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Abstract In this paper, we develop a theoretical stock valuation model that takes into 

account the long-run sensitivity of dividends to various economic factors. Our valuation 

process integrates the multidimensionality of uncertainty, as well as the long-run 

concept of risk (recently proposed in the literature). More precisely, we demonstrate that 

a stock’s long-run dividend growth is negatively related to its current dividend-price 

ratio and linearly related to N sensitivity coefficients, given by the long-run sensitivity 

between dividends and economic factors. Then, we show that the equilibrium price of a 

stock is a function of its current dividend, long-run dividend growth, and N risk 

parameters.  

 

Keywords  Multifactor model  Intertemporal model  Stock valuation  CCAPM  Long-

run risk. 
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1. Introduction 

 

 There are many different ways to value stocks. Among the most popular methods 

employed by analysts or researchers, there is the dividend discount model, popularized 

by Gordon (1962), the earnings multiplier approach, developed by Basu (1977), and the 

residual income technique, proposed by Ohlson (1995). Following traditional models, 

other approaches have also emerged in the theory of stock valuation. For example, 

Hurley and Johnson (1994, 1998) extend the dividend discount model, assuming that 

dividends follow a Markov process. Donaldson and Kamstra (1996) extend the Gordon 

model, using statistical models of discounted dividend growth rates. Feltham and 

Ohlson (1999) provide a general version of the residual income technique in introducing 

risk and stochastic interest rates. Pastor and Veronesi (2003) derive a simple approach 

to valuing stocks in the presence of learning about average profitability. Bakshi and 

Chen (2005) present a stock valuation model in which the expected earnings growth rate 

follows a mean-reveting process. Dong and Hirshleifer (2005) generalize the model of 

Bakshi and Chen in proposing a stock valuation model that is not restricted to positive-

earnings companies. Yee (2008) suggests a Bayesian framework for combining two or 

more estimates into a superior valuation estimate.  

 More recently, Bergeron (2011) develops a valuation model that integrates the 

long-run definition of consumption risk into the stock valuation process.  
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According to Beeler and Campbell (2012), the long-run concept of risk has 

attracted a great deal of attention since the important work of Bansal and Yaron (2004). 

 Indeed, Bansal and Yaron argue that consumption and dividend growth rates 

include a small long-run component that can resolve the equity premium puzzle. Also, 

Bansal et al. (2005) show that long-run covariance between dividends and consumption 

(cash flow beta) accounts for more than 60% of the cross-sectional variation in risk 

premia. Moreover, Hansen et al. (2008) characterize and measure a long-run risk-return 

tradeoff for the valuation of financial cash flows exposed to fluctuations in 

macroeconomic growth. In addition, when investor horizon tends to infinity, Bansal et 

al. (2009) reveal that the risk of an asset is determined almost exclusively by the long-

run cointegration between its dividends and consumption. Furthermore, Bansal and 

Kiku (2011) measure the long-run relation between asset dividends and aggregate 

consumption via a stochastic cointegration.1 

However, none of the above mentioned studies derived a stock valuation model that 

integrates the multiple dimensions of long-run risk.  

In this paper, we extend the work of Bergeron (2011) in integrating the 

multidimensionality of uncertainty, as well as the long-run concept of risk, into the 

stock valuation process.  

More particularly, we develop a theoretical stock valuation model that takes into 

account the long-run sensitivity of dividends to various economic factors. Our model 

development is based on the intertemporal framework of the consumption capital asset 

pricing model (CCAPM) of Rubinstein (1976), Lucas (1978), and Breeden (1979). Our 

first result shows that a stock’s long-run dividend growth is negatively related to its 

current dividend-price ratio and linearly related to N sensitivity coefficients, given by 

the long-run covariance between dividends and economic factors. Our next result 

indicates that the equilibrium price of a stock is a function of its current dividend, long-

run dividend growth, and N risk parameters.  

