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Abstract 

Extracting and analyzing outdoor humans’ activities represent a strong support for several applications fields, ranging from traffic 

management to marketing and social studies. Mobile users take their devices with them everywhere which leads to an increasing 

availability of persons’ traces used to recognize their activities. However, mobile environment is distinguished from one to another 

by its resources limitations. In this paper, we present a novel hybrid approach that combines activity recognition and prediction 

algorithms in order to online recognize users’ outdoor activities without draining the mobile resources. Our approach minimizes 

activity computations by wisely reducing the search frequency of activities, we demonstrate that our proposal is capable of reducing 

the battery consumption up to 60% while maintaining the same accuracy as its similar. 

© 2016 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Mobile wearable tracking devices, e.g., phones and navigation systems, sense the movement of persons represented 

by positioning records that capture geo-location, time, and a number of other attributes. Sensing is based on a collection 

of information related to the achieved activity from raw sensor data (GPS, Wi-Fi, RFID, Bluetooth signals, 
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microphone, camera, accelerometers, magnetometers, etc.), these data are used to extract a pertinent information about 

the current activity and users’ visited places [10]. As such, the mobile phone is no longer only a communication device, 

but also a powerful environmental sensing unit that can monitor a user's ambient context, both unobtrusively and in 

real time. This context awareness property makes this field a major piece that provides services to a range of application 

fields such as real-time traffic monitoring [8], social networking and cognitive assistance. However, the limited battery 

capacity of mobile devices represents a big hurdle for context detection. The embedded sensors in the mobile devices 

are major sources of power consumption. Hence, excessive power consumption may become a major obstacle to 

broader acceptance context-aware mobile applications, no matter how useful the service may be. 

Activity recognition services that extract users visited places are supposed to operate 24 hours a day, 7 days a week.  

Searching for users visited places on every moment, like done in the majority of related works, leads to an excessive 

power consumption that drains mobile’s battery rapidly. We will propose in this paper a novel approach that minimizes 

power consumption by reducing the calculation frequency of activities. The proposed algorithm learns users’ habits 

and chooses an appropriate time to search for their performed activities. For instance, suppose that the user has the 

habit of going from home to work every morning, theoretically, there is no need to process the user movements on 

every time he goes from home to work since it represents useless calculations.  

In this paper, we will demonstrate an innovative battery-friendly method that recognizes accurately users’ activities 

without draining the battery of their phones, a method that succeed in detecting incrementally users‘ visited places 

without any previously fixed threshold, we will also prove that our proposal reduces outstandingly the battery 

consumption when keeping a same accuracy rate as its similar.     

The following sections detail our contribution: Section 2 reviews related works; Section 3 presents our approach in 

terms of three major components, i.e. activity recognition, prediction and verification; Section 4 describes the 

experimentation by highlighting two dimensions: accuracy and power saving. Finally, conclusion as well as the 

expected contributions, are summarized in Section 5. 

2. Related works 

Research community’s efforts are increasing day by day to carry out efficient mobile activity recognition systems. 

CityVoyager presented in [4] is a recommendation system designed for mobile devices, which recommends shops to 

users based on data analyzed from their past location history. Authors track the visited shops by the loss of the GPS 

signal, though, it is known that GPS signals frequently become lost in urban areas due to high buildings or due to some 

special weather conditions, these situations increase the possibilities of false detections. Furthermore, authors claim to 

propose an approach designed for mobile phones, however, there is no adaptation noted to support this demanding 

environment, for instance, finding frequented shops requires a heavy manipulation of the historical records of users’ 

visited shops, authors seem to neglect the limited mobile’s resources since there is no support for the limited battery 

life and there is no effort perceived to online detect and find the frequent shops.   

In [3], an algorithm is proposed to associate each stop in a user’s trajectory to a list of possible visited places and 

each of these places is associated to a probability, then, depending on the kinds of activities associated with the 

identified place, the trajectory is classified into a probable trajectory behaviour. This work uses numerous thresholds 

that are set manually like the minimum duration of an activity, nevertheless, since these parameters may depend on 

user profiles, this work may be ineffective on large datasets that contain several profiles. 

