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Abstract Simple mediation analysis is an increasingly popular statistical analysis in psychology

and in other social sciences. However, there is very few detailed account of the computationswithin

the model. Articles are more often focusing on explaining mediation analysis conceptually rather

than mathematically. Thus, the purpose of the current paper is to introduce the computational

modelling within simple mediation analysis accompanied with examples with R. Firstly, mediation

analysis will be described. Then, the method to simulate data in R (with standardized coefficients)

will be presented. Finally, the bootstrap method, the Sobel test and the Baron and Kenny test all

used to evaluate mediation (i.e., indirect effect) will be developed. The R code to implement the

computation presented is offered as well as a script to carry a power analysis and a complete ex-

ample.
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Introduction
Mediation analysis is an increasingly popular statistical

analysis in psychology and in other social sciences. It

seeks to explain the (biological, psychological, cognitive,

etc.) mechanism that underlies the relationship between

an independent variable and a dependent variable by the

inclusion of a third variable, i.e., the mediator variable. As

mediation analysis becomesmore andmore popular, there

is also an increasing body of scientific literature on the

subject. However, very few detail the computation within

the model. They are more often focusing on explaining

conceptually rather thanmathematically (see, for instance,

Kane & Ashbaugh, 2017). Herein, this paper will adopt the

latter approach to help the reader understand and apply

the modelling within mediation analysis.

The purpose of the current article is to introduce the

computational modelling within simple mediation analy-

sis. It is worth noting that only simple mediation (a sin-

gle mediator variable) will be presented, but that other

forms of mediation (parallel, serial or moderated), may

be understood by extending the presented formulas. The

first part consists of the description of mediation analysis.

Then, a method to simulate data (with standardized coef-

ficients) will be presented. Finally, the bootstrap method

used to evaluate mediation (i.e., indirect effect), the Baron

and Kenny test and the Sobel test will be developed. The R

code to implement the computation will be presented. For

the sake of simplicity and without lack of generality, the

presentation will mainly focus on standardized regression

coefficients. The computation to unstandardize data will

be presented. As a cautionary reminder, strong statistical

analyses do not supersede strong theoretical framework

and experimental design which are imperative when in-

vestigating potential mediating variable. Mediation analy-

sis is useful, but must be used properly.

Simple mediation analysis
Mediation analysis is a subset of path analysis in which the

researcher is interested in the relation between the inde-

pendent variable (x) on the dependent variable (y) through
the mediator variable (m). The path diagram correspond-
ing to a simple mediation model is presented in the top

panel of Figure 1. When there is nom, the existing relation
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between x and y is said to be the total effect, represented
by cxy . It corresponds to the regression coefficient between
x and y. The total effect can be divided into two other ef-
fects : the direct effect (c′) and the indirect effect (ab). De-
terministically, the indirect effect is the interpretation that

x causes variability to m, which then causes variability to
y. Mathematically speaking, the indirect effect is the prod-
uct of the paths between x and m, and m and y (or paths
a and b in top panel of Figure 1). The indirect effect is the
effect of interest in mediation analysis. The other effect is

the direct effect which is the relation remaining between

x and y when the effect of m has been partialled out. As

such, the more correct mathematical representation of c′

is cxy|m.
Mediation analysis can be seen as a regression anal-

ysis carried in two steps. The first step is to regress m
on x to obtain the parameter a. Then, the second step is
to regress y on x and m to obtain c′ and b respectively.
Finally, the product ab is tested to see if it is statistically
different from 0 which would support a mediating effect.

As it should become apparent, top panel of Figure 1, even

though it is widespread, is conceptually ambiguous and

can be misleading. For instance, a and c are simple coef-
ficients whereas b and c′ are partial coefficients. We will
thus more clearly defined each parameter in the media-

tion model. Bottom panel of Figure 1 depicts the media-

tion models with the more appropriately labelled parame-

ters. The path a is more appropriately the path axm which
represents the correlation between x and m. As already
pointed out for the relations between x and y, there is a
total effect, cxy , and the direct effect cxy|m. The parame-
ter b usually presented in mediation analysis is bmy|x, that

is, the relation between m and y when controlling for the
effect of x. There is also a parameter for the relation be-
tweenm and y, bmy , which exists but is neglected, because

it plays no role in the interpretation of mediation analysis.