Compared to Bergeron (2011), our methodology presents two major differences, in 

addition to the integration of the multidimensionality of uncertainty. First, the constant 

relative risk aversion assumption via the power utility function is not required. Second, 

the normality hypothesis can be relaxed.  

The remainder of this paper is organized in five sections. The next section presents 

the dividend multifactor process. The third section describes the intertemporal 

equilibrium framework of our model. The fourth section derives the multirisk 

relationships. The last section concludes the paper. 

 

2. The dividend multifactor process 

 

 The basic assumption of our intertemporal model is that stock dividend growth 

rates are generated by a number of economic factors. More precisely, given the 

available information in time t, we assume that the dividend growth rate of stock i, 

between time t and time t+1, 1 ,
~

tig , is a linear function of N factors as shown below: 
 

 1 ,1 ,1 ,221 ,111 ,
~~

...
~~~

  titNNittittititti FbFbFbag  , (1A) 
 

                                                 
1 See also Malloy et al. (2009) and Bergeron (2012). 
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with; 
 

  ]~[ 1 , titE  0] ,~[ 1 , titCOV  , 
 

where 
ita  is the intercept for stock i at time t; 1 ,

~
tjF , is the factor j at time t+1; jitb , is 

the dividend sensitivity to factor j for stock i at time t; and 1 ,
~

ti  is the usual random 

term for stock i at time t+1 (j = 1, 2, 3, …, N; i = 1, 2, 3, …, M; t = 0, 1, 2, …, ∞)2.  
To simplify the notation and the algebraic manipulations, we can also use compact 

matrix algebra and rewrite the basic equation (1A) in this manner 
 

 1 ,1 1 ,
~~~

  titititti ag Fb , (1B) 
 

where  
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~
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F

F

F

F  , and itb  [
Nititit bbb  ...  21

].  

 

Like the standard multifactor model for returns, the process expressed by equation 

(1) represents an approximation of the reality and the factors that we should integrate in 

the model or not determined by any economic theory3. Nevertheless, the rate of 

inflation, market dividend growth, industrial production growth and aggregate 

consumption growth, could certainly be considered potential factors that influence stock 

dividend growth rates. 

Also, the usual linearity assumption adopted here is not as restrictive as it might 

first appear. Indeed, it is well know that any of these factors can be a nonlinear function 

of a variable. It could be, for example, a variable squared, the log of a variable, or any 

other nonlinear appropriate transformation. If the number of factors equals one (N = 1), 

and if this factor represents the aggregate consumption growth rate between time t and 

time t+1, 
1

~
tg , then equation (1A) or (1B) shows that 

 

 1 ,11 ,
~~~

  titCititti gbag  , (1C) 
 

where Citb  represents the dividend sensitivity to the aggregate consumption, for stock i 

at time t. Thus, for this special restrictive case, it is easy to prove4 that: 
 

    1 

2

1 ,1
~/~,~

 tttittCit gggCOVb  .  
 

Here, the resulting coefficient Citb  represents, at time t, the covariance between the 

dividend growth rate of stock i and the consumption growth rate, divided by the 

                                                 
2 The tilde (~) indicates a random variable. Operators Et, VARt, and COVt refer respectively to 

mathematical expectations, variance, and covariance, where index t implies that we consider the available 

information at time t. The second line of equation (1A) simply supposes that the random noise term (Ɛ) 

presents a zero mean value and a zero correlation value with any other variables. 
3 See, for example, Elton et al. (2008), Chapter 8. 
4 If x, y and e represent general variables, and if y = a + bx + e, where COV(x, e) = 0, then COV(x, y) = 

COV(x, a + bx + e) = COV(x, x)b. Therefore: b = COV(x, y)/σ2(x). 
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variance of the consumption growth rate. In this sense, it is very similar to what Bansal 

et al. (2002, p. 5) call dividend beta or what Abel (1999) identifies as the key 

determinant of the risk premia (see also Bergeron, 2011). 

Another special case of our model can also be proposed if we accept, as in Bansal 

et al. (2005), that the relationship between dividend and consumption growth rates is 

given by the following linear function 
 

 1 ,1 ,
~~~

  titititti xbag  , (1D) 
 

in which variable 
tx~  represents the K-periods average of future consumption 

 

 



K

k

ktt gKx
1

 
~)/1(~ ,  

 

where 
ktg  

~ is the aggregate consumption growth rate between time t+k-1 and time t+k. 

