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Abstract In Classical test theory, difficulty (p) and discrimination (d) are two item coefficients
that are widely used to analyze and validate items in educational testing. However, test items are

usually affected by missing data (MD), and little is known about the effect of methods for handling

MD on these two coefficients. The current study compares several simple substitution (imputation)

strategies for dichotomous items to better understand their impact on item difficulty and discrim-

ination. We conducted a simulation study, followed by the analysis of a real data set of test items

from a language test. Based on the root mean square errors (RMSE), person mean (PM) is the best

overall replacement method for difficulty p and discrimination d. However, the analysis of bias
coefficients and the analysis of real data show many similarities between most of the methods in-

vestigated to compute pwhile multiple imputation (MI) and complete cases (CC) seem to be the least
biased methods to compute d.
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Introduction

Classical test theory (CTT) is a set of concepts and methods

developed by various authors (e.g., Guilford, 1936; Gullik-

sen, 1950; Lord & Novick, 1968; Magnusson, 1967) based on

the work of Spearman (Spearman, 1904, 1907, 1913). This

theory is useful for item analysis, in order to collect infor-

mation about item difficulty and item discrimination. Even

if more modern measurement theories like Item Response

Theory (IRT) are now extensively used, CTT remains pop-

ular because it presents important advantages. The most

obvious one is the simplicity of CTT over IRT. For exam-

ple, student ability is estimated by adding the number of

correct answers to every item, in contrast with IRT, for

which complex likelihood-based estimators must be used

(Baker & Kim, 2004). Furthermore, CTT is implemented in

most major statistical software (e.g., SPSS), and because it

is the most taught and best known measurement theory,

it is widely used, which facilitates comparisons of new re-

sults with those from previous studies. Another argument

is the fact that CTT is less restrictive than IRT on the ques-

tion of sample size and model assumptions.

The literature generally reports limitations for CTT

(e.g., sample related coefficients) to justify the use of more

recent psychometric approaches like IRT. However, DeVel-

lis (2006) made this important statement:

Some limitations of CTT are better docu-

mented in theory than in fact. I have person-

ally observed instances in which scores on dif-

ferent versions of instruments, one based on

CTT and the other based on more recent mea-

surement models, have correlated with one

another above 0.85. A correlation of that mag-

nitude supports the conclusion that the 2 ver-

sions are fairly comparable. (p. S57)
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In addition, Hays, Brown, Brown, Sprintzer, and Crall

(2006) wrote that “CTT statistics are familiar and well un-

derstood and can help the user get oriented to the survey

items and scales prior to estimating a more complex IRT

model. We recommend further use of both approaches

in tandem to evaluate survey items in future studies.” (p.

S67).

The use of CTT in educational testing

At least three reasons can explain the popularity of CTT in

educational testing. First, this theory is reasonably easy

to understand and, as mentioned earlier, it is generally

available through popular software. Second, there exists

an extensive didactic literature to help users analyze tests

with CTT. Third, classroom assessment contexts deal with

small sample sizes (N < 80), which are generally insuffi-
cient formodern approaches like IRT. And asmentioned by

De Champlain (2010), this theory needs less restrictive as-

sumptions. In this context, CTT is an interesting alternative

to analyze the validity of educational tests.

The problem of missing data in educational testing

Students are expected to show their real ability in the con-

text of classroom assessment, i.e. when doing educational

tests. However, it is quite common to find missing data

(MD) in educational testing. For example, a distracted stu-

dent might intentionally skip some items, planning to an-

swer them later on but forgetting to do so. A student can

also deliberately avoid some items that bear sensitive con-

tent
1
or fail to answer difficult items.

What are the options when a student did not answer

some test items? The choices available to test graders are

displayed in the following decision tree (Figure 1).

In the presence of MD, is it possible to ask the student

to answer all missing items? If so, the grader can directly

assess the student’s knowledge by questioning him/her,

hence avoiding identification errors for the nature of the

MD. If a student cannot be questioned again -often out of

fairness for other students- the next step is to investigate

the nature of the MD. If the grader knows precisely the na-

ture of the MD (which is not always possible), he/she can

justify the decision to ignore the unanswered items or to

assign them a particular score. Substitution by zero, for

example, is a common method used from the beginning of

grade school, since teachers assume that it is for lack of

knowing the correct answer that students do not respond.

However, assuming lack of knowledge would be less jus-

tified, for example, when a high-achieving student simply

skipped an item apparently due to distraction, while an-

swering all the more difficult items correctly. In fact, such

a student could perhaps provide the correct answer to the

unanswered item spontaneously upon post-hoc question-

ing. Another possible situation of identifiable MD is when

a student did not answer a series of questions simply for

not knowing they were located on the back of a page. In

short, when we know the nature of MD, principled meth-

ods like multiple imputation and direct likelihood methods

have been shown to be suitable and can be used with con-

fidence. Note that other simple methods are appropriate

for particular situations; for example, Complete-case (CC)

analysis tends to be appropriate in MCAR situations.

