best normalization can be computed (or approximated)
in polynomial time. This section focuses on the effect of block size on intractability.

4.1. Tractable Special Cases.Our problem can be solved in polynomial time, if severe
restrictions are placed on the number of dimensions or on block size. For instance, it is
trivial to find a best normalization in 1-d. Another trivial case arises when blocks are of
size 1, since then normalization does not affect storage cost. Thus, any normalization is a
“best normalization.” The situation is more interesting for blocks of size 2; i.e., which have
mi = 2 for some 1≤ i ≤ d andmj = 1 for 1≤ j ≤ d with i 6= j. A best normalization can
be found in polynomial time, based on weighted-matching [Gab76] techniques described
next.

4.1.1. Using Weighted Matching.Given a weighted undirected graph, theweighted match-
ing problemasks for an edge subset of maximum total weight, such that no two edges share
an endpoint. If the graph is complete, has an even number of vertices, and has only positive
edge weights, then the maximum matching effectively pairs up vertices.

For our problem, observe that normalization’s effect on dimensionk, for some 1≤ k≤
d, corresponds to rearranging the order of thenk slicesCk

v, where 1≤ v≤ nk. In our case,
we are using a block size of 2 for dimensionk. Therefore, once we have chosen two slices
Ck

v andCk
v′ to be the first pair of slices, we will have formed the first layer of blocks and have

stored all allocated cells belonging to these two slices. The total storage cost of the cube
is thus a sum, over all pairs of slices, of the pairing-cost of the two slices composing the
pair. Note that the order in which pairs are chosen is irrelevant: only the actual matching
of slices into pairs matters. Consider Boolean vectorsb = Ĉk

v andb′ = Ĉk
v′ . If both bi and

b′ i are true, then theith block in the pair is completely full and costs 2 to store. Similarly,
if exactly one ofbi andb′ i is true, then the block is half-full. Under our model, a half-
full block also costs 2, but an empty block costs 0. Thus, given any two slices, we can
compute the cost of pairing them by summing the storage costs of all these blocks. If
we identify each slice with a vertex of a complete weighted graph, it is easy to form an
instance of weighted matching. (See Figure 2 for an example.) Fortunately, cubic-time
algorithms exist for weighted matching, andnk is often small enough that cubic running
time is not excessive. Unfortunately, calculating theΘ(n2

k) edge weights is expensive; each
involves two large Boolean vectors with1nk

∏d
i=1ni elements, for total edge-calculation time
6

0

1

1

0

010

1

0

10

1A

B

C

D

A B

C D

4

4

6

6

6

4

FIGURE 2. Mapping a normalization problem to a weighted match-
ing problem on graphs. Rows are labeled and we try to reorder them,
given block dimensions 2×1 (where 2 is the vertical dimension). In this
example, optimal solutions includeA,B,C,D andC,D,B,A.

of Θ
(
nk ∏d

i=1ni
)
. For more general block shapes, this algorithm is no longer optimal but

nevertheless provides a basis for sensible heuristics.

Theorem 4.1. For blocks of size

k−1︷ ︸︸ ︷
1× . . .×1×2×1. . .×1, the best normalization can be

computed in O(nk× (n1×n2× . . .×nd)+n3
k) time.

4.2. An NP-hard Case. In contrast with 1× 2-block situation, we next show that it is
NP-hard to find the best normalization for 1×3 blocks. To simplify the proof, we assume
a slightly different cost model: the cost of a block coded densely is twice the size of
the block (2M = 6), and the cost of a sparsely coded block is triple its number of allocated
cells (3D = 0,3,6,9). Under this new cost model, a block with three allocated cells (D = 3)
stores each of them at a cost of 2, whereas each block with fewer than three allocated cells
stores each allocated cell at a cost of 3.

The proof involves a reduction from the NP-complete problem Exact 3-Cover (X3C)
[GJ79], a problem which gives a setS and a setT of three-element subsets ofS. The
question, for X3C, is whether there is aT ′ ⊆ T such that eachs∈ Soccurs in exactly one
member ofT ′.