For this case, it is now easy to prove (see note 4) that 
 

    tttittit xgxCOVb  

2

1 ,
~/~,~  ,  

 

where the resulting coefficient 
itb  represents, at time t, the covariance between the 

dividend growth rate of stock i and the K-periods average of future consumption, 

divided by the variance of the previous variable. Therefore, for this particular case, we 

can argue that the sensitive coefficient is relatively close to what Bansal et al. (2002, 

2005) call cash flow beta5.  

 

2. The intertemporal equilibrium framework 

 

 Following Bergeron (2011) and others before6, our intertemporal equilibrium 

framework considers a closed economy populated by identical agents. At time t, each 

agent maximizes the time-separable utility function7.   
 

 





1

)
~

()(
s

st

s

tt CUECU  , (2) 

 

subject to resource constraints, where   is the subjective discount factor ( )10   , 

tC  is the aggregate consumption at time t, stC 

~
 is the random aggregate consumption at 

time st  , and )(U  is an increasing concave and derivable function (   ..., 2, ,1 s ).  

 At equilibrium, each agent found the solution of the above problem and the 

resulting price of asset i at time t, itP , is (see Rubinstein, 1976) 
 

 sti

s t

sts

tit D
CU

CU
EP 









  ,

1

~

)(

)
~

(
 , (3) 

 

                                                 
5 See, in particular, Bansal et al. (2002, p. 5 and p. 6). 
6 See, for instance, Abel (1999). 
7 In appendix B, we relax the restrictive time-separable utility assumption. 
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where stiD  ,

~
 represents the dividend of asset i at time st  .8 Equation (3) reveals that 

the price of a stock is equivalent to the present value of all future dividends, in which 

the stochastic discount factor for each future dividend corresponds to the intertemporal 

marginal rate of substitution between consumption at time t and consumption at time 

t+s, stM 

~
, that is: ).(/)

~
(

~
tst

s

st CUCUM     With this notation, the equilibrium price 

becomes 
 

 sti

s

sttit DMEP 





  ,

1

~~
. (4) 

 

Since the dividend of stock i at time t, 
itD , is known with the current information, it can 

thus be passed through the conditional expectation operator and be multiplied on each 

side, to obtain 
 

 itsti

s

sttitit DDMEDP /
~~

 ,

1







 , (5) 

or 
 

 ]
~

[ ittitit YEDP  , (6) 
 