On the contrary, if the type of MD cannot be readily

identified, there is no single universal method that can be

assumed to workwhicheverMD type is in presence. It then

becomes necessary to perform sensitivity analysis. With-

out knowing the nature of the MD in presence, the use of

substitution techniques is important to minimize the oc-

currence of “biased estimates of parameters, loss of infor-

mation, decreased statistical power, increased standard er-

rors, and weakened generalizability of findings.” (Dong &

Peng, 2013, p. 1). These decisions can affect test validity,

which is the most important quality of a test (Downing &

Haladyna, 2009). As stated by Kane (2001), “validity is a

property of the interpretations assigned to test scores, and

these interpretations are considered valid if they are sup-

ported by convincing evidence” (p. 56). For example, the

validity of a test gets distorted when MD underestimate

the parameters in a psychometric model such as structural

equation modeling. The presence of MD thus negatively

impacts the interpretation of test scores and the psycho-

metric properties of a test.

The impact of missing data in CTT: More research
needed

Many authors have shown that when a data matrix con-

tains MD, the statistical or measurement model in use can

be biased (Allison, 2001; Bradlow & Thomas, 1998; Mackel-

prang, 1970; Rose, von Davier, & Xu, 2010; Schafer & Gra-

ham, 2002). In recent years, a great deal of attention has

been devoted to the effect of MD on latent variable mod-

els; such was the case in exploratory and confirmatory fac-

tor analysis, structural equation modeling or IRT. For ex-

ample, Finch (2008) investigated the effectiveness of sev-

eral replacement methods on IRT difficulty and discrimi-

nation. Unfortunately, he was not able to highlight a supe-

rior method. For their part, Kamakura and Wedel (2000)

developed a method to deal with MD in exploratory factor

analysis, as well as Song and Lee (2002) in structural equa-

tion modeling. Other authors like Banks (2015) and Finch

(2011) have discussed the case of MD on differential item

functioning, and B. Zhang and Walker (2008) studied MD

with person-fit statistics.

1
See van Buuren (2012, p. 29) for a discussion about intentional and unintentional causes of MD.
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Figure 1 Grader’s decision tree in the presence of missing data.

Surprisingly, very few studies explored the impact of

MD on CTT item analysis. As an example, Béland, Pichette,

and Jolani (2016), Enders (2004), and Sijtsma and Van der

Ark (2003) studied the impact of many replacement meth-

ods on Cronbach’s alpha coefficients. To the best of our

knowledge, no studies have been conducted on the impact

of substitution (imputation) methods on the estimates of

difficulty and discrimination, which are used to assess the

quality of items in the context of CTT (Livingston, 2012).

In CTT, item difficulty p is the proportion of correct an-
swers per item. The value of this coefficient falls within

a range from 0 to 1, and an item is considered easy when

the p is high, and vice versa. Items with a p of .50 can be
considered to be of moderate difficulty, while those at .85

and above can be considered easy, and those at .25 or less

can be considered difficult (Hogan, Parent, & Stephenson,

2012; Laveault & Grégoire, 2014).

In addition, item discrimination d is the item’s total
biserial correlation (LeBlanc & Cox, 2017). Conceptually,

d represents the difference between high performers and
low performers and can be obtained with this formula:

di =
√
pi × qi ×

µ1i − µ0i

σi
. (1)

where µ1i and µ0i are the average scores of the students

who answered correctly and incorrectly item i, respec-

tively, σi is the standard deviation of item i, and pi and qi
are respectively the proportion of students who answered

the item correctly and incorrectly. The value of this d co-
efficient falls between -1 and 1. A low d-value indicates
that a student who gets the item correct tends to perform

poorly overall on the test, and vice versa. A value below

0 generally reflects a non-discriminating item, values be-

tween .01 and .09 a very poorly discriminating item, val-

ues between .10 and .19 a poorly discriminating item, val-

ues between .20 and .29 a moderately discriminating item,

values between .30 and .39 an item showing good discrimi-

nation, and values over .39 an itemwith very good discrim-

ination (Laveault & Grégoire, 2014; Nunnally & Bernstein,

1994; Schmeiser & Welch, 2006).

