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ABSTRACT
The broken-stick (BS) is a popular stopping rule in ecology to determine
the number of meaningful components of principal component analysis.
However, its properties have not been systematically investigated. The pur-
pose of the current study is to evaluate its ability to detect the correct
dimensionality in a data set and whether it tends to over- or underestimate
it. A Monte Carlo protocol was carried out. Two main correlation matri-
ces deemed usual in practice were used with three levels of correlation
(0, 0.10 and 0.30) between components (generating oblique structure) and
with different sample sizes. Analyses of the population correlation matri-
ces indicated that, for extremely large sample sizes, the BS method could
be correct for only one of the six simulated structure. It actually failed to
identify the correct dimensionality half the timewith orthogonal structures
and did even worse with some oblique ones. In harder conditions, results
show that the power of the BS decreases as sample size increases: weaken-
ing its usefulness in practice. Since the BSmethod seemsunlikely to identify
the underlying dimensionality of the data, and given that better stopping
rules exist it appears as a poor choice when carrying principal component
analysis.
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1. Introduction

The broken-stick (BS) [1]method is one ofmany stopping rules to determine the number ofmeaning-
ful components of principal component analysis (PCA). This model came from studies concerned by
the abundance of species among habitats andwhether their distribution is structured or random.[2,3]
Because the BS model is deeply rooted in the ecological literature and has already been implemented
in many R packages, it is widely used by ecologists and biologists.

To understand the BS method, consider that if one breaks a stick into p pieces (after randomly
selecting p−1 breaking points), and sorts them in decreasing length, the expected length, bk, of the
kth longest piece is bk = ∑p

i=k (1/i). This equation defines the BS distribution. Frontier [1] suggested
that these decreasing theoreticalmeans, bk, can be used as critical values to decide howmany principal
components contain meaningful information. It has to be used for PCA on a correlation matrix in
which p is the number of variables. According to this rule, the components to retain are the first ones
with eigenvalues all higher than the corresponding bk.

The BS has previously been studied in comparison to other stopping rules. It was found to
be accurate for salient components (high component saturation) in combination with orthogonal
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structures.[4,5] That is, component structures for which identifying the correct number of meaning-
ful axes is easy for almost any rule. In order to avoid doubts on their validity, stopping rules should be
assessed against simulations with hard conditions, in which they could theoretically fail, rather than
mere simple ones in which they are likely to succeed. However, no systematic analysis of BS has been
carried on complex correlation structures. Since it is widely used, it is necessary to further verify the
extent to which this stopping rule is efficient. Thus the purpose of the current study is to evaluate
whether the BS tends to over- or underestimate the number of components (accuracy) and its ability
to detect the correct number of components (power) regarding sample size and correlations between
components.

2. Simulationmethod

A Monte Carlo protocol was carried out. To evaluate the influence of the component structure, two
initial correlation matrices were borrowed from Peres-Neto et al. [5] (their matrices 7 and 9 cor-
responding to matrices 2 and 1 herein), which they considered as the representative of studies in
ecology. Figure 1 depicts their component structure. Centre areas (0.80, 0.50, and 0.30) represent the
correlation between variables within components. Off-diagonal areas correspond to the level of corre-
lations between components (values of 0, 0.10 and 0.30, but left empty here). As such, there are three
different settings for each matrix giving a total six component structure. Each matrix is composed of
nine variables. Matrix 1 is composed of three components each expressed in three variables. Matrix
2 is composed of three components, respectively, expressed in four, three and two variables. Matrices
1 and 2 both contained three components and are used to assess the ability of the BS to detect their
correct number and, when it errs, whether it tends to over- or underestimate. The amount of variables
was not varied and remained nine across all conditions, because increasing the number of variables
in a correlation matrix while maintaining the same number of components decreases the difficulty of
finding the correct number of axes by cumulating more variance for each component.