Both are dependent from one another with the partial cor-

relation equation :

bmy = bmy|x
(
1− a2xm

)
+ axmcxy (1)

or consequently ;

bmy|x =
bmy − axmcxy
(1− a2xm)

(2)

Finally, there is the indirect effect ab, which is the product
of axm and bmy|x. The indirect effect, ab, and the direct
effect, cxy|m, sum to the total effect cxy . Hence mathemat-
ically, cxy = cxy|m + axm × bmy|x. In order to simulate

a mediation model, three parameters must be known and

defined because a, b and c are interrelated. To help illus-
trate, the next section explains how to generate data con-

taining mediation.

Generating data
Modelling of the data is presented using, as it was pre-

viously mentioned, standardized coefficients. Parameters

could be any value between -1 and 1. In mediation analy-

sis, there are two predictors (x andm) and two dependent
variables (m and y). In order to generate data, we must
first generate data for X (capital letters represent data).

LetX be a normally distributed variable with a mean of 0
and variance of 1, X ∼ N (0, 1), then generate M with is
computed by

M = axmX + em (3)

where em is the error in M (i.e., var(em) is the variance
of the residual). The structural equation modelling of the

mediation analysis (showing the error parameters) is pre-

sented in the bottom panel of Figure 1. Residual error has

a mean of 0 and, to keep variance to 1, the error variance,

em, is set to :
var(em) = 1− a2xm (4)

so thatM is normally distributed,M ∼ N (0, 1). Because,
the variance is additive, to get a variance equals to 1, the

variance of other sources have to be subtracted. Finally, Y
is generated in the following manner

Y = cxy|mX + bmy|xM + sqrt(ey) (5)

which corresponds to the second regression analysis ofme-

diation analysis. The variance of the error term of Y , ey , is
computed by

var (ey) = 1− (c2xy|m + b2my|x + 2axmcxy|mbmy|x) (6)

so that Y follows a normal distribution, Y ∼ N (0, 1). The
first two terms refer to the coefficients in equation 5 and

the last one refers to the covariance between x andm (that
is, the sum of two correlated variables is the sum of their

variance plus twice their covariance; Howell, 2012). Equa-

tion 6 comes from the fact that the sum of two normally

distributed correlated random variables is

var (x+m) = var (x) + var (m) + 2cov (xm) (7)

Listing 1 shows the code to implement the generation

of data in R with axm = .50, bmy|x = .60, cxy = .000.
From equation 1, we can compute bmy which is .45. The

mediation model is presented in Figure 2. The resulting

variance-covariance matrix is showed in Table 1. The co-

variance matrix is approximately the same as a correla-

tion matrix in this case. Since data contain some error, it

is only approximately the same. Given that the sample size

was 106, results are strongly accurate. As such, the above
values were true to the population parameters. It is worth

noting that the variance of each variable is very close to

1.000 as expected from equations 3 to 6.
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Figure 1 Illustration of mediation analysis. Top panel depicts the usual diagram describing mediation. Bottom panel

shows the parameters with a more appropriate notation which is used throughout the current paper. It depicts a media-

tion analysis from a structural equation modelling perspective as it includes error parameters.

Table 1 Variance-Covariance matrix of simulated data
a

Variables X M Y
X 1.001

M .495 1.002

Y -.006 0.451 1.003

Note. a obtained with the function var()

To unstandardized data, if needed, the data contained

in a standardized variable (X , M , or Y ) after being com-
putedmust bemultiplied by the desired standard deviation

(square root of the variance, σ2
) and the mean, µ, has to be

added, such as, for the variable x :

Xunstd = σXXstd + µX (8)

in which xunstdrepresents unstandardized data and

xstdrefers to standardized data. One could also use the
code in Listing 1 to generate unstandardized data by spec-

ifying means and standard deviations.