The treatment of missing data

Missingness mechanisms

The mechanisms that lead to missing data are usually clas-

sified into three categories (Rubin, 1976). The first category

is missing completely at random (MCAR) and refers to sit-

uations where the absence of some data is entirely due to

chance. The second category is missing at random (MAR),

which occurs when missingness is entirely explained by

the observed data rather than stemming from the miss-
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ing data themselves. For concrete examples of educational

testing situations for each of those two mechanisms, see

Béland et al. (2016). Missingness can also be caused by the

nature of the item, for example when questions are so in-

trusive or difficult that students elect not to provide an an-

swer. This situation is known as missing not at random

(MNAR). In the present study, we focus only on the first

two mechanisms (i.e., MCAR and MAR). This strategy was

also adopted in recent research (e.g., Q. Zhang & Wang,

2016, 4). The MNAR mechanism will not be considered,

mostly because it involves very complex issues. To sum

up, we assume that the data sets analyzed by educational

researchers were obtained using psychometrically well-

designed instruments that maximally reduce the chance of

MNAR.

Substitution methods

Many methods are available to deal with missing data. In

this section, we will focus on three categories: 1) deletion

methods, 2) simple substitution methods, and 3) advanced

methods. The interested readers can find an extended

overview of methods in Allison (2001).

Among deletion methods, complete-case (CC) deletion

consists of removing the data for any participant who pro-

videdmissing values. For example, if a participant declines

to answer at least one item, that person is discarded from

the analysis. Another deletion strategy is the available case

(AC) method. This method consists of eliminating missing

data on a case-by-case analysis: the analyst only discards

the missing answers on a test, and all available answers

are used for the analysis.

Regarding simple substitution methods, various simple

techniques can be used for a cognitive test consisting of

right and wrong answers. Many graders consider missing

data as incorrect answers for which the student gets “0”.

The idea behind this strategy is to sanction where there

is no evidence of comprehension for an item. It is also

remotely possible to consider a missing answer as being

correct and assign it a score of “1”. Among such rare in-

stances, we could include the case mentioned earlier of a

very strong student who forgot to answer the back side of

an answer sheet.

Another strategy consists of substituting a missing

value using mean-based methods. For example, the item

mean (IM) of the observed cases is imputed for every miss-

ing datum:

IM =
∑

i∈obs(j)

Xij/#obs (j) (2)

where Xij is the score of students i (i = 1, ..., n) to item j

(j=1,. . . , J), and obs(j) denotes an item for which an answer

is available. Another strategy is to replace the missing data

by the participant’s mean (PM) on the whole test. Here,

PM =
∑

j∈obs(i)

Xij/#obs (i) . (3)

where obs(i) denotes respondents i who answered a spe-
cific question.

Winer (1971) proposed an alternative —called Winer

imputation (W)— that combines IM and PM for missing

data substitution:

W =
IM + PM

2
. (4)

Three decades later, Huisman (2000) proposed a corrected

item mean substitution (CIM):

CIM =

(
#obs (j)× PM∑

j∈obs(i) IM

)
× IM (5)

where “CIM replaces missing values by the item mean

which is corrected for the ‘ability’ of the respondent, i.e.,

the score on the observed items of the respondent com-

pared with the mean score on these items” (pp. 334-335).

van Ginkel, van der Ark, Sijtsma, and Vermunt (2007)

reported the two-way imputation (TW):

TW = PM + IM − TM (6)

where TM is the total mean of the test:

TM =
∑∑
i,j∈obs

Xij/#obs(i) (7)

Finally, several advanced methods were developed to

deal with missing data issues. A popular and powerful

method is the likelihood-based method (ML, Allison, 2001),

which is based on the product of complete data likelihood

and incomplete data likelihood. The overall likelihood can

then be maximized with different computation strategies

to estimate parameters of interest.

Another powerful advanced method is multiple impu-

tation (MI, Rubin, 1987). Like Peugh and Enders (2004), van

Buuren (2012, p. 17) shows that multiple imputation com-

prises three main steps. The first step consists of imput-

ing missing data from an incomplete data set to produce

several complete (imputed) data sets. All the imputed data

sets are different from one another in order to represent

the uncertainty regarding which value to impute. This im-

putation step leads to multiple completed data sets, usually

between three and five, although it is possible to increase

it to a larger number, in the range of 50 or more. The sec-

ond step is to perform the desired statistical analysis on

each imputed data set (e.g., obtaining p, and d). In the
third step, the results are pooled in order to obtain a sin-

gle summary statistics. Following Rubin (1987), the pooled
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estimate of the difficulties p (over imputations) is simply
the arithmetic average overM estimates of p:

p̄ =
1

M
×

M∑
m=1

pk. (8)

Schafer (2003) mentioned that MI and ML could lead to

similar results under some specific conditions (e.g., using

the same data set, a large sample size and a large number

of imputations). This finding is also reported by Ibrahim,

Chen, Lipsitz, and Herring (2005), Peugh and Enders (2004,

see Table 4 on p. 547), and Kadengye, Ceulemans, and Van

den Noortgate (2014). Finally, Q. Zhang and Wang (2013)

showed that MI andML performed well in the case of mod-

eration analysis.