While developing a rich body of work for managing moving objects, the research community has shown little 

interest to the limited resources of smartphones, for instance, nearly all approaches repeat the same activity research 

process for every daily activity which leads to an excessive consumption of phones’ batteries. 

Moreover, nearly all outdoor activity recognition approaches use a fixed activity’s minimum duration threshold 

that represents the minimum time that the user has to spend in the POI (place of interest) to be declared as visited 

place. This threshold prevents false activity detection like traffic jams. However, previously fixing this threshold will 

increase error probability, because when set to a small value, it will increase the number of false activities like passing 

by a POI, and setting it to a high value, will miss detect some short-dwell activities like buying cigarettes at the 

convenience store. Consequently, we will be (to the best of our knowledge) the first to propose not only a dynamic 

approach that learns the activity’s minimum duration threshold automatically, but to propose a specific threshold for 

each POI too. Our approach will assign to each POI a minimum duration threshold to be able to detect both the short 
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and the long activities. Despite that in real world a POI can contain several activities, related works have linked a POI 

to only one activity, like assigning a mall to shopping, even if it can contain a multitude of activities like going to a 

restaurant and cinema. Thus, our approach will handle the plurality of activities inside the POIs. We propose in the 

following, a novel approach to reduce the battery consumption while online recognizing users’ visited places, our 

algorithm will be totally unsupervised without any beforehand fixed threshold.   

3. Overview of the approach  

We assume the person is traceable via a smartphone, the type of users’ traces is not important to us since the 

proposed approach works for any movements type (GPS, WIFI positioning, WIFI, Bluetooth or GSM triangulation, 

pedestrian dead-reckoning, etc.). We will analyze incrementally a user’s motility to extract his performed activities. 

The main idea of our approach is to minimize the calculation during the analysis process by using a mixture of activity 

recognition and prediction algorithms. 

Our system is divided into three parts; the first part aims to recognize users’ activities when they visit places for 

the first time, the second part is activity prediction where we predict the next activity to avoid processing the activities 

already recognized, and finally, activity verification which is a post-processing step that aims to verify if the predicted 

activity is the right one. Suppose that the user has gone from home to work (see Figure 1-A), for the first time when 

the user visits these locations, we will recognize the two POI linked to the activities staying at home and working in 

the office by using our activity recognition model presented later.  

 

 

Figure 1: The three parts of our hybrid approach. (1) Home, (2) Work,   

The next time that the user will go from home to work, our approach will not use the activity recognition model to 

recognize the activity since it represents a significant source of power consumption, nevertheless, it will use only the 

association rules driven from the prediction model to estimate the next destination, meanwhile, all the GPS points 

between  home and work will be stored without any processing until we confirm that the predicted activity is that one 

performed by the user by using the verification model (see Figure 1-B ). 

If we confirm that the predicted activity is that one performed by the user, we delete the recorded GPS points 

between home and work because the prediction was made successfully, otherwise, we apply the activity recognition 

model for the whole recorded points to figure out where the user has gone from home. We are going to detail in the 

following, the three parts of our system.  

3.1. Activity recognition 

This step aims to explore a user’s activities for the first time, like discovering where he lives and works. We propose 

a novel approach that recognizes not only stationary activities but moving ones too. In fact, usually, person’s activities 

are divided into two behaviours: stationary and non-stationary, where the second one is also divided into two 

categories moving to reach a goal and moving to do a goal (see Figure 2).  

 

Figure 2. Relation between moves, stops and activities with moving. 

For example, working in the office is a stationary activity, while going from work to shopping is non-stationary 

activity to reach a shopping center, shopping itself is a non-stationary activity too but the goal is to do shopping, so 

it’s an activity with moving. Based on these concepts, we introduce 3 types of clusters that we will recognize 
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incrementally using our online clustering algorithm: 
1. Stop concept, represented by “c1” and characterizes stationary activities.    
2. Activity with moving “c2” is a non-stationary activity that requires movement over a time interval.     
3. Moves, represented by “c3” are a set of actions that aim to move from a POI to another.  

To deal with all these concepts, we present in Fig. 3 the overall approach of our recognition mechanism.  

 

 

Fig. 3. Activity recognition approach. 