In order to increase the difficulty of thematrices, correlations between variables depending on dif-
ferent underlying components were added (0.10 and 0.30) to create oblique structures that transfer
variance from the later to the earlier underlying components.[5] Obliqueness was implemented by
changing outside component areas (off-diagonal areas of the matrices shown in Figure 1) to the spec-
ified level of correlations. Finally, to evaluate the influence of sample size, we systematically varied
the number of objects (or subjects) to specified values (8, 16, 32, 64, 128 256, 512, 1024, and 2048)
chosen to represent a variety of fields and studies in ecology and psychology (approximation of the
current values have been used by Peres-Neto et al. [5] and Beauducel [6]).

Figure 1. Visual representation of correlation matrices. Centre areas (0.80, 0.50 and 0.30) represent the correlation between vari-
ables within components (variables sharing the same axe). The size of squares correspond to the proportion of variables per
component, that is, three variables by component for matrix 1, and four, three and two variables for matrix 2. Off-diagonal areas
correspond to the level of correlations between components (values of 0, 0.10 and 0.30, but left empty here). There is an implicit
diagonal of unities in matrices 1 and 2. Inspired by Peres-Neto et al. [5].
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Simulations were carried out inMatlab (R2012b) on aWindow® 7 operating system. The computer
had 2.53GHz Intel® core processor, 4GB of RAM, and 450GB of hard disk space. The numerical
simulation was as follow:

(1) Generate, with the functionmvnrnd, an artificial data set from amultivariate normal distribution
with expected nullmeans and expected covariance specified by the population correlationmatrix
and with a specified sample size.

(2) Carry a PCA on the data sets and record the eigenvalues.
(3) Compare the consecutive eigenvalues to the corresponding BS critical values, stopping at k, just

before the first eigenvalue lower than the criterion.
(4) Record k as the identified number of components.
(5) Repeat steps 1, 2, 3 and 4 a total of 10,000 times.
(6) Compute the average difference between the number of detected and true components (accu-

racy) and the frequency with which the correct number was identified (power).
(7) Repeat the simulations for the two correlation matrices, the three levels of correlations between

components and the nine levels of sample size.

3. Results

3.1. Population analysis

Table 1 gives the population component eigenvalues (i.e. for the specified ideal correlation matrix)
along with the BS critical values for nine variables. Apart from the sampling variation that depends
on sample size, the level of difficulty in estimating the number of dimensions depends on whether the
first three population eigenvalues are all higher (easier situation) or some are lower (harder situation)
than the critical values specified by the BS. Population component eigenvalues below the BS criterion
(making the correct dimensionality harder to identify) are in bold face.

One can see from Table 1 that the dimensionality of matrix 1 with an orthogonal and an oblique
structure of 0.30 will actually be harder to identify than the oblique structure of 0.10. In the former
case, the first eigenvalue is expected to be smaller than its corresponding BS criterion and, in the latter
case, both the second and third ones are so. All structures of matrix 2 produce expected eigenvalues
below the BS criterion for the second and third components. It is worth noting that, as the correlations
between components increase, the first eigenvalue accounts more variance whereas latter ones tend
to decrease.

Given the expected (population) eigenvalues presented in Table 1, one should anticipate that the
BS method will poorly detect the correct dimensionality in most cases. Good BS performance will
depend on ‘favourable’ sampling error, that is, the opportunistic characteristic of PCA to summarize

Table 1. The critical values of the BS distribution followed by the first five theoretical eigenvalues of the correlation matrices as a
function of the correlations between components (corr. comp.).

Components

I II III IV V

BS critical values: 2.83 1.83 1.33 1.00 0.75
Matrix corr. comp.
1 0.00 2.60 2.00 1.60 0.70 0.70

0.10 2.85 1.93 1.42 0.70 0.70
0.30 3.93 1.41 0.85 0.70 0.70

2 0.00 3.40 1.79 1.30 0.70 0.50
0.10 3.52 1.78 1.20 0.70 0.50
0.30 4.31 1.45 0.80 0.70 0.50

Note: Population component eigenvalues below the BS criterion are in bold face.
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2408 P.-O. CARON

meaningful information as well as sampling errors (accidently correlated) in the earlier axes. Never-
theless, the main expectation is that, as sample variation decreases, the BS should be more likely to
miss meaningful axes.