Because the ML and MI approaches are asymptotically

equivalent, we only consider MI in this article. Moreover,

MI can deal with a wider range of situations, which is the

case in education testing. More importantly, MI “separates

the solution of the missing data problem from the solution

of the complete data problem” (van Buuren, 2012, p. 18).

As the readers will see, this can lead to a better understand-

ing of many research questions.

Aim of this study

The aim of this study is to use a simulation study as well as

a real data set to compare the precision of the estimate of p
and d across ten common fill-inmethods for handlingmiss-
ingness under MCAR and MAR mechanisms for normal-

size dichotomous data sets in education testing. As we

mentioned earlier, the MNAR mechanism involves highly

complex issues where the reason for missing data must

also be modeled, and is therefore not considered here.

Method

Ten methods are compared to investigate their impact on

p and d coefficients: multiple imputation (MI), corrected
item mean (CIM), Winer imputation (W), two-way impu-

tation (TW), replacement by the person’s mean (PM), re-

placement by the item’s mean (IM), replacement by the to-

tal mean (TM), replacement by “0”, replacement by “1”, and

only complete cases (CC).

Study 1: Simulation study

Our procedure was based on the collection and analysis

of dichotomous data (e.g., correct/incorrect answers). We

used the sim.rasch function from the ‘psych 1.8.4’ R pack-

age (Revelle, 2018) to create dichotomous data sets from

Rasch models where the ability and difficulty parameters

were generate from a N(0, 1). The data sets contained ei-
ther 100 or 500 participants with two test lengths (20 and

60). For this study, we chose two percentages of missing

answers: 0.05 and 0.20. Missing values were then ob-

tained under MCAR and MAR mechanisms. For MCAR,

missing values were generated at random in every dichoto-

mous data matrix. In the case of the MAR mechanism,

we adopted the strategy suggested by van Buuren, Brand,

Groothuis-Oudshoorn, and Rubin (2006). This procedure

ensures that, for each participant, the probability for an

item to be missing only depends on the observed items for

that participant. Finally, each item presents a similar num-

ber of missing answers.

The bias and root mean square error (RMSE) will be re-

ported for each combination (number of items × number

of participants × percentage of missing answers). To ob-

tain these statistics, we first started by generating full di-

chotomous matrices (i.e., without missing values) and the

corresponding p and d values were obtained. We consid-
ered these estimated values to be the true values for p and
d. Next, missing values were inserted in these matrices
and the p and d quantities were estimated after applying
a missing data treatment method (e.g., item mean imputa-

tion). To compute bias, the mean difference was calculated

between the true values of p and d and their estimated
values (after applying a missing data treatment method)

across 1000 replications. For RMSE, the following formula

was used:

RMSE =
√
bias2 + SD2 (9)

where SD is the standard deviation of p and d per method
that are obtained from 1000 replications.

Study 2: Real data analysis

We used the TCALS-II (Test de Classement en Anglais,

Langue Seconde - Version II [Placement Test of English

as a Second Language]) to test the impact of the replace-

ment methods. This test assesses the English competence

of French-speaking students entering college. The TCALS-

II contains 85 multiple-choice items divided into eight sub-

groups. The data matrix under consideration are the com-

plete responses of students to these 85 items over three

different times: N = 1372 (1998), N = 1279 (2004), and
N = 1835 (2008) at a College located in Western Quebec.
These years were selected because of their unidimension-

ality and mutually exclusive items.

We generated 0.20 ofmissing answers underMCAR and

MAR mechanisms where each item presents almost the

same number of missing answers. We then substituted ev-

ery missing datum using the ten above-mentioned meth-

ods. The results from each substitution method were com-

pared with the full data matrix before introducing missing

data. Like Study 1, that original full matrix is used as refer-

ence. Finally, it is important to mention that we choose

the TCALS-II because it respects the assumptions of uni-

dimensionality and relative independence between items

(Râıche, 2002). This is a crucial point that ensures us to
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make credible comparisons with Study 1 because we make

use of the Rasch model to generate data matrices.

Results

Study 1: Simulation study

The next output displays the results for p. First, Table 1 re-
ports simulations with 20 items. Except for “0” and “1”, the

RMSE values are smaller when the matrix size increases

(N = 500). The low RMSE values for PM and TM suggest
that they are the best overall methods. However, it is im-

portant to notice that RMSE values can also be low for IM,

W, TW, CIM and MI.

The bias coefficient values are generally low, which in-

dicates consistency in item difficulty between the replace-

ment methods that are compared. This observation holds

true especially when the rate of missingness is equal to

0.05. However, we have to point out that the “0” and “1”

replacement methods are clearly the most biased ones.