We use in the first step an online classification method based on K-means to classify every new GPS data according 

to the three families (stops, moves, and activity with moving) by using two variables; the user speed and bearing. In 

parallel, we observe the accumulation of types of clusters, such that, after a certain threshold calculated automatically 

of the same cluster’s accumulation, we conclude that the person is probably doing something interesting. For the 

second step, we summarize the accumulated clusters to one probable POI and we start a geospatial research for the 

closest and the most meaningful geographical entity. If the research process succeeds, we declare this point as a POI 

(see Fig. 3). For further details about the operating of this approach, please refer to the paper presented in [6].   

3.2. Activity prediction 

The activity prediction step begins by constructing a sequence of 𝑃𝑂𝐼 that represents the tracking of users’ daily 

habits learned using the activity recognition model, every sequence is stored incrementally in a tree structure called 

Habits' Tree ‘HT’. On every sequence arrival, our algorithm updates incrementally HT and predicts the next POI using 

the association rules drawn from HT. Every sequence contains a set of disjoint singletons 𝑃𝑂𝐼𝑗 and terminates with 

the end of the day (daily habits). For example, assuming that the user achieved the following activities during a day: 

home, work, restaurant, work, gym, home; the algorithm will construct incrementally two sequences from these 

habits: 𝑆1: Home, work, restaurant and  𝑆2:  Restaurant, work, gym, home. Afterwards, the sequences are stored in HT 

(see Fig. 5) and the association rules are mined using FP-Tree algorithm [9]. 

 

Fig. 4. HT Structure construction. Every node contains a number of occurrence n 

After mining the association rules from HT, suppose that we got these rules:(𝑤𝑜𝑟𝑘, 𝑔𝑦𝑚 → ℎ𝑜𝑚𝑒), (ℎ𝑜𝑚𝑒 →

 𝑤𝑜𝑟𝑘), (𝐻𝑜𝑚𝑒,𝑤𝑜𝑟𝑘 → 𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡). Predicting the next activity lies on choosing the most appropriate association 

rules with the greater weight that represent a user’s situation, and using the resulting clause as predicted next activity. 

For example, if we know that the user has gone from home to work, using the last association rules we can predict 

that he will go next to the restaurant (see Fig. 4). For further details about the operating of the prediction approach, 

please refer to the paper presented in [5].   

3.3. Activity verification 

After predicting the next activity, we need to confirm that the predicted activity is that one performed by the user, 

for this purpose we introduce a new structure of POIs. A POI will become not only a geographic place where the user 
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carry out an activity, but a geographic entity that is characterized by a minimum duration 𝑑𝑚𝑖𝑛   that represents the 

minimum duration of an activity, and a distance 𝑟 that represents a ray where the activity can be performed. Unlike 

the related works, we will learn these parameters by adjusting them incrementally and dynamically in function of a 

user’s behaviours (see Fig. 5). 

 

 
 

Fig. 5.  The 𝑑𝑚𝑖𝑛 and r characteristics of a POI Fig. 6. Activities’ duration clustering inside a POI, for instance, activity 1 can 

be going to convenience store, activity 2 going to fast food, activity 3 shopping. 

Our approach handles the POIs as geographic areas that may contain several activities. Each activity is 

characterized by temporal edges learned from the user behaviours. In this work, we differentiate between activities in 

the same POI by using only duration, this process is based on a taxonomy of activities durations, for instance, suppose 

that the POI is a mall that may contain a multitude of activities, watching a movie in the cinema is an activity that its 

duration is between 1h 30 and 3h, while the duration of eating in a fast food is between 30 min and  1 hour, comparing 

the users duration of stay with such taxonomy may revel information on the executed activity, we are not going deeper 

in the explanation of this step for lack of space.        

3.3.1. Calculating 𝑑𝑚𝑖𝑛  and r     

Each duration represents a time spent by the user inside or at the surroundings of a given POI, it is calculated using 

the time of check-in and check-out (see Fig. 5). 

In order to calculate the minimum duration threshold 𝑑𝑚𝑖𝑛, we need to understand how the user behaves inside this 

POI. As said previously, a user may perform more than one activity at the same place, the  𝑑𝑚𝑖𝑛 calculation starts by 

regrouping the durations by using Fuzzy C-Means (FCM) [7] because it allows a time duration to belong to more than 

one cluster which solves the problem of values on the borderline( see Fig. 6).  