Hypothesis testing
There are three ways to determine if ab is statistically sig-
nificant. The first is the Baron and Kenny (1986) method,

which is a three-step regression analysis. The first step is

to check if the relation between x and y, that is cxy , is sig-
nificant, meaning there is a relation to be potentially ex-

plained by a mediator. The second step is to check if axm is
significant, or testing if there is a relation between the me-

diator and the predictor. Finally, the last step is to regress

y on x andm to obtain bmy|x and cxy|m. If bmy|x is signif-

icant then the method suggests that a mediation process

occurred. If cxy|m no longer is significant (compared to

cxy), the mediation is said to be complete, otherwise it is
deemed partially mediated. We offer a R script to carry

out the Baron and Kenny method in Listing 2. The Baron

and Kenny method has been left out of favor because of its

inappropriate assumptions, mostly on whether the hierar-
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Listing 1 Code to generate data. The figure shows the R code to generate data according to a simple mediation model

with standardized parameters axm, bmy|x and cxy defined.

GenerateMediationData <- function(n = 1000, a = .50, b =.60, c =.00, mean.x = 0,
sd.x = 1, mean.m = 0, sd.m = 1, mean.y = 0, sd.y = 1) {
# a is a_xm
# b is b_my|x
# c is c_xy
# mean.x, sd.x , mean.m, sd.m, mean.y and sd.y will create unstandardized data according to the specified
# means and standard deviations
if(missing(a) | missing(b) | missing(c)){
stop("One or more arguments are missing")

}
ab <- a*b
cp <- c-ab # cp = c’ = c_xy|m
ey <- 1-(cp^2 +b^2 + 2*a*cp*b)
if ((ey < 0) | (ey > 1)){print("WARNING : Sum of square of coefficients is too
high to generate standardized data")}
# Generate data
x <- rnorm(n, mean = 0, sd = 1)
em <- sqrt(1-a^2)
m <- a*x + em*rnorm(n, mean = 0, sd = 1)
ey2 <- sqrt(ey)
y <- cp*x + b*m + ey2*rnorm(n, mean = 0, sd = 1)
x <- x * sd.x + mean.x
m <- m * sd.m + mean.m
y <- y * sd.y + mean.y
data <- as.data.frame(cbind(x, m, y))
return(data)

}

chical steps have to be followed, and the rise of newer and

more powerful statistical techniques (Hayes, 2013).

The second test to assess mediation is the Sobel test,

which is a z-distributed statistic computed from the indi-
rect effect as

z =
axmbmy|x

SE
(9)

where SE is the standard error of the indirect effect com-
puted with the following equation :

SE =

√(
a2xms

2
bmy|x

+ b2my|xs
2
axm

)
(10)

and where s2i represents the variance of the path i, i =
axm, bmx|y. Listing 3 shows the R code to implement the

Sobel test. This test has the assumption that the product of

two correlation coefficients is normally distributed, which

is not always true in practice. Consequently, it is less pow-

erful than the last method, which is the bootstrap method,

emphasized by Hayes (2013). The bootstraps test resam-

ples data in order to build a 95% confidence interval (or

any percentage actually) of the indirect effect and test if it

entails the null hypothesis (i.e., the indirect effect is 0). As it

is a bootstrapmethod, it is free from the statistical distribu-

tion assumption (more robustness) compared to the Sobel

test, because even if data is normally distributed, this is not

necessarily true for the indirect effect, and is more power-

ful (less type II error) than the Baron and Kenny test and

the Sobel test (Preacher, Rucker, & Hayes, 2007).

The bootstrap method (Efron & Tibshirani, 1979) is

a computer-based method which treats the sample as a

pseudo-population (that is, the sample distributions re-

flect the population distribution). It randomly selects with

replacement subjects of the original sample in order to

generate another sample and compute the desired statis-

tics. Then, it repeatedly does this last step a tremendous

amount of time (for instance, a general recommendation

is over 5 000) in order to create an empirical sampling dis-

tribution of the desired statistics. Confidence intervals can

be computed from the sampling distribution and inference

regarding hypothesis testing can be done. Bootstrapping

is easily implemented in R. The bias-corrected and accel-
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Listing 2 Code for Baron & Kenny Test.