where variable itY
~

 is defined as follows: it

s

stistit DDMY 





1

 , /
~~~

. To simplify the 

notation, we can also express equation (6) in this way  
 

 
ititit DP  , (7) 

 

where it  ≡ ]
~

[ itt YE . Furthermore, if the sequence of variables itY
~

 (t = 0, 1, 2, …, ∞) is 

independent and identically distributed (i.i.d.), then 
 

 iitit DP   . (8) 
 

Therefore, given the available information at time t, we have 
 

 ititi DP 1 ,1 ,

~
 

~
  , (9) 

 

where 1 ,

~
tiP  represents the random price of stock i at time t+1.  

 Consequently, as in Bergeron (2011), but without the restrictive assumption of a 

constant relative risk aversion via the power utility function, it is easy to demonstrate 

that the random future price of a stock is directly and stochastically related with its next 

dividend payment, or, if we prefer, that dividends and prices are perfectly cointegrated. 

 

4. The multiple dimensions of long-run risk valuation 

 

 In this section, we show that the multiple dimensions of long-run risk influence the 

theoretical value of stock prices. First, we derive the expected dividend growth rate of a 

stock for one period and one factor. Second, we express the expected dividend growth 

                                                 
8 The premium (U  ) is a derivative of a function. 
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rate for one period and many factors. Third, we express the expected dividend growth 

rate for many periods and many factors. Finally, we introduce the current dividend- 

price ratio to deduce the corresponding stock price value.  

 Actually, our model development is similar to any multifactor model that, given the 

N factors process, derives asset prices from equilibrium conditions (see, for example, 

the Arbitrage Pricing Theory, APT, of Ross, 1976)9. 

 

4.1 Expected dividend growth with one period and one factor 

 

 By induction, for one period, the resulting stock price expressed by equation (4), 

becomes10 
 

  )~~
(

~
1 ,1 ,1   titittit PDMEP . (10) 

 

Substituting equations (8) and (9) into equation (10) gives  
 

  )~~
(

~
1 ,1 ,1 ititittjit DDMED    , (11) 

 

or, after manipulations 
 

 )]1)(~1(
~

[1 1

1 ,1



  ititt gME  . (12) 
 

This permits us to exhibits a particular form of the Euler equation in which the central 

random variables are driven by aggregate consumption and dividends. On the other 

side, if we accept the existence of a riskless asset, then the standard form of the Euler 

equation (with returns) shows that 
 

 )]1(
~

[1 1 ,1   tFtt RME , (13) 
 

where 1 , tFR  represents the risk-free rate of return, between t and t +111. Equation (12) 

minus equation (13), yield, after manipulations 
 

 )}]1()1)(~1{(
~

[0 1 ,

1

1 ,1 



  tFititt RgME  . (14A) 
 

Taking the expectation on each side of equation (14A) allows us to release the index t of 

the conditional operator, to shows 
 

 )}]1()1)(~1{(
~

[0 1 ,

1

1 ,1 



  tFitit RgME  . (14B) 
 

Integrating the definition of covariance into equation (14B) indicates that: 
 

 )]1()1)(~1( ,
~

[ 1 ,

1

1 ,1 



  tFitit RgMCOV   = 

 )]1()1)(~1[(]
~

[ 1 ,

1

1 ,1 



  tFitit RgEME  , (15) 
 

while the properties of covariance combined to equation (13) implies that 
 

                                                 
9 See, also, Merton (1973) or Fama and French (1996). 
10 See Huang and Litzenberger (1988, page 202). 
11 See Huang and Litzenberger (1988, page 205). 
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  







1

1 ,

1

1 , )1)(1](~1[ tFiti RgE  )1](~ ,
~

[1 1

1 ,1



  itit gMCOV  . (16) 
 

Thus, in equilibrium, the expected divided growth of any stock satisfied 
 

 )1/()1(]~1[ 1

1 ,1 ,



  itFti RgE  )1](~ ,
~

[ 1 ,1 ,1   tFtit RgMCOV . (17) 
 

In short, for one period, the price equilibrium condition given by equation (10) also 

involve that the expected dividend growth rate of a stock, should respect the one-

dimensional relationship expressed by equation (17). 

 

4.2 Expected dividend growth with one period and many factors 

 
 To extend toward a multidimensional expression, let us first introduce the 

multifactor model formulated by equation (1B) into equation (17)  
 

 )1/()1(]~1[ 1

1 ,1 ,



  itFti RgE  ]~~
 ,

~
[)1( 1 ,1 11 ,   titititttF aMCOVR Fb . (18) 

 

Using proprieties of covariance, equation (18) can thus be arranged and presented as a 