However, FCM requires a fixed number of clusters, in our case we don’t have a prior information about the number 

of activities in this POI, so, we propose a criterion to calculate incrementally the optimal number of clusters  𝐶𝑁 (see 

equation 1); the average deviation of each value from the median 𝑀 of its most probable cluster. When more than one 

cluster is analyzed, the criterion value is the sum of each cluster average. The algorithm considers that the optimal 

clusters number is 𝑁 if the 𝑁+1 clusters' criterion value doesn’t improve significantly the one with 𝑁 clusters. 

𝐶𝑁 = ∑
∑ |𝑥𝑖𝑗−𝑀𝑖|
𝑛𝑖
𝑗=1

𝑛𝑖

𝑛
𝑖=1                                                                                                                                               (1) 

Where N is the number of clusters, 𝑥𝑖𝑗  is the duration of the activity j in the cluster i, 𝑛𝑖 is the number of activities 

in the cluster i and 𝑀𝑖 is the median of the cluster i.  

Let the durations in figure 6 be an example to illustrate this clustering step, suppose that we have initially one 

cluster [5,7,8,9,30,32,120,125,136], its median will be 30 and 𝐶1 = 42,6. For two clusters, FCM will construct two 

clusters [5,7,8,9,30,32] and [120,125,136], thus, 𝐶2 =  8,5 +  5,3 =  3,8 , we note that 𝐶2 < 𝐶1, so we increase the 

number of clusters to two. For three clusters, FCM will construct the following clusters: [5,7,8,9], [30,32] and 

[120,125,136], thus, 𝐶3 =  ,25 +  + 5,3 = 7,55, we note that choosing three clusters have improved the criterion 

𝐶 as 𝐶3 < 𝐶2. In order to know if we stop at three clusters we have to test the criterion of four clusters, thus, for N=4, 

FCM will construct [5], [7,8,9], [30,32] and [120,125,136], consequently, 𝐶4 = 0 + 0.7 + 0.7 + 5,3 = 6.7 .  

We note that the gain in the criterion 𝐶 is two small for N=4 (𝐶4 − 𝐶3 = 0.8, note that we avoid detailing how we 

judge that a gain in 𝐶 is significant or not to simplify our proposal), so, there is no need to add another cluster, and the 

number of declared clusters is N=3 (see Figure 6).  

After clustering the durations inside the POI, it’s time to calculate the value of 𝑑𝑚𝑖𝑛. Remember that our solution 

is online, which means that 𝑑𝑚𝑖𝑛 can change at every new visit to this POI, so, initially 𝑑𝑚𝑖𝑛  takes the value of the 

smallest value of the first cluster (for instance, 𝑑𝑚𝑖𝑛 in the figure 6 is 5 minutes), but, at the arrival of a new duration, 

we compare it to 𝑑𝑚𝑖𝑛, if it is higher than 𝑑𝑚𝑖𝑛  we declare that the user has visited this POI and we recalculate the 

criterion 𝐶 to figure out if we have to add a new cluster or not.  
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However, if the duration is less than 𝑑𝑚𝑖𝑛 , the new duration can be a new 𝑑𝑚𝑖𝑛  (the user visited the POI with shorter 

dwell time) or an error (the user just passed by the POI without performing an activity there), accordingly, we calculate 

the criterion 𝐶 for the new clusters including the new duration, if  𝐶𝑛𝑒𝑤 is significantly higher than 𝐶𝑜𝑙𝑑  we keep 𝑑𝑚𝑖𝑛 

and we conclude that the new duration is an error, otherwise, 𝑑𝑚𝑖𝑛  takes the value of the new duration. For instance, 

let take the previous example presented in Figure 6. If the new duration is 1 minute, the new 𝐶3 will be 8,5 , we note 

that new 𝐶3  is higher than the old 𝐶3 = 7,55, consequently, we assume that the user has not visited the POI. However, 

if the new duration is 4,5, the new 𝐶3  will be 7,8 which is not significantly higher than the old 𝐶3 = 7,55 , 

consequently, we assume that the user has visited the POI,  we accept this duration as a borderline duration and we 

put 𝑑𝑚𝑖𝑛  =  4,5.  
The value r represents a ray where the user has to spend à minimum duration 𝑑𝑚𝑖𝑛  to declare that the user has 

visited the POI, r is calculated beforehand in our spatial database for each POI. It covers the total area of the POI 

including its annexes like parking (see Figure 5).   