We sketch the reduction next. Given an instance of X3C, form an instance of our prob-
lem by making a|T | × |S| cube. Fors∈ S and T ∈ T , the cube has an allocated cell
corresponding to(T,s) ⇔ s∈ T. Thus, the cube has 3|T | cells that need to be stored. The
storage cost cannot be lower than 9|T |− |S| and this bound can be met if and only if the
answer to the instance of X3C is “yes”.

Theorem 4.2. It is NP-hard to find the best normalization, if1×3 blocks are used.

We conjecture that it is NP-hard to find the best normalization whenever the block size
is fixed at any size larger than 2.

5. SLICE-SORTING NORMALIZATION

FOR QUASI-INDEPENDENTCUBES

In practice, whether or not a given cell is allocated may depend on the corresponding
attribute values independently of each other. For example, if a store is closed on Saturdays
almost all year, a slice corresponding to “weekday=Saturday” will be sparse irrespective
of the other attributes. In such cases, it suffices to normalize the data cube using only an
attribute-wise approach. Moreover, as we shall see, one can easily compute the degree of

7

independence of the attributes and thus decide whether or not potentially more expensive
algorithms need to be used.

We begin with one of the simplest classes of normalization algorithms, and we will
assumen-regular data cubes forn ≥ 3. We say that a sequence of valuesx1, . . . ,xn is
sorted in increasing (respectively, decreasing) order ifxi ≤ xi+1 (respectively,xi ≥ xi+1)
for i ∈ {1, . . . ,n−1}.

Algorithm 1. (Slice-Sorting Normalization) Given an n- regular cube C, then slices have
S= nd−1 cells. Given a fixed function g: {true, f alse}S → R, then for each attribute
j, we compute the sequence fj

v = g(Ĉ j
v) for all attribute values v= 1, . . . ,n. Let γ j be

a permutation such thatγ j(f j) is sorted either in increasing or decreasing order, then a
Slice-Sorting normalization is given by(γ1, . . . ,γd).

Algorithm 1 has time complexityO(nd). Notice that it is possible to compute the num-
ber of allocated cells per slice #̂C j

v as the data cube is constructed, thus speeding up the
normalization phase and making itO(dnlog(n)).

In general, Algorithm 1 does not produce a unique solution given a functiong be-
cause there could be many different valid ways to sort. We say that a normalization
ϖ = {γ1, . . . ,γd} is a solution of the slice-sorting problemif it provides a valid sort for
the slice-sorting problem stated by Algorithm 1 . Given a data cubeC, denote the set of
all slice-sorting normalizations asSC,g. We say that two functionsg1 andg2 areequivalent
with respect to the slice-sorting problem ifSC,g1 = SC,g2. It turns out that we can character-
ize such equivalence classes using monotone functions. Recall that a functionh : R → R is
strictly monotone nondecreasing (respectively, nonincreasing) ifx < y impliesh(x) < h(y)
(respectively,h(x) > h(y)).

We write g1 ∼ g2 if there exists a strictly monotone functionh such thatg1 = h◦ g2.
We further say that a Slice-Sorting algorithm isstableif the normalization of a normalized
cube can be chosen to be the identity, that is ifϖ ∈ SC,g then I ∈ Sϖ(C),g. We say that
the algorithm isstrongly stableif for any normalizationϖ ∈ Ξ, Sϖ(C),g ◦ϖ = SC,g. Strong
stability implies stability and there exist stable schemes that are not strongly stable. Strong
stability means that the resulting normalization does not depend on the initial normaliza-
tion. This is a desirable property because data cubes are often normalized arbitrarily at
construction time.

Defineτ : {true, false}S→ R as the number oftrue values in the argument. In effect,τ
counts the number of allocated cells:τ(Ĉ j

v) = #Ĉ j
v for any sliceĈ j

v. If the sliceĈ j
v is nor-

malized,τ remains constant:τ(Ĉ j
v) = τ

(
ϖ

(
Ĉ j

v

))
for all normalizationsϖ ∈ Ξ. Therefore

τ is strongly stable. The converse is also true ifd = 2, but not ifd > 2.