multilinear function. That is  
 

 NitNtittittiotti bbbGE   

 ...)1(]
~

[ 2211

11

1 , , (19) 
 

with  
 

 )~1(
~

1 ,1 ,   titi gG , 
ot )1(  1 ,  tFR , 

 

 jt ]
~

 ,
~

[)1(- 1 ,11 ,  tjtttF FMCOVR , for every j = 1, 2, …, N.   
 

Equation (19) represents an equilibrium condition when dividend growth rates are 

generated by N factors, on a single period. As the APT principal prediction, it shows 

that the equilibrium relationship can be described by a N-dimensional hyper plane.  

 Besides, if N equals one, and if the factor chosen is the aggregate consumption 

growth rate, then equation (19) shows that the only sensitive coefficient that influences 

the equilibrium dividend growth rate is the dividend beta (introduced before). In 

addition, if the utility function is definite by a power utility function, then, for this 

special restrictive case, the marginal rate of substitution, between consumption at time t 

and consumption at time t+1, is negatively related with the consumption growth. As a 

result, the relationship between the expected dividend growth rate and dividend beta is 

necessarily positive, since 
t1  is positive (see Appendix A). 

 

4.3 Expected dividend growth with many periods and many factors 

 

 For many periods, summing from t = 0 to t = T-1, yields 
 

 )...)1((]
~

[ 2211

1
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11
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1
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1 , NitNtittitt

T

t
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T

t
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or 
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Multiplying by 
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T
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1

0

2

T
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



1

0
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t

Nt  on each side of equation (21), gives 

 

 

























 
1

0

1

0

1

0

11

1

0

1

1

0

11
1

0

1 , ...)1(]
~

[
T

t

NitNt

T

t

Nt

T

t

itt

T

t

t

T

t

oti

T

t

ti bwbwGE  , (22) 

 

where  

 





1

0

/
T

t

jtjtjtw  , with 





1

0

1
T

t

jtw  ( j = 1, 2, …N).  

 

Therefore, multiplying by T-1 on both side of equation (22) implies that 
 

 NiNiiii bbbG    ...)1( 2211

11

0 , (23A) 
 

with  

 iG ig1 ,  
ig TgE

T

t

ti /]~[
1
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1 ,




 ,  
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T

t
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1

0  





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i T
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t

it /
1

0  






  ,  jib 




1

0  

T

t

jitjtbw   ( j = 1, 2, …N). 

 

Here, 
ig  (or iG ) can be viewed as the arithmetic average (over many periods) of the 

expected dividend growth rates of stock i, or, to put it differently, the long-run expected 

dividend growth rate of stock i. In addition, ib1 , ib2 , …, and Nib  can be viewed, 

respectively, as the weighted average of sensitive coefficients 
itb1

, 
itb2

, …, and 
Nitb  (for 

t =1, 2, …., T-1). 
 Equation (23A) shows that a stock’s long-run dividend growth is linearly related to 

N sensitivity coefficients, given by the long-run sensitivity between dividends and 

economic factors. Besides, if N = 1 and if this factor is 
1

~
tg  (the aggregate consumption 

growth rate), then equation (23A) can be reduced to the following expression 
 

 iioi bG 11

11)1(    , (23B) 
 

where  

    1 

2

1 ,11
~/~,~

 ttitit gggCOVb  , 1 T
T

t

t /
1

0  

1




  , and ib1 =




1

0  

11

T

t

ittbw .  

 

For this special case, parameter ib1  is estimated by its long run covariance between 

dividends and consumption (its long-run dividend beta). Thus, if we accept that the 

long-run covariance between dividends and consumption represents a good measure of 

risk, as many authors claim (see, for example, Bansal and Yaron, 2004; Bansal et al., 

2005; Bansal et al., 2009; Bansal and Kiku, 2011; and Bergeron, 2011) then equation 

(23B) implies that the expected dividends growth, on the long run, is linearly related to 

risk. In addition, if we assume that the representative agent has a power utility function 