BaronKenny <- function(x, m, y, data, alpha = 0.05) {
# x is the column name of the predictor in data
# m is the column name of the mediator in data
# y is the column name of the dependent variable in data
# data is a data.frame or a matrix that contain columns with the names of x , y and m.
# If x , m or y are missing , data [,1] will be used for x , data [,2] will be
# used for m and data [,3] will be used for y.
if(missing(data)) {
stop("There’s no data")

}

if(is.data.frame(data) != TRUE & is.matrix(data)) {
d <- as.data.frame(data)

} else if (is.data.frame(data) != TRUE & is.matrix(data) != TRUE) {
stop(’"data" should be a matrix or a data.frame’)

}

if(missing(x)){x <- data[,1]} else if (is.numeric(x) == TRUE) {x <- data[,x]}
else {x <- data[,match(x, table = colnames(data))]}

if(missing(m)){m <- data[,1]} else if (is.numeric(m) == TRUE) {m <- data[,m]}
else {m <- data[,match(m, table = colnames(data))]}

if(missing(y)){y <- data[,1]} else if (is.numeric(y) == TRUE) {y <- data[,y]}
else {y <- data[,match(y, table = colnames(data))]}

Sig <- FALSE
out <- ’No Mediation’

#regression 1
step1 <- lm(formula = y ~ x)
pC <- summary(step1)$coefficients[2,4]
if (pC <= alpha){

#regression 2
step2 <- lm(formula = m ~ x)
pA <- summary(step2)$coefficients[2,4]
if (pA <= alpha){

#regression 3
step3 <- lm(formula = y ~ x + m)
pB <- summary(step3)$coefficients[3,4]
Sig <- (pB <= alpha)
if (Sig){

if (summary(step3)$coefficients[2,4] <= alpha){
out <- ’This is a partial mediation’} else {
out <- ’This is a complete mediation’}

}
}

}
return(list(sig=Sig, conclusion=out))

}
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Figure 2 Illustration of the mediation for the example. The population parameters are also used for the power analysis.

erated (BCa) bootstrap interval is a method introduced to

correct bias and skewness in the distribution of bootstrap

estimates. Listing 4 shows the code to apply the bootstrap

method to mediation analysis. It also uses an additional

function to compute the indirect effect for the boot func-

tion that needs to be called in the primary function.

Power analysis
It might be also interesting to put the previous tutorial

into practice. For instance, let us consider a power anal-

ysis to evaluate the type II error rate of BootTest(),
SolbelTest() and BaronKenny() functions. Power
refers to the probability to find a significant result when

the null hypothesis is false (there is an indirect effect). Fail-

ure to find a significant result is a type II error. Listings 5

and 6 shows the code to implement a power analysis. The

purpose of power analysis is to simulate an experiment

with known and non-null population parameters, check

whether the result is significant or not, and redo the above

a tremendous amount of times. There are two main com-

ponents in the script: the generation of data (Listing 1) and

the indirect effect test (Listings 2 to 4). The outcome of the

function is the power of the mediation test given a sample

size n.
To conclude this section, three power analyses were

carried out following the parameters of the previous exam-

ple with a sample size of 40. Table 2 shows the results of

the power analysis of the three tests. The Baron and Kenny

test had a poor performance (power of .029), because of

the really low (null) total effect which is a tricky scenario

for that test. The Sobel test had a power of 0.606. Finally,

the bootstrap method obtained a power of 0.786. To sum

up, the results demonstrate the lack of power of the Baron

and Kenny test and the Sobel test, and the more powerful

estimation of the BootTest.

A complete example
In order to illustrate mediation analysis, a complete exam-

ple will be carried. Listing 7 shows the complete script to

run the example. Four hundred twenty-nine people were

asked to complete the Beck Depression Inventory (BDI;

Beck, Steer, & Brown, 1996) and a short survey that in-

cluded questions about the average weekly alcoholic bev-

erage intake (further referenced as alcohol intake) and

number of weekly positive social interaction (further ref-

erenced as positive social interaction). The BDI is a short

self-report questionnaire used to assess intensity of depres-

sion. Themain hypothesis is the effect of the alcohol intake

(the independent variable x) on depression (the dependent
variable y) will be partially mediated by positive social in-
teraction (themediatorm). Table 3 presents the population
parameters of the example.