Table 2, based on 60-item simulations, shows the ten-

dencies observed in the previous table. This time again,

a larger N leads to a smaller RMSE, and the methods that

yield the lowest RMSE are respectively PM and TM. Finally,

the bias is systematically higher for replacement by “0” and

“1”.

Tables 3 and 4 present the results for d, based on 20
and 60 items respectively. To begin, it is important to high-

light that the RMSE and bias values we obtained are higher

for d than they were for p (as shown previously in Table 1
and 2). Furthermore, RMSE values from those two tables

become smaller as the number of items increases.

As we can see in Table 3, RMSE are at their smallest

value when PM and W are in use. The study of bias shows

that MI, TW and CC are the least biased methods when

N = 100, while MI and CC present the smallest bias when
N = 500. Finally, we see that “0” and “1” are not adequate
replacement methods for r.

The result for 60 items can be synthesized as follows.

First of all, the RMSE are generally lower when the num-

ber of item rises. Second, PM and TW are respectively the

replacement methods with the lowest RMSE. Finally, bias

coefficients suggest that CC, CIM, and MI are respectively

the best replacement methods.

Study 2: Real data analysis

Table 5 shows the results under an MCAR mechanism with

0.20 of MD. When compared to the reference, the p val-
ues were similar for MI, CIM, TW, W, PM, IM, TM and CC.

This is in accordance with some results of Study 1, where

the difference between the bias coefficients of these meth-

ods can be very small (e.g., MCAR & rate=0.05 and MCAR &

rate=0.20 when N = 500). Furthermore, our previous re-

sults also show that the “0” and “1” replacement methods

are not precise. For the d values, MI and CC are themost in-
teresting methods, which is in accordance with many bias

coefficient results of Table 3 and Table 4.

Again, Table 6 shows that the difficulties are relatively

similar for MI, CIM, TW, W, PM, IM and TM. Contrary to

Table 1, CC replacement method is now less powerful to

recover the references. Finally, MI and CC are the best op-

tions for item discrimination.

Synthesis

Over the 1,000 generated matrices, the RMSE are slightly

higher when N = 100 and for item discrimination d.
Based on our overall results, PM is a slightly better re-

placement method for difficulty p and for discrimination
d. However, bias coefficients from Study 1 and the results
from Study 2 show many similarities between CC, MI, CIM,

TW, W, PM, IM, and TM for difficulty p, while MI and CC
appear to be the most appropriate methods for d. Finally,
it may be a bad decision to use “0” and “1” replacement

methods, given that their RMSE and bias coefficients are

the highest ones.

Discussion

In our study, the MI substitution method proves very effi-

cient based on the bias coefficients of Table 1 to 4. In other

contexts, Béland et al. (2016), Schafer and Graham (2002)

and van Buuren (2012), among others, also showed that MI

is among the better approaches for dealing with missing

data.

Mean-based substitution methods do not enjoy a good

reputation. According to Enders (2010, p. 43): “simulation

studies suggest that mean imputation is possibly the worst

missing data handling method available. Consequently, in

no situation ismean imputation defensible, and you should

absolutely avoid this approach”. van Buuren (2012) also

mentions that:

mean imputation is a fast and simple fix for the

missing data. However, it will underestimate

the variance, disturb the relations between

variables, bias almost any estimate other than

the mean and bias the estimate of the mean

when data are not MCAR. Mean imputation

should perhaps only be used as a rapid fix

when a handful of values are missing, and it

should be avoided in general. (p.11)

An important observation that can be made from Table

1 to Table 6 is that mean-based procedures are not always

as useless as suggested by many authors. For example, in

Study 2, CIM, TW, W, PM, IM and TM are all very close to

the reference for p. Furthermore, Béland et al. (2016) also
found that IM, TM, andW canminimize the impact of miss-
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Table 1 RMSE and bias for difficulty p (20 items)