3.2. Simulation analysis

Figure 2 depicts the relation between the ability of the BS to detect the correct number of component
and sample size levels. It shows that the BS generally did not find the correct number of components
even half the time. For all five situations where at least one of the first three population eigenval-
ues was below the critical BS level, success decreases as sample size increased (i.e. as sampling error
decreased). The BS success for the remaining condition at first decreased with increasing sample
size up to 64 and then increased, reaching only 65% at N = 2048. Compared to the conventionally
required power of 0.80, the BS had, at its best, a weak ability to identify the correct number of com-
ponents. For the easiest condition, Caron and Achim [7] have found that the BS reached a power of
0.80 (inside a confidence interval of 95%) at N = 5605.

As the population analysis pointed out for harder conditions, the power decreases as sample size
becomes large. The exception is the second matrix with correlations of 0.10 between components.
This is the only case where the first three theoretical eigenvalues are higher than the expected BS
distribution. Adding a small oblique structure leads the first component to be easier to identify com-
pared to the orthogonal structure, while the next two expected eigenvalues decreased but remained
above their respective criterion. In all other cases, increasing sample size did decrease the ability to
detect the correct number of components.

Figure 2. The ability of the BS to identify the correct number of components (power) according to sample size (abscissa) and
correlations between components (lines shape). Upper and bottom panels depict the results for matrices 1 and 2, respectively.
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Figure 3. The accuracy (average difference between the number of detected and true components) of the BS according to sample
size (abscissa) and correlations between components (lines shape). Upper and bottom panels depict the results for the matrices 1
and 2, respectively.

Figure 3 shows that, at every sample size level, the BS underestimates the number of components
for all six component structures. It should be noted that a sample size of 8 is lower than the number of
variables. At this point, one should already be concerned by the variables-to-sample-size ratio regard-
less of the stopping rule. Still, it is the level at which the BS, in five out six conditions, had its most
accurate performances, the exception being the simpler case pointed out by the population analysis.

4. Discussion

The purpose of the current studywas to assess whether the BSmethod tends to over- or underestimate
the number of components and its ability to detect the correct number of components, especially for
representative but not so clear-cut situations. According to the correlation matrices used herein, the
current results show that the BS will miss the component structure, if there is such in the data set,
more than half the times at best. In harder cases, it will fail to identify the right number of components
and will underestimate their amount. The population eigenvalue analysis showed that as sample size
increases, the power and accuracy of BS is expected to decrease when an eigenvalue is below the crite-
rion. This was merely due to the decreasing influence of sampling error, that is, empirical eigenvalues
getting closer to population eigenvalues, which lead them to be harder to identify.

Onemight suggest that the number of conditions is actually limited.However, expanding the num-
ber of settings (and more specifically hard ones) would not change the current conclusions. Knowing
population eigenvalues a priori, and whether they are over or below the BS criterion, will always
lead to the expected outcome. Either true eigenvalues are over the BS criterion, in which case this
is an easy setting, or they are below the criterion, which is an unsolvable setting for the BS. If a sin-
gle eigenvalue of a true component is below the criterion, then whatever the correlation matrix is, as
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2410 P.-O. CARON

sample size increases, less the stopping rule can detect the correct number of components to retain. In
other terms, adding harder scenarios would not change the outcome of the current study: the BS will
always lack power if a component’s eigenvalue is below the threshold. Because the stopping rule seems
unlikely to give correct results in difficult situations and given that better methods already exist,[5]
we must recommend to avoid it as a means to identify the number of meaningful components from
PCA. Other methods to evaluate the dimensionality of data sets should be considered instead.
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