Table 4 shows the descriptive analysis and histogram

with density curve (see Figure 3) for the three variables

showed a normal distribution of data. These informa-

tion can be found with the of the psych package (Rev-

elle, 2017). Tables 5 presents the variance-covariance ma-

trix with function cov() and correlation matrix with the
cor() function. It is worth to note that the correlation
matrix summarizes approximately the expected relations

given by the population parameters. Table 6 depicts the

first step of the mediation analysis conducted by testing a

regression model of alcohol intake on positive social in-

teraction (using the function lm() in R) with a signifi-
cant model, F (1, 427) = 67.72, p < .001, and a signif-
icant effect of alcoholic intake over positive social inter-

action, β = 0.189, p < .001. Step two tests the regres-
sion model of alcohol intake and positive social interac-

tion on depression (see table 6) found a significant model,

F (2, 426) = 38.08, p < .001, and significant effects of al-
coholic intake, β = 0.824, p < .001, and positive social
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Table 2 Summary of power analyses

Indirect test Power

Baron & Kenny test 0.029

Sobel test 0.606

Bootstrap test 0.786

Table 3 Population parameters of the complete example

Parameter Value Equation

axm 0.400 Fixed

bmy|x -0.350 Fixed
a

bmy 0.247 bmy = bmy|x
(
1− a2xm

)
+ axmcxy

cxy 0.250 Fixed
a

cxy|m 0.390 cxy − ab
ab -0.140 axm × bmy|x
n 429 -

Note. a because their counterpart (bmy and cxy|m) were fixed first.

interaction, β = −1.629, p < .001, over BDI score.
To test for the significant mediation effect, the three

methods are used with the unstandardized data in order

to demonstrate the non-necessity of using standardized

dataset. Table 7 summarizes the results. All tests yield the

same outcome (regardless whether data were standard-

ized or not). The Baron & Kenny test suggests a significant

partial mediation. The Sobel test shows a significant me-

diation, z = −5.445, p < 0.001, for both dataset. Finally,
the bootstrap BCa confidence intervals had a lower limit of

1.043 and an upper limit of 1.754. The confidence inter-

val does not include 0 and, therefore, the indirect effect is

deemed significant. We could interpret the results as the

number of weekly positive social interaction partially me-

diate the effect of weekly alcoholic beverage intake on de-

pression by reducing the later scores, but these data were

generated using the code provided in this article.

Discussion
The purpose of the current paper was to introduce the

computation within mediation analysis. Firstly, we de-

tailed the parameters in the conceptual diagram and la-

belled them appropriately. We then showed some exam-

ples using R and gave the code for the readers to imple-

ment it themselves. We hope this work will encourage sta-

tistical research in the analysis of mediation models and

help the reader to better understand them.

Authors’ note
We would like to thank Denis Cousineau and an anony-

mous reviewer for their commentaries on an earlier ver-

sion of this manuscript.
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Table 7 Empirical results

Baron & Kenny

Outcome Partial mediation

Sobel test Values

z −5.445
p < 0.001

Bootstrap Lower ab Upper

95% BCa CI 1.043 1.408 1.754

Listing 3 Code for Sobel test.

SobelTest <- function(x, y, m, data, alpha = 0.05) {
# x is the column name or number of the predictor in data
# m is the column name or number of the mediator in data
# y is the column name or number of the dependent variable in data
# data is a data.frame or a matrix that contain columns with the names of x , y and m.
# If x , m or y are missing , data [,1] will be used for x , data [,2] will be
# used for m and data [,3] will be used for y.
if(missing(data)) {
stop("There’s no data")

}

if(is.data.frame(data) != TRUE & is.matrix(data)) {
d <- as.data.frame(data)

} else if (is.data.frame(data) != TRUE & is.matrix(data) != TRUE) {
stop(’"data" should be a matrix or a data.frame’)