Lemma 2. A Slice-Sorting algorithm based on a function g is strongly stable if g= h◦ τ
for some function h. For 2-d cubes, the condition is necessary.

In the above lemma, wheneverh is strictly monotone, theng∼ τ and we call this class
of Slice-Sorting algorithmsFrequency Sort[Kas02b]. We will show that we can estimate
a priori the efficiency of this class (see Theorem 5.1).

It is useful to consider a data cube as a probability distribution in the following sense:
given a data cubeC, let thejoint probability distributionΨ over the samend set of indices
be

Ψi1,...,in =
{

1/#C if Ci1,...,in 6= 0
0 otherwise

.

8

Heuristic Synthetic Kernel-Based Data Sets “Real-World” Data Sets
κbase

2,2,2,2 κsp
2,2,2,2 κsp

2,2,2,2+N κsp
4,4,4,4+N CENSUS FOREST WEATHER

FS 61.2 56.1 85.9 70.2 78.8 94.5 88.6
GS 61.2 87.4 86.8 72.1 79.3 94.2 89.5
ISC (2× . . .×2) 51.5 33.7 49.4 98.8 86.3 — —
ISC (4× . . .×4) 63.6 48.7 74.6 49.6 96.2 — —
IM 51.5 33.7 49.4 97.8 79.0 86.5 86.7

TABLE 2. Performance of heuristics. Compression ratios are in percent
and are averages. Each number represents 100 test runs for the synthetic
data sets and 50 test runs for the others. Each experiment’s outcome
was the ratio of the heuristic storage cost to the default normalization’s
storage cost. Smaller is better.

The underlying probabilistic model is that allocated cells are uniformly likely to be picked,
whereas the unallocated cells are never picked. Given an attributej ∈ {1, . . . ,d}, consider
#Ĉ j

v for v∈ {1, . . . ,n}: we can define aprobability distributionϕ j along attributej asϕ j
v =

#Ĉ j
v

#C . From theseϕ j for all j ∈ {1, . . . ,d}, we can define thejoint independent probability

distributionΦ asΦi1,...,in = ∏d
j=1 ϕ j

i j
.

Given a joint probability distributionϒ and the number of allocated cells #C, we can
build anallocation cube Aby computingϒ×#C. Unlike a data cube, an allocation cube
stores values between 0 and 1 indicating how likely it is that the cell be allocated. Us-
ing allocation cubes, there is an efficient way to determine whether Frequency Sorting is
sufficient as Theorem 5.1 shows. It should be noted that we give an estimate valid inde-
pendently of the dimensions of the blocks; thus, it is necessarily suboptimal.

Theorem 5.1. Given a data cube C, letϖ be an optimal normalization and fs be a Fre-
quency Sort normalization, then

H(f s(C))−H(ϖ(C))≤
(

d
2

+1

)
(1−Φ ·B)#C

where B is the allocation cube of C andΦ is the joint independent probability distribution.
The symbol· denotes the scalar product defined in the usual way.

This theorem says thatΦ ·Bgives a rough measure of how well we can expect Frequency
Sort to perform over all block dimensions: whenΦ ·B is very close to 1, we need not use
anything but Frequency Sort whereas when it gets close to 0, we can expect Frequency
Sort to be less efficient. We call this coefficient theIndependence Sum.

Hence, if the ROLAP storage cost is denoted byrolap, the optimally normalized block-
coded cost byoptimal, and the Independence Sum byIS, we have the relationship

rolap≥ optimal+(1− IS)rolap≥ fs≥ optimal

wherefs is the block-coded cost using Frequency Sort as a normalization algorithm.

6. HEURISTICS

Since many practical cases appear intractable, we must resort to heuristics when the
Independence Sum is small. We have experimented with several different heuristics, and

9

we can categorize possible heuristics as block-oblivious versus block-aware, dimension-at-
a-time or holistic, orthogonal or not, or finally by whether they follow an overall strategy
such asslice clusteringor slice sorting.