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then the relationship between dividend growth and risk, is also positive, since 
t1  and 

(then) 1  are positive. 

 As noted by Bergeron (2011), the link between dividend growth, current dividend, 

and risk (in its standard form) is not a new subject in finance. Indeed, it is generally 

accepted that big old firms that already pay generous dividends and have low risk 

present low expected dividend growth, in the long-run12. Moreover, many authors 

observed a negative relationship between dividend yield and dividend growth or 

between dividend and risk, in addition to a positive correlation between dividend 

growth and risk.13The belief can be rationalized in this manner: if firms are risk averse 

and cautious, then those operating in a high level of uncertainty will pay lower 

dividends to have enough retained earnings for bad earnings years (see Hoberg and 

Prabhala, 2009). Consequently, in a high uncertainty context, firms should display a 

high measure of risk, a low current dividend (relative to earnings, price or future 

dividends), and a high expected dividend growth simultaneously.  

 In sum, with the one dimensional special case described by equation (23B), it is 

easy to see that our model is consistent with the above proposals concerning the link 

between dividend growth, dividend yield, and risk (on the long-run)14.  

 Nevertheless, in its general form, equation (23) shows that the relationship between 

dividend growth and risk, on the long-run, can be easily extended to multiple 

dimensions. 

 

4.4 Dividend-price ratio and equilibrium stock price 

 
 At time t = 0, equation (8) establishes that the current dividend–price ratio 

(
00 / ii PD ) equals

1

i . This permits us to write that  
 

 NiNiiiioi bbbPDG    ...)/1( 2211

1

00 , (24A) 
 

or that 
 

 iiioi PDG bλ 1

00 )/1(  (24B) 

where, λ  [   ...  21 N ],  and  
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 In this manner, equation (24) shows that a stock’s long-run dividend growth is 

negatively related to its current dividend-price ratio and linearly related to N sensitivity 

coefficients, given by the long-run sensitivity between dividends and economic factors.  

 The introduction of the dividend-price ratio in the relationship just confirms the 

following proposal: if firms are effectively risk averse and cautious, then those 

operating in a high level of uncertainty will display a high measure of risk, a low 

                                                 
12 See Bergeron (2011), Brav et al. (2005) or Grullon et al. (2002). 
13 See, for example, Beaver et al. (1970) or Senbet and Thompson (1982). 
14 The one dimensional special case expressed by equation (23B) is also consistent with equation (24) in 

Bergeron (2011). 
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dividend-price ratio and a high expected dividend growth simultaneously. The 

introduction of the ratio also permits us to express the theoretical value of a stock with a 

simple formula. Indeed, rearranging equation (24) gives  
 

 00 i

iio

ii
i D

G

G
P






bλ

bλ


, (25A) 

 

or, if we prefer 
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, (25B) 

with  
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
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The last formula indicates that the equilibrium price of a stock is a function of its 

current dividend, long-run dividend growth, and N long-run dividend sensitivity 

parameters.  

Under conditions of certainty (betas equal zero), equation (25) is analogous to the 

classic Gordon model, and the equilibrium stock price is a function of its current 

dividend and long-run dividend growth, only. Under conditions of uncertainty, the 

scalar product given by ibλ  has a negative effect on price. Thus, we can maintain that 

this value represents the risk adjustment factor, while sensitivity vector ib  represents a 

multidimensional risk measure. 

As a result, the theoretical value of a stock appears to be a function of its current 

dividend, long-run dividend growth, and N risk parameters, given by the long-run 

sensitivity of dividends to various economic factors. 

 

5. Conclusion 

 

 In this paper, we showed that the relationship between dividends, stock prices, and 

long-run risks, is easily extended to a multidimensional framework. In particular, after 