}

if(missing(x)){x <- data[,1]} else if (is.numeric(x) == TRUE) {x <- data[,x]}
else {x <- data[,match(x, table = colnames(data))]}

if(missing(m)){m <- data[,1]} else if (is.numeric(m) == TRUE) {m <- data[,m]}
else {m <- data[,match(m, table = colnames(data))]}

if(missing(y)){y <- data[,1]} else if (is.numeric(y) == TRUE) {y <- data[,y]}
else {y <- data[,match(y, table = colnames(data))]}

step1 <- lm(formula = m ~ x)
step2 <- lm(formula = y ~ x + m)

a <- step1$coefficient[2]
SEa <- coef(summary(step1))[2, 2]
b <- step2$coefficient[3]
SEb <- coef(summary(step2))[3, 2]
SE <- sqrt(a^2*SEb^2 + b^2*SEa^2)
z <- a*b/SE
p <- 1-pnorm(z)
sig <- qnorm(1-alpha/2) < abs(z)
return(list(z = z, p = p, sig = sig))

}
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Listing 4 Code for the bootstrap method. This code requires the function provided in Listing 5

BootTest <- function(x, y, m, data, alpha = 0.05, R = 5000) {
# Warning : This function can be excessively slow with high replication values and high sample sizes
# x is the column name or number of the predictor in data
# m is the column name or number of the mediator in data
# y is the column name or number of the dependent variable in data
# data is a data.frame or a matrix that contain columns with the names pf x , y and m.
# If x , m or y are missing , data [,1] will be used for x , data [,2] will be
# used for m and data [,3] will be used for y.
# R is the number of replication
if(missing(data)) {
stop("There’s no data")

}

if(is.data.frame(data) != TRUE & is.matrix(data)) {
d <- as.data.frame(data)

} else if (is.data.frame(data) != TRUE & is.matrix(data) != TRUE) {
stop(’"data" should be a matrix or a data.frame’)

}

if(missing(x)){x <- data[,1]} else if (is.numeric(x) == TRUE) {x <- data[,x]}
else {x <- data[,match(x, table = colnames(data))]}

if(missing(m)){m <- data[,1]} else if (is.numeric(m) == TRUE) {m <- data[,m]}
else {m <- data[,match(m, table = colnames(data))]}

if(missing(y)){y <- data[,1]} else if (is.numeric(y) == TRUE) {y <- data[,y]}
else {y <- data[,match(y, table = colnames(data))]}

d <- as.matrix(cbind(x, m, y))

# Compute the indirect effect for the Bca.boot function
indirect <- function(data, indice) {
d <- data[indice,]
b <- solve(t(d[,1:2])%*%d[,1:2])%*%t(d[,1:2])%*%d[,3]
a <- solve(t(d[,1])%*%d[,1])%*%t(d[,1])%*%d[,2]
ab <- a*b[2]
return(ab)

}

res <- BCa.boot(data = d, stat = indirect, R = R)
sig <- 0 < prod(sign(res$BCaCI))
return(list(ab = round(res$estimate,3), CI = round(res$BCaCI, 3), sig = sig))

}
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Listing 5 Code for the bootstrap method (contd.).

# Bootstraping function with the bias corrected and accelerated boostrap interval (BCa)
BCa.boot = function(data, stat, R = 5000, alpha=0.05){
# data is the data to bootstrap # stat is the function to bootstrap
# R is the number of replication # alpha is significance threshold
data <- as.matrix(data)
n <- dim(data)[1]
N <- 1:n
res <- rep(0,R)
zj <- rep(0,n)
est <- stat(data,indice=N)

M <- max(R,n)
for (i in 1:M){
if(i<=R){
id <- sample(n, replace = TRUE)
res[i] <- stat(data=data,indice=id)

}
if(i<=n){

J <- N[1:(n-1)]
zj[i] <- stat(data[-i,],J)

}
}
z0 <- qnorm(sum(res < rep(est,R))/R)
zc <- qnorm(c(alpha/2,1-alpha/2))
L <- mean(zj)-zj
a <- sum(L^3)/(6*sum(L^2)^1.5)
adj.alpha <- pnorm(z0+zc)/(1-a*(z0+zc))
limits <- quantile(res,adj.alpha)
CI <- c(limits[[1]], limits[[2]])
return(list(estimate = est, BCa=limits, BCaCI = CI))

}

Listing 6 General function for power analysis of indirect effect tests.