3.3.2. Testing 

Remember that the verification process is designed to figure out if our prediction was right and correct it when 

needed by re-running the activity recognition model (see Algorithm 1).. The prediction error can fall under two cases: 

the user didn’t go to the predicted place and the user has gone to the predicted place but he performed other activities 

meanwhile. To detect these errors we introduce two types of tests:   trajectory duration test and activity duration test. 

The first test is to compare the duration of the user trajectory and the maximum of trajectories’ durations between 

the two POIs (the source POI and the predicted POI) to test if the user has gone to the estimated location, if the user’s 

trajectory duration exceeds the maximum of durations we can say that the user has probably gone somewhere else 

(because he spent more time than usual to reach the predicted POI), consequently, we reapply the activity recognition 

model because our prediction was probably wrong (see Algorithm 2).     

The second test compares the duration of the activity, if the duration of the user’s staying in the POI’s perimeter 

(defined by 𝑟) is less than 𝑑𝑚𝑖𝑛 we can conclude that the user just passed by the area (see Algorithm 2).  

 

Algorithm 1: the overall algorithm of our approach   

 

Input: A user position; 

Output: The Visited POI; 
1: If (HT contains current POI) 

2:      Next POI = Prediction POI; 

3:      Activity verification (next POI )   

4: Else 

5:      Activity recognition until next POI; 

6: End  

7:      Update HT; 

8:      Cluster durations inside POI; 

9:      Calculate 𝑑𝑚𝑖𝑛; 

10:      Delete GPS records;  
 

 

 

Algorithm 2: Activity verification (POI) 

 

In  Input: A POI; 

 
1: If ( trajectory duration < trajectory Max duration ) 

2:      Wait until GPS inside POI; 

3:      If duration in r  of POI < 𝑑𝑚𝑖𝑛 of POI 

4:      Calculate the new criterion 𝐶; 

5:           If (new  𝐶 ≫  old 𝐶 ) 
6:           Activity recognition from the previous POI; 

7:           Else   𝑑𝑚𝑖𝑛 = duration in r  End 

8:      End     

9: Else  

10:      Activity recognition from the previous POI; 

11: End  
 

4. Experimental evaluation

We will test our approach’s ability to save battery life by comparing our solution to LifeMap application described 

in [2]. Researchers in LifeMap project collected real traces from 68 persons over four weeks using HTC Hero, HTC 

Desire, and Samsung Galaxy S smartphones. The tracking application (called LifeMap) was running as a background 

service to automatically collect the user’s mobility and to trace sensor usage time. To collect the ground truth, the 

participants explicitly labeled the place names and kept a diary of places they had visited with the entrance and 

departure times. Moreover, the advantage of using such dataset is the ability to compare the power consumption of 

our method to the authors ‘one, since authors tracked the battery status during all the experimentation process.   

In this step we will compare our approach to the LifeMap application used to recognize users’ motilities, the project 

can be found in [8], the LifeMap dataset in [1] and the LifeMap mobile application can be found on android play store. 

We used the LifeMap dataset to test our battery-friendly approach, to do so, we developed an android application that 
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is fed from LifeMap dataset, the main idea is to make it out as if the users of lifeMap dataset have moved holding our 

application in their phones, the application recuperates the position coordinates one by one and processes each point 

using our online approach (activity recognition, prediction and verification), after that we compare the battery 

consumption of our application with LifeMap application’s one (see Figure 7).  In order to bring an objective 

comparison, we have reproduced the same environment as lifeMap application in terms of the smartphones model and 

the type of sensors used in the experimentations.  

 

Fig. 7. Test scenario to compare our solution with LifeMap application using LifeMap Dataset. 