assuming that the dividend growth rate on any stock is a function of N variables, we 

showed that a stock’s long-run dividend growth is negatively related to its current 

dividend-price ratio and linearly related to N sensitivity coefficients, given by the long-

run sensitivity between dividends and economic factors. Then, we showed that the 

equilibrium price of a stock is determined by its current dividend, long-run dividend 

growth, and N risk parameters. In all, our extension model suggests that the 

multidimensionality of long-run risk should be considered in assessing the theoretical 

value of a firm. 

 In the construction of our model, we first used the standard time-separable utility 

assumption. Afterward, we relaxed this restrictive assumption in appendix B, using 

habit formation. It could be interesting, for a future model, to generalize the utility 

function, in using, in addition, the Kreps and Porteus (1978) recursive utility function15. 

                                                 
15 See, also, Strzalecki (2013). 
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Furthermore, it could be interesting, for future research, to develop an empirical test of 

our model16.  

 

Appendix A 

 

In this appendix, we demonstrate that coefficient 
t1 , of equation (19), is necessarily 

positive, if we suppose that N =1, 1 ,1

~
tF  = 

1
~

tg , and 1

~
tM  is given by a power utility 

function. Indeed, with a power utility function we know that 
 

  )~1(
~

11 tt gM , where 

0  and  >0 (see, for example, Bansal and Kiku, 2011). Thus, 
t1  is necessarily 

positive, since the covariance term is necessarily negative: 
 

 
t1 ]

~
 ,

~
[)1(- 1 ,111 ,  ttttF FMCOVR  =  )]~ ,)~1[()1(- 111 , 



  ttttF ggCOVR . (A.1) 

 

Appendix B 

 

In this appendix, we relax the restrictive time-separable utility assumption, using habit 

formation. Here, at time t, each agent maximizes the non-separable utility function17  
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subject to resource constraints, with ttt zCC * , 1 tt Cz  , ststst zCC   ~~~*
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~ represent the habit, modeled as a fraction of 1tC  and 

1

~
 stC . At equilibrium, each agent found the solution of the above problem and the 

resulting price of asset i, at time t, is now (see Athanasoulis and Sussman, 2007) 
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with ).(/)
~

(
~ ***

tst

s

st CUCUM     Thus, from equation (4) to equation (9), we have  
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where *

i  is equivalent to i  except that 
*~

stM   replace stM 

~
. By induction, for one 

period, the resulting stock price expressed by equation (B.2), becomes 
 

  )~~
(

~
1 ,1 ,

*

  titisttit PDMEP . (B.4) 
 

From equation (10) to equation (17), we can write  
 

 )/11/()1(]~1[ *

1 ,1 , itFti RgE   )1](~ ,
~

[ 1 ,1 ,

*

1   tFtit RgMCOV . (B.5) 
 

                                                 
16 In appendix C, we present an exploratory empirical application of our model. 
17 See Athanasoulis and Sussman (2007). In particular, see section 4. 
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Introducing the multifactor model formulated by equation (1B) into equation (B.5), 

yields 
 

 )/11/()1(]
~

[ *

1 ,1 , itFti RGE   ]~~
 ,

~
[)1( 1 ,1 

*

11 ,   titititttF aMCOVR Fb . (B.6) 
 

Using properties of covariance, equation (B.6) can now be arranged and presented as 

the following multilinear function 
 

 NitNtittittiotti bbbGE *

2

*

21

*

1

1*

1 , ...)/11(]
~

[   

 , (B.7) 
 

with, 
*
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~
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[)1(- 1 ,

*

11 ,  tjtttF FMCOVR , for every j = 1, 2, …, N. Finally, from 

equation (20) to equation (25), we can obtain our last result. That is:  
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where *λ  is equivalent to λ  except that 
*~

stM   replace stM 

~
. 

 

Appendix C 

 

In appendix C, we present an exploratory application of our model that could be helpful 

for future empirical research. Our short exposal uses the data presented in Bansal et al. 

(2005). We also use their cross-sectional regression techniques, described in their 

section B.   

 More precisely, we begin our exploration by examining the ability of our model to 

explain the cross section of dividend growth rates (instead than returns). The cross 