Block-awareheuristics use information about the shape and positioning of blocks. In
contrast, Frequency Sort (FS) is an example of ablock-obliviousheuristic: it makes no
use of block information.

All our heuristics reorder one dimension at a time, as opposed to a “holistic” approach
when several dimensions are simultaneously reordered. In some heuristics, the permuta-
tion chosen for one dimension does not affect which permutation is chosen for another
dimension. Such heuristics areorthogonal, and all the strongly stable Slice-Sorting algo-
rithms in Section 5 are examples. Orthogonal heuristics can safely process dimensions one
at a time, and in any order. With non-orthogonal heuristics that process one dimension at
a time, we typically process all dimensions once, and repeat until some stopping condition
is met.

Heuristics can be categorized by the overall approach used. In Slice Sorting, recall that
each sliceCi

v is mapped to a real valueg(Ĉi
v), and theseg(·) values are used to sort the

slices. This abstracts the information of a complicated structure (ad− 1 - dimensional
cube) as a single number, and then groups slices accordingly.Slice-groupingheuristics
compare entire slices for similarity. For instance,Ĉi

v can be viewed as a 0-1 vector, and so
we can cluster slices using Euclidean distance. The weighted-matching algorithm (from
Section 4.1.1) is block-aware and slice-grouping. Another heuristic that is block-aware
and slice-grouping is “ISC” (Iterated Slice Clustering). It uses Euclidean distance between
“slice-density vectors” that capture information about the block densities of different re-
gions in the chunk. It is best to explain ISC using an example. We start with the following
cube 

1 − 1 1
− 1 1 −
1 1 − 1
− 1 1 −


where−means the cell is not allocated. We wish to use a 2×2 block coding, and we begin
by rearranging the columns. To do this, we first compute the density of allocated cells in

each 2×1 chunk, obtaining

[
0.5 0.5 1.0 0.5
0.5 1.0 0.5 0.5

]
. We then reorder the columns so as

to minimize the Euclidean distance between columns in the same block, using a greedy ap-
proach starting with the first column. For 2×2 block coding, we are pairing these columns

and, in this case, we exchange the first and last columns, getting

[
0.5 0.5 1.0 1.0
0.5 0.5 0.5 0.5

]
and giving us the new array 

1 1 1 −
− − 1 1
1 1 − 1
− − 1 1

 .

We would then repeat this same process along rows (over all dimensions). Because this
algorithm is not orthogonal, we then need to repeat along rows and columns until con-
vergence or, more likely, until we reach a maximum number of iterations (set at 5 in our
software). Slice-grouping heuristics are typically slow, since the vectors are large and not
quickly compared.

10

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FS=IM

0.59 0.72

R
at

io
 F

S
/IM

Independence Sum

Forest
Census

Weather

FIGURE 3. Solution-size ratios of FS and IM as a function of Indepen-
dence Sum. When the ratio is above 1.0, FS is suboptimal; when it is
less than 1.0, IM is suboptimal. We see that as the Independence Sum
gets closer to 1.0, FS matches IM’s performance.

Another heuristic for 2-regular blocks is Iterated Matching (IM), which applies the
weighted-matching algorithm to each dimension in turn (see Section 4.1.1 for details).
Again, this algorithm is better explained using an example. Applying this algorithm along
for the rows of the cube in Fig. 2 amounts to building the graph in the same figure and solv-
ing the weighted-matching problem over this graph. The cube would then be normalized
to 

1 1 0
0 1 0
0 0 1
1 0 1

 .

Like the ISC heuristic, we would then repeat on the columns (over all dimensions). Unlike
ISC, however, we would not reapply these steps over rows and columns more than once,

because the IM algorithm is orthogonal. A small example,
[

1 − 1 1
1 − − −

]
, demon-

strates this approach is suboptimal, since the normalization shown is optimal for 2×1 and
1×2 blocks but not optimal for 2×2 blocks.

6.1. One-Dense-Chunk Heuristics.In [Kas02b], data-cube normalization has previously
been examined under a different HOLAP model, where only one block may be stored
densely, but the block’s size is chosen adaptively. Despite model differences, normaliza-
tions that cluster data into a single large chunk intuitively should be useful with our current
model. We adapted the most successful heuristic from [Kas02b] and called the result GS
(for iterated Greedy Sort). It can be viewed as a block-aware version of Frequency Sort.