The total number of recorded hours of battery status in LifeMap dataset is 48900 hour noted from the motilities of 

68 persons, however, some of these motilities don’t reflect a user’s motilities in real word, since some users in lifeMap 

experiment did not have a repetitive behavior during the experiment (several visits of the same POI), consequently, 

we have chosen 5 users that had the most regular motilities to reflect fairly the real word situation. 

The total number of hours experimented from these 5 users is near 2900 hour, we have used five smartphones to 

record the power consumption of our hybrid approach for each user and compare it to LifeMap results. Due to 

insufficient space, we present in figure 8 the tracking of one user’s battery life for 72 hours using LifeMap and our 

hybrid solution, however, the results derived from the total 2900 hours will be presented in Table 1 and figure 9.  

 

 

Fig. 8. Results comparison between LifeMap (A) and our hybrid solution (B) during 72 hours of activity recognition. 

Our approach shows an interesting battery saving capacity, we notice from figure 8 that our approach needed only 

3 to 4 battery recharges contrariwise LifeMap that needed more than 10 recharges during 72 hours. However, the 

number of recharges is not an efficient indicator that quantifies the power consumption, since, like noticed in figure 

7, users tend to recharge partially their phones, therefore, we have introduced a new indicator to quantify the power 

consumption called 𝑃𝐶. We put 𝑃𝐶 =  𝑇𝑟 𝑇𝑑⁄ , where 𝑇𝑟 is the global battery recharge time and 𝑇𝑑 is the global battery 

discharge time, note that we exclude the time where the battery was full but still under recharge because it can falsify 

the results presented in table 1. 

Table 1: 𝑃𝐶 and accuracy comparisons between our hybrid solution, our activity recognition model and LifeMap application 

 Our hybrid solution Our activity recognition model LifeMap 

𝑃𝐶 9,4% 15,9 % 16,7 % 

Accuracy 76,5% 77 %  73% 

The PC comparison between our hybrid approach and LifeMap presented in table 1 confirmed that our solution 

saves the battery’s life by about 45% while keeping a better accuracy than LifeMap’s one (73%) (Accuracy= 

Correct/tested activities) and the same accuracy as if we applied the activity recognition model continuously (77%), 

this is justified by the fact that our hybrid approach has the ability to recognize the errors generated by the predictions, 

and to correct them by reapplying the activity recognition model, consequently, the hybrid approach acts like if we 

have applied the activity recognition model all the time, but with much less power consumption. We tracked in figure 

9, the average daily PC value of the 5 users during 23 days, to go deeper in the analysis of the 𝑃𝐶 indicator.  
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Fig. 9. The average daily PC value of the 5 users, comparison between our solution and LifeMap for 23 days. 

We notice that the 𝑃𝐶 value of LifeMap is stable contrariwise our solution that starts from a value of 17% to fill 

under the 7%, this is justified by the fact that our solution consumes more power in the first times of the 

experimentation because it applies the activity recognition model frequently in a perspective of learning the user’s 

habits, when done, the approach will consume less power because it will refer each time to the prediction model, we 

believe that, in the long term, when a user’s habits are well learned, the PC value of our approach will be stabilized 

under 7% , which will lead to about 60 % of power saving. To conclude the experimentations, we have tracked the 

phone’s memory usage for each method for 168 h. Results presented in Table 2 represent the mean RAM usage of 

each application where our hybrid solution shows a promising RAM usage rate, better than the other solutions.  

Table 2: Comparing our hybrid solution to our old solution, CB-SMOT and Waze application in terms of memory usage 

 Our Hybrid solution Our old solution LifeMap 

RAM usage 19Mo 35Mo 38Mo 

4. Conclusions and future works  

In this paper we proposed a new battery-saving technique for extracting semantically and incrementally important 

geographical locations from users’ moves. We learn users’ habits to reduce the computational complexity of our 

approach, the proposed system is divided into three parts; the first part aims to recognize users’ activities when they 

visit places for the first time, the second part is activity prediction where we predict the next activity to avoid 

processing the activities already recognized, and finally, activity verification which is a post-processing step that aims 

to verify if the predicted activity is the right one. This work is designed for detecting outdoor activities. However, 

supporting indoor activities represent a challenging future research direction that will let having an accurate 

information about the activity performed inside the POI.    
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