PowerMediation <- function(MediationTest, a = .25, b = .6, c = .0, n = 40, R =
5000, alpha = 0.05){
# Warning : This function can be excessively slow with high replication values and high sample sizes ,
# especially with bootstrap
# MediationTest = SobelTest.R or BaronKenny.R or BootTest.R or any function returning an output
# labelled sig indicating if the result is significant (TRUE or FALSE)
SIG <- 0
for(j in 1:R){
data <- GenerateMediationData(n=n, a=a, b=b, c=c)
RES <- MediationTest(data=data, alpha=alpha)
SIG <- RES$sig + SIG

}
Power <- round(SIG/R,3)
return(list(Power=Power))

}
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Listing 7 Script to run the complete example. Alcool refers to Alcoholic drinks per week, PosSocial, to Positive
social interactions, and BDI, to Beck Depression Inventory (t score)

#Complete example
set.seed(20180201)
Example <- GenerateMediationData(n = 429, a = .40, b = -0.35, c = .25, mean.x = 10,

sd.x = 4, mean.m = 5, sd.m = 2, mean.y = 50, sd.y = 10)
colnames(Example) <- c("Alcool", "PosSocial", "BDI")

Example <- ceiling(Example)
Example$Alcool <- ifelse(Example$Alcool < 0, 0, Example$Alcool)
Example$PosSocial <- ifelse(Example$PosSocial < 0, 0, Example$PosSocial)

require(psych)
describe(Example)

# Histograms 1
h.al <-hist(Example$Alcool, breaks=10, col="white", xlab="Alcoholic drinks / week")
xfit.al <-seq(min(Example$Alcool),max(Example$Alcool),length=100)
yfit.al <-dnorm(xfit.al,mean=mean(Example$Alcool),sd=sd(Example$Alcool))
yfit.al <- yfit.al*diff(h.al$mids[1:2])*length(Example$Alcool)
lines(xfit.al, yfit.al, col="black", lwd=2)
# Histograms 2
h.PS <-hist(Example$PosSocial, breaks=10, col="white", xlab= "Social int/ion")
xfit.PS <-seq(min(Example$PosSocial),max(Example$PosSocial),length=100)
yfit.PS <-dnorm(xfit.PS,mean=mean(Example$PosSocial),sd=sd(Example$PosSocial))
yfit.PS <- yfit.PS*diff(h.PS$mids[1:2])*length(Example$Posocial)
lines(xfit.PS, yfit.PS, col="black", lwd=2)
# Histograms 3
h.BDI <-hist(Example$BDI, breaks=10, col="white", ylim = c(0,100), xlab= "BDI")
xfit.BDI <-seq(min(Example$BDI),max(Example$BDI),length=100)
yfit.BDI <-dnorm(xfit.BDI,mean=mean(Example$BDI),sd=sd(Example$BDI))
yfit.BDI <- yfit.BDI*diff(h.BDI$mids[1:2])*length(Example$BDI)
lines(xfit.BDI, yfit.BDI, col="black", lwd=2)

# Covariance and correlation matrices
cov(Example)
cor(Example)

#Regression step 1
Results1 = lm(Example[,2]~Example[,1])
summary(Results1)
#Regression step 2
Results2 = lm(Example[,3]~Example[,1]+Example[,2])
summary(Results2)

# Baron and Kenny with default alpha = 0.05
BaronKenny(x = "Alcool", m = "PosSocial", y = "BDI", data = Example)
# Sobel test with default alpha = 0.05
SobelTest(x = "Alcool", m = "PosSocial", y = "BDI", data = Example)
# Bootstrap with default alpha = 0.05
set.seed(20180206)
BootTest(x = "Alcool", m = "PosSocial", y = "BDI", data = Example)
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