11

7. EXPERIMENTAL RESULTS

In describing the experiments, we discuss the data sets used, the heuristics tested, and
the results observed.

7.1. Data Sets.Heuristics were tested on a variety of data cubes. Several synthetic 12×
12×12×12 data sets were used, and 100 random data cubes of each variety were taken.

• κbase
2,2,2,2 refers to choosing a cubeC uniformly from the setκ2,2,2,2 and choosingπ

uniformly from Ξ12. Cubeπ(C) provides the test data; a best-possible normaliza-
tion will compressπ(C) by a ratio of max(ρ, 1

3), whereρ is the density ofπ(C).
(The expected value ofρ is 50%.)

• κsp
2,2,2,2 is similar, except the random selection fromκ2,2,2,2 is biased towards sparse

cubes. The expected density of such cubes is 10%, and thus the entire cube will
likely be stored sparsely. The best compression for such a cube is to1

3 of its
original cost.

• κsp
2,2,2,2+N adds noise. For every index, there is a 3% chance that its status (al-

located or not) will be inverted. Due to the noise, the cube usually cannot be
normalized to a kernel cube, and hence the best possible compression is probably
closer to1

3 +3%.

• κsp
4,4,4,4+N is similar, except we choose fromκ4,4,4,4, notκ2,2,2,2.

Besides synthetic data sets, we have experimented with several data sets used in [Kas02a]:
CENSUS(50 6-d projections of an 18-d data set) and FOREST(50 3-d projections of an 11-
d data set) from the KDD repository [HB00], and WEATHER (50 5-d projections of an 18-d
data set) [HWL01]2. These data sets were obtained in relational form and their initial nor-
malizations can be summarized as “first seen, first when normalized”, which is arguably
the normalization that minimizes data-cube implementation effort. In [Kas02b] this was
called “OrderI ”.

7.2. Results. The heuristics chosen for testing were Frequency Sort (FS), Iterated Greedy
Sort (GS), Iterated Slice Clustering (ISC), and Iterated Matching (IM). Except for the
“κsp

4,4,4,4+N” data sets, where 4-regular blocks were used, blocks were 2-regular. IM im-
plicitly assumes 2-regular blocks, whereas ISC is used once assuming 2-regular blocks and
used a second time assuming 4-regular blocks. Results are shown in Table 2.

Looking at the results in Table 2 for synthetic data sets, we see very similar performance
from ISC (2× . . .×2) and IM. We see that GS was never better than FS; this is perhaps
not surprising, because the main difference between FS and GS is that the latter does
additional work to ensure allocated cells are within a single hyperrectangle and that cells
outside this hyperrectangle are discounted. This was helpful when using the model for
which it was devised, but perhaps not so reasonable for our current model. Comparing
theκsp

2,2,2,2 andκsp
2,2,2,2+N columns, it is apparent that noise hurt all heuristics, particularly

the slice-sorting ones (FS and GS). However, FS and GS perform better onκsp
4,4,4,4+N than

κsp
2,2,2,2+N whereas both ISC (2× . . .× 2) and IM did worse. We explain this improved

performance for slice-sorting normalizations as follows: #Ci
v is a multiple of 43 under

κ4,4,4,4 but a multiple of 23 underκ2,2,2,2. Thus,κ2,2,2,2 is more susceptible to noise than
κ4,4,4,4 under FS because the values #Ci

v are less separated.

2Projections were selected at random but, to keep test runs from taking too long, cubes were required to be
smaller than about 100MB.

12

Of the slice-clustering heuristics, ISC (4× . . .×4) is also badly affected by noise. IM is
less affected, but we note its results are not optimal (estimated as 36%). Thus, while IM
(and ISC) are the most effective heuristics for 2-regular blocks, there is room for improve-
ment. We observe the disastrous effects when the actual block size does not match the size
assumed by a block-aware heuristic.