CC 0 1 TM IM PM W TW CIM MI

N = 100
MCAR & rate=0.05

RMSE 0.0529 0.0555 0.0555 0.0491 0.0515 0.0489 0.0502 0.0513 0.0514 0.0513

Bias 0.0003 -0.0249 0.0251 0.0001 0.0001 -0.0001 0.0000 -0.0001 -0.0001 0.0001

MAR rate=0.05

RMSE 0.0527 0.0563 0.0567 0.0488 0.0512 0.0487 0.0499 0.0511 0.0511 0.0509

Bias 0.0015 -0.0249 0.0257 0.0004 0.0004 -0.0005 0.0000 -0.0005 -0.0005 0.0002

MCAR rate=0.20

RMSE 0.0651 0.1107 0.111 0.0463 0.0566 0.0459 0.051 0.0561 0.0566 0.0553

Bias 0.0001 -0.0998 0.1002 0.0002 0.0003 0.0004 0.0003 0.0004 0.0003 0.0003

MAR rate=0.20

RMSE 0.0664 0.1136 0.1164 0.0458 0.0563 0.0456 0.0506 0.056 0.056 0.0551

Bias 0.0104 -0.1015 0.1042 0.0015 0.0016 -0.0036 -0.0010 -0.0036 -0.0036 0.0001

N = 500
MCAR rate=0.05

RMSE 0.0235 0.0333 0.0334 0.0219 0.023 0.0219 0.0224 0.0229 0.023 0.023

Bias 0.0000 -0.0250 0.0250 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001

MAR rate=0.05

RMSE 0.0236 0.0336 0.0342 0.0218 0.0229 0.0218 0.0223 0.0228 0.0229 0.0228

Bias 0.0013 -0.0250 0.0256 0.0003 0.0003 -0.0006 -0.0001 -0.0006 -0.0006 0.0001

MCAR rate=0.20

RMSE 0.0287 0.1022 0.1022 0.0206 0.0251 0.0204 0.0227 0.0249 0.0252 0.025

Bias -0.0001 -0.1000 0.1000 0.0001 0.0001 0.0002 0.0001 0.0002 0.0002 0.0001

MAR rate=0.20

RMSE 0.031 0.1037 0.1068 0.0205 0.0251 0.0205 0.0226 0.025 0.0251 0.025

Bias 0.0106 -0.1011 0.1043 0.0020 0.0020 -0.0031 -0.0006 -0.0031 -0.0031 0.0002

ing data on Cronbach’s alpha when analyzing small sam-

ple sizes. Finally, Sijtsma and Van der Ark (2003) show that

simple replacement methods like PM and TW display small

bias when analyzing incomplete data matrices with Cron-

bach’s alpha.

Limitations

Obviously, the current study is not without limitations.

First, we only analyzed the case of unidimensional andmu-

tually exclusive items in our simulation study. Although

this setting is of interest in educational testing, there are

many situations in which scientists deal with multidimen-

sional data matrices. Second, the simulation design can

have an impact on the performance of some replacement

method. Third, the item range under investigation in this

article is limited to 60 items. This choice is pertinent for

an exploratory study such as our application, but tests can

be longer in real-life situations. Finally, we excluded the

possibility of MNAR mechanisms, which suggests that the

current study only informs us about the question of “ran-

dom missing data mechanisms”.

Conclusion

In test situations, graders generally assign a score of “0” to

a student who failed to answer an item. Our results sug-

gest that this strategy is quite misguided when analyzing

the psychometric qualities of a test, even when the rate of

MD is very low (i.e., 0.05). In Study 1, the RMSE coefficients

suggest that PM is the best overall method for computing

p as well as for d. However, the substitution methods CC,
MI, CIM, TW, W, PM, IM, and TM generally lead to similar

bias results for p. In the case of d, MI and CC present the
smallest bias.

More studies are needed to understand the impact of

missing data on item analysis. Here are five suggested av-

enues for further research. First, our study stresses the

need to investigate how these results can be extended to

multidimensional datamatrices or to dependency between

dichotomous items. Second, our study raises interest in in-

vestigating the effect of MD using polytomous items, such

as data obtained from Likert scales. Third, the effect of MD

on the estimation of true ability under CTT can be a stimu-

lating avenue for future studies. Fourth, this study consid-
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Table 2 RMSE and bias for difficulty p (60 items)

CC 0 1 TM IM PM W TW CIM MI

N = 100
MCAR & rate=0.05

RMSE 0.0527 0.0553 0.0553 0.0488 0.0512 0.0487 0.0500 0.0511 0.0512 0.0500

Bias 0.0000 -0.0250 0.0250 0.0000 0.0000 -0.0001 0.0000 -0.0001 -0.0001 0.0000

MAR & rate=0.05

RMSE 0.0529 0.0563 0.0567 0.0490 0.0514 0.0489 0.0501 0.0513 0.0513 0.0502

Bias 0.0006 -0.0248 0.0252 0.0002 0.0002 -0.0002 0.0000 -0.0002 -0.0002 0.0001

MCAR & rate=0.20

RMSE 0.0646 0.1106 0.1107 0.0456 0.0560 0.0452 0.0505 0.0556 0.0558 0.0495

Bias 0.0000 0.0000 -0.0999 0.1001 0.0000 0.0000 0.0000 0.0000 -0.0001 -0.0001

MAR & rate=0.20

RMSE 0.0655 0.1118 0.1155 0.0457 0.0563 0.0453 0.0506 0.0559 0.0557 0.0494

Bias 0.0000 0.0085 -0.0993 0.1034 0.0026 -0.0009 0.0008 -0.0009 -0.0010 0.0016

N = 500
MCAR & rate=0.05

RMSE 0.0236 0.0333 0.0334 0.0219 0.0230 0.0218 0.0224 0.0229 0.0229 0.0228

Bias 0.0001 -0.0250 0.0250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MAR & rate=0.05

