Répertoire de publications
de recherche en accès libre

Slope One Predictors for Online Rating-Based Collaborative Filtering [r-libre/213]

Lemire, Daniel et Maclachlan, Anna (2005). Slope One Predictors for Online Rating-Based Collaborative Filtering. Dans Kargupta, Hillol; Srivastava, Jaideep; Kamath, Chandrika et Goodman, Arnold (dir.), Proceedings of the 2005 SIAM International Conference on Data Mining (SDM'05) (p. 471-475). Newport Beach, CA : SIAM.

Fichier(s) associé(s) à ce document :
[img]  PDF - lemiremaclachlan_sdm05.pdf  
Catégorie de document : Communications dans des actes de congrès/colloques
Évaluation par un comité de lecture : Oui
Étape de publication : Publié
Résumé : Rating-based collaborative filtering is the process of predicting how a user would rate a given item from other user ratings. We propose three related slope one schemes with predictors of the form f(x) = x + b, which precompute the average difference between the ratings of one item and another for users who rated both. Slope one algorithms are easy to implement, efficient to query, reasonably accurate, and they support both online queries and dynamic updates, which makes them good candidates for real-world systems. The basic slope one scheme is suggested as a new reference scheme for collaborative filtering. By factoring in items that a user liked separately from items that a user disliked, we achieve results competitive with slower memory-based schemes over the standard benchmark EachMovie and Movielens data sets while better fulfilling the desiderata of CF applications.
Déposant: Lemire, Daniel
Responsable : Daniel Lemire
Dépôt : 05 juin 2007
Dernière modification : 16 juill. 2015 00:47

Actions (connexion requise)