Table 2 also contains results for “real-world” data. Unfortunately, our implementation
of ISC ran too slowly to use in these tests, except on CENSUS. ISC performs poorly on the
CENSUScubes, in contrast to the good performance obtained when normalizing synthetic
cubes. We also measured how many times the block-aware ISC heuristic outperformed the
block-oblivious FS on 4-regular blocks: ISC was better only 11% of the time. Hence we
concluded that ISC is not promising, at least on the CENSUScubes. We see that the relative
performance of the various heuristics depends heavily on the data set used. Part of this is
due to the nature of the data sets: for instance, FORESTcontains many measurements of
physical characteristics of geographic areas, and there is significant correlation between
these characteristics that tends to penalize FS.

7.2.1. Utility of the Independence Sum.Despite the differences between data sets, the
Independence Sum (from Section 5) seems to be useful. In Figure 3 we plot the ratio
size using FS
size using IMagainst the Independence Sum. Note that when the Independence Sum ex-

ceeds 0.72, the ratio is always near 1 (within 5%); thus, there is no need to use the more
computationally expensive IM heuristic. WEATHER has few cubes with Independence Sum
over 0.6, but these have ratios near 1.0. For CENSUS, having an Independence Sum over
0.6 seems to guarantee good relative performance for FS. On FOREST, however, FS shows
poorer performance until the Independence Sum is larger (' 0.72).

7.2.2. Comparison with Pure ROLAP Coding.To place the efficiency gains from normal-
ization into context, we calculated (for each of the 50 CENSUS cubes)cdefault, the HO-
LAP storage cost using 2-regular blocks and the default normalization. We also calculated
cROLAP, the ROLAP cost, for each cube. The average of the 50 ratioscdefault

cROLAP
is 0.7 with a

standard deviation of 0.14. In other words, block-coding is 30% more efficient than RO-
LAP. On the other hand, we have shown that normalization brings gains of about 20% over
the default normalization and the storage ratio itself is brought from 0.7 to 0.56 in going
from simple block coding to block coding together with optimized normalization.

8. CONCLUSION

In this paper, we have given a number of theoretical results relating to cube normal-
ization. Because even simple special cases of the problem are NP-hard, heuristics were
needed. However, an optimal normalization can be computed when 1×2 blocks are used,
and this forms the basis of the IM heuristic, which seemed most efficient in experiments.
Nevertheless, a Frequency Sort algorithm is much faster, and another of the paper’s theoret-
ical conclusions was that this algorithm becomes increasingly optimal as the Independence
Sum of the cube increases. Unfortunately, our theorem did not provide a very tight bound
on suboptimality. Nevertheless, we determined experimentally that an Independence Sum
greater than 0.72 always meant that Frequency Sort produced good results.

As future work, we will seek tighter theoretical bounds and more effective heuristics for
the cases when the Independence Sum is small. We are also in the process of implementing
the proposed architecture for further validation and research by combining an embedded
relational database with a C++ layer. An implementation would allow us to quantify our
claim that a more efficient normalization leads to faster queries.

13

REFERENCES

[CD99] Emmanuel J. Candès and David L. Donoho. Curvelets - a surprisingly effective nonadaptive repre-
sentation for objects with edges. InCurves and Surfaces, 1999.

[CZK+99] David Wai-Lok Cheung, Bo Zhou, Ben Kao, Kan Hu, and Sau Dan Lee. DROLAP - a dense-region
based approach to on-line analytical processing. InDatabase and Expert Systems Applications, pages
761–770, 1999.

[CZK+01] David Wai-Lok Cheung, Bo Zhou, Ben Kao, Hu Kan, and Sau Dan Lee. Towards the building of a
dense-region-based OLAP system.Data and Knowledge Engineering, 36(1):1–27, 2001.

[DER01] Frank Dehne, Todd Eavis, and Andrew Rau-Chaplin. Coarse grained parallel on-line analytical pro-
cessing (OLAP) for data mining. InProc, ICCS 2001, 2001.