sectional restriction is given by equation (24), in its simplest form, that is to say, when 

N = 1, 11 ,1
~~

  tt gF  (the aggregate consumption growth rate) and 
00 / ii PD  = DY , where 

DY represents the aggregate dividend yield. Put differently, the cross sectional 

restriction is given by  
 

 ioi bDYG 11

1)1(    , (C.1) 
 

where parameters and variables are similar to equation (23B), with 1

i  = DY18. In this 

manner, we can write that  
 

 ii bG 110   , (C.2) 
 

with 1

0 )1(  DYo .  

 Here, 0  and 1  represent the cross sectional parameters of the model. The data for 

variable iG  is issued from Table II (p. 1650) of Bansal et al. (2005). Table II presents 

descriptive statistics for the cash flow (dividend) growth rates on 30 portfolios. The data 

for variable ib1  is issued from Table III (p. 1651) of Bansal et al. (2005). Table III 

                                                 
18 Assuming that every stock has the same dividend yield permits us to remove the effect of dividend 

policies and to concentrate our attention on the effect of long-run risk (as in Bansal et al., 2005). 
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presents descriptive statistics of two alternative measures, 
i  and ig , of the cash flow 

beta, for the 30 portfolios.19 The measure 
i  is obtained from a projection of cash flow 

growth rates on a moving sum of lagged consumption growth. The measure ig  is 

obtained from regressing the cash flow innovation on the consumption innovation. 

 Our Table 1 and Table 2 present results for cross-sectional regression, utilizing the 

portfolio set. Parameter estimates and statistic coefficients are obtained in a single step 

via ordinary least squares.  

 In Table 1, we report results of a cross-sectional regression of average real dividend 

growth rates plus one (Gi)
 20 on the cash flow betas estimated by parameter

i .  

 

Table 1 

Cross-sectional evidence for dividends and risk, using lagged consumption growth 
_____________________________________________________________________________________________________________________________________________ 
 

 The dependent variable is Gi and the independent variable is i  
 

  Coefficient  Standard error  T-Statistic 
 

 Constant ( 0 )  0.99909   0.00126   794.74 

 Slope ( 1 )  0.00254   0.00031   8.27 

 R-Squared 0.70943   

 F-Statistic 68.36 

______________________________________________________________________ 

 

In Table 2, we repeat the exercise with cash flow betas estimated by parameter ig .  

 

Table 2 

Cross-sectional evidence for dividends and risk, using consumption innovation  
_____________________________________________________________________________________________________________________________________________ 
 

 The dependent variable is Gi and the independent variable is ig  

 

  Coefficient  Standard error  T-Statistic 
 

 Constant ( 0 )  0.99789   0.00157   635.21 

 Slope ( 1 )  0.00162   0.00025   6.56 

 R-Squared 0.60551   

 F-Statistic 42.98 

______________________________________________________________________ 

 

The results indicate that for both measures of cash flow risk (or long-run risk) the linear 

relationship is positive and strongly significant. When risk is measured by i , the slope 

(or parameter 1 ) is estimated as 0.00254 with a standard error of 0.00031 and a T-

statistic of 8.27. When risk is measured by ig , the slope is now estimated as 0.00162 

with a standard error of 0.00025 and a T-Statistic of 6.56. In both cases, the model 

explains a considerable portion of the cross-sectional variation in dividend growth rates; 

                                                 
19 These measures of risk are similar to the projection coefficient presented in our equation (1D). 
20 Note that dividend growth data are converted from log differences to ordinary growth rates (plus one). 
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when risk is measured by 
i , the R-squared is 70.94%, and when risk is measured by 

ig , the R-squared is 60.55%. In addition, in both cases, the constant (or parameter
0 ) 

is near one, which is consistent with our model21. 

 Overall, our exploratory empirical results allow us to expect that a more 

sophisticated test will support our theoretical model.  
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