RMSE 0.0236 0.0335 0.0338 0.0219 0.0230 0.0219 0.0224 0.0230 0.0230 0.0229

Bias 0.0007 -0.0247 0.0251 0.0002 0.0002 -0.0002 0.0000 -0.0002 -0.0002 0.0000

MCAR & rate=0.20

RMSE 0.0288 0.1022 0.1022 0.0203 0.0249 0.0201 0.0224 0.0247 0.0248 0.0244

Bias -0.0001 -0.1000 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MAR & rate=0.20

RMSE 0.0302 0.1018 0.1056 0.0204 0.0251 0.0202 0.0225 0.0249 0.0248 0.0245

Bias 0.0084 -0.0992 0.1030 0.0024 0.0024 -0.0012 0.0006 -0.0011 -0.0012 0.0002

ered MCAR and MAR missingness mechanisms. However,

there are situations in educational testing where these as-

sumptions are (clearly) violated. Future research could in-

vestigate the effect of MNARmechanisms on item difficulty

and discrimination in the context of educational testing.

Fifth, we are eager to better understand why the simple

mean-based substitution methods work well in the context

of unidimensional dichotomous items.
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Huisman, M. (2000). Imputation of missing item responses:

Some simple techniques. Quality & Quantity, 34, 331–
351. doi:10.1023/A:100478223006

Ibrahim, J. G., Chen, M.-h., Lipsitz, S. R., & Herring, A. H.

(2005). Missing-data methods for generalized linear

models: A comparative review. Journal of the Ameri-
can Statistical Association, 100, 332–346.

Kadengye, D. T., Ceulemans, E., & Van den Noortgate,

W. (2014). Direct likelihood analysis and multiple

imputation for missing item scores in multilevel

cross-classification educational data. Applied Psy-
chological Measurement, 38, 61–80. doi:10 . 1177 /
0146621613491138

Kamakura, W. A., & Wedel, M. (2000). Factor analysis and

missing data. Journal of Marketing Research, 37, 490–
498. doi:10.1111/j.1749-6632.1965.tb11694.x

Kane, M. T. (2001). So much remains the same: Concep-

tion and status of validation in standard setting meth-

ods. In G. J. Cizek (Ed.), Setting performance standards:

The Quantitative Methods for Psychology 1882

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.14.3.p180
https://dx.doi.org/10.1177/0013164403261050
https://dx.doi.org/10.1177/0013164403261050
https://dx.doi.org/http://dx.doi.org/10.1080/08957347.2011.607054
http://content.apa.org/books/2009-12806-000
http://content.apa.org/books/2009-12806-000
https://dx.doi.org/10.1023/A:100478223006
https://dx.doi.org/10.1177/0146621613491138
https://dx.doi.org/10.1177/0146621613491138
https://dx.doi.org/10.1111/j.1749-6632.1965.tb11694.x


¦ 2018 Vol. 14 no. 3

Table 4 RMSE and bias for discrimination d (60 items)

CC 0 1 TM IM PM W TW CIM MI

N = 100
MCAR & rate=0.05

RMSE 0.1270 0.1260 0.1262 0.1219 0.1219 0.1167 0.1192 0.1168 0.1168 0.1214

Bias 0.0003 0.0485 0.0484 -0.0060 -0.0060 -0.0099 -0.0060 -0.0096 -0.0088 -0.0078

MAR & rate=0.05

RMSE 0.1265 0.1291 0.1273 0.1207 0.1207 0.1146 0.1174 0.1147 0.1148 0.1208

Bias -0.0057 0.0479 0.0439 -0.0107 -0.0106 -0.0144 -0.0099 -0.0140 -0.0133 -0.0107

MCAR & rate=0.20

RMSE 0.1563 0.1526 0.1531 0.1283 0.1284 0.1102 0.1173 0.1104 0.1084 0.1276

Bias 0.0005 0.1048 0.1051 -0.0300 -0.0298 0.0127 0.0158 0.0136 0.0024 -0.0420

MAR & rate=0.20

RMSE 0.1584 0.1631 0.1458 0.1288 0.1288 0.1067 0.1143 0.1071 0.1060 0.1291

Bias -0.0155 0.1170 0.0857 -0.0398 -0.0396 0.0092 0.0118 0.0104 0.0013 -0.0487

N = 500
MCAR & rate=0.05

RMSE 0.0560 0.0706 0.0700 0.0541 0.0541 0.0516 0.0526 0.0516 0.0513 0.0546

Bias 0.0002 0.0484 0.0478 -0.0058 -0.0058 -0.0034 -0.0015 -0.0034 -0.0020 -0.0014