[DRSN98] P. Deshpande, K. Ramasamy, A. Shukla, and J. Naughton. Caching multidimensional queries using
chunks. InProceedings, SIGMOD’98, pages 259–280, 1998.

[DVDD98] David L. Donoho, Martin Vetterli, Ingrid Daubechies, and Ron A. DeVore. Data compression and
harmonic analysis.IEEETIT: IEEE Transactions on Information Theory, 44, 1998.

[GAAS99] S. Geffner, D. Agrawal, A. E. Abbadi, and T. R. Smith. Relative prefix sums: An efficient approach
for querying dynamic OLAP data cubes. InProc, 1999 ICDE, pages 328–335, March 1999.

[Gab76] H. Gabow. An efficient implementation of Edmond’s algorithm for maximum matching on graphs.
Journal of the ACM, 23:221–234, 1976.

[GJ79] Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, 1979.

[Goi99] Sanjay Goil.High Performance On-line Analytical Processing and Data Mining on Parallel Com-
puters. PhD thesis, Dept. ECE, Northwestern University, 1999.

[HB00] S. Hettich and S. D. Bay. The UCI KDD archive. http://kdd.ics.uci.edu, last checked on 6/7/2003,
2000.

[HWL01] C. Hahn, S. Warren, and J. London. Edited synoptic cloud reports from ships and land stations
over the globe (1982-1991). http://cdiac.ornl.gov/epubs/ndp/ndp026b/ndp026b.htm, last checked on
6/7/2003, 2001.

[Kas02a] Owen Kaser. Compressing arrays by ordering attribute values. under review, email author at
owen@unbsj.ca, 2002.

[Kas02b] Owen Kaser. Compressing MOLAP arrays by attribute-value reordering: An experimental analy-
sis. Technical Report TR-02-001, Dept. of CS and Appl. Stats, U. of New Brunswick, Saint John,
Canada, August 2002.

[KL03] O. Kaser and D. Lemire. Attribute-value reordering for efficient hybrid OLAP. Technical Report
NRC 46509, NRC/CNRC, 2003.

[Lem02] Daniel Lemire. Wavelet-based relative prefix sum methods for range sum queries in data cubes. In
Proc, CASCON 2002, October 2002. also NRC-44967.

[LS02] Jianzhong Li and J. Srivastava. Efficient aggregation algorithms for compressed data warehouses.
IEEE Knowledge and Data Engineering, 15, May/June 2002.

[NM80] A. N. Netravali and F. W. Mounts. Ordering techniques for facsimile coding: A review.Proceedings
of the IEEE, 68(7):796–807, 1980.

[NR97] Wee-Keong Ng and Chinya V. Ravishankar. Block-oriented compression techniques for large statis-
tical databases.IEEE Knowledge and Data Engineering, 9(2):314–328, 1997.

[PM00] Erwan Le Pennec and Stéphane Mallat. Image representation and compression with bandelets. Tech-
nical report, École Polytechnique, 2000.

[SDRK02] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulus, and Yannis Kotidis. Dwarf: Shrink-
ing the petacube. InACM SIGMOD 2002, pages 464–475, 2002.

[SS94] Sunita Sarawagi and Michael Stonebraker. Efficient organization of large multidimensional arrays.
In Proc, Eleventh Int. Conf. on Data Engineering, February 1994.

[ZDN97] Yihong Zhao, Prasad M. Deshpande, and Jeffrey F. Naughton. An array-based algorithm for si-
multaneous multidimensional aggregates. InProceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, pages 159–170. ACM Press, 1997.

14

	1. Introduction
	1.1. Contributions and Organization

	2. Block-Coded Data Cubes
	3. Mathematical Preliminaries
	3.1. Slices
	3.2. Normalizations and Permutations

	4. Complexity of Optimal Normalization
	4.1. Tractable Special Cases
	4.2. An NP-hard Case

	5. Slice-Sorting Normalizationfor Quasi-Independent Cubes
	6. Heuristics
	6.1. One-Dense-Chunk Heuristics

	7. Experimental Results
	7.1. Data Sets
	7.2. Results

	8. Conclusion
	References