MAR & rate=0.05

RMSE 0.0560 0.0717 0.0690 0.0541 0.0541 0.0510 0.0519 0.0510 0.0508 0.0545

Bias -0.0049 0.0483 0.0439 -0.0097 -0.0097 -0.0054 -0.0038 -0.0053 -0.0003 -0.0017

MCAR & rate=0.20

RMSE 0.0683 0.1156 0.1160 0.0623 0.0623 0.0506 0.0535 0.0507 0.1150 0.0602

Bias 0.0000 0.1047 0.1051 -0.0294 -0.0293 -0.0177 0.0174 0.0179 0.1048 -0.0066

MAR & rate=0.20

RMSE 0.0708 0.1281 0.1008 0.0665 0.0665 0.0491 0.0521 0.0493 0.1171 0.0611

Bias -0.0148 0.1176 0.0863 -0.0381 -0.0381 0.0161 0.0152 0.0163 0.1070 -0.0069

Concepts, methods, and perspectives (pp. 53–88). Mah-
wah, NJ: Erlbaum.
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Appendix: R code for the analysis of a single data matrix containing missing values

ctt <- function(y){
temp <- reliability(y)
out <- rbind(difficulty = temp$itemMean, discrimination = temp$bis)
return(out)

}

# Multiple imputation
multiple.impute <- function(data){

imp <- mice(data, print = F)
mires <- array(NA, dim = c(2, ncol(data), imp$m))
for (i in 1:imp$m) mires[,,i] <- ctt(complete(imp, i))
result <- apply(mires, 1:2, mean)
return(result)

}

# single imputation methods
single.impute <- function(data){

out <- array(NA, dim = c(2, ncol(data), 8),
dimnames = list(c("dif", "dis"), NULL,

c("Zero", "One", "TM", "IM", "PM", "Winer", "Two-way
", "CIM")))

temp2 <- temp1 <- temp <- data
# zero replacement
temp[is.na(data)] <- 0
out[,,"Zero"] <- ctt(temp)
# one replacement
temp[is.na(data)] <- 1
out[,,"One"] <- ctt(temp)
# overall mean imputation
temp[is.na(data)] <- mean(data, na.rm = T)
out[,,"TM"] <- ctt(temp)
# item’s mean imputation
i.mean <- colMeans(data, na.rm = T)
for (j in 1:ncol(data)){ temp[,j][is.na(data[,j])] <- i.mean[j] }
out[,,"IM"] <- ctt(temp)
# participant ’ s mean imputation
p.mean <- rowMeans(data, na.rm = T)
for (i in 1:nrow(data)){ temp[i,][is.na(data[i,])] <- p.mean[i] }
out[,,"PM"] <- ctt(temp)
# other sigle imputation methods
for (i in 1:nrow(data)){

for (j in 1:ncol(data)){
temp[i,j][is.na(data[i,j])] <- (p.mean[i] + i.mean[j])/2
temp1[i,j][is.na(data[i,j])] <- p.mean[i] + i.mean[j] - mean(data, na.rm =

T)
temp2[i,j][is.na(data[i,j])] <- ((sum(!is.na(data[i,]))*p.mean[i])/(sum(

i.mean[!is.na(data[i,])])))*i.mean[j]
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}
}

# average of item and participant ’ s mean (Winer’s method)
out[,,"Winer"] <- ctt(temp)
# Two−way imputation method (Sijtsma’s method); PM + IM− OM
out[,,"Two-way"] <- ctt(temp1)
# corrected item mean imputation
out[,,"CIM"] <- ctt(temp2)
return(out)

}

# main program
prog <- function(data){

suppressWarnings(if(!require(mice)) paste("Install the ’mice’ package"))
suppressWarnings(if(!require(CTT)) paste("Install the ’CTT’ package"))
data <- as.matrix(data)
# ’out ’ object contains the results
# first layer corresponds to item difficulty and discrimination (2)
# second layer corresponds to the number of items in the matrix
# third layer corresponds to the number of methods (10 methods)
out <- array(NA, dim = c(2, ncol(data), 10),

dimnames = list(c("dif", "dis"), NULL,
c("CC", "Zero", "One", "TM", "IM", "PM", "Winer", "

Two-way", "CIM", "MI")))
# Methods
# Complete case analysis
out[,,1] <- ctt(data)
# Single imputation
out[,,2:9] <- single.impute(data)
# Multiple imputation
out[,,10] <- multiple.impute(data)
return(out